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Abstract: Medium exchange is the process of changing the suspension medium of cells/particles, and
has applications in washing, surface modifications, nutrient replenishment, or simply changing the
environment of the target entities. Dipping involves diverting the path of target cells in the carrying
fluid to immerse them in another fluid for a short duration, and pushing them again into the original
medium. In this paper, a simple microfluidic platform is introduced that employs dielectrophoresis
to achieve medium exchange and dipping of micro-objects in a continuous manner. The essential
feature of the platform is a microchannel that includes two arrays of microelectrodes that partly
enter the bottom surface from both sides. In the first step, numerous finite element-based parametric
studies are carried out to obtain the optimized geometrical and operational parameters ensuring
successful dipping and medium exchange processes. The results of those studies are utilized to
fabricate the platform using standard photolithography techniques. The electrodes are patterned on
a glass substrate, while the channel, made out of polydimethylsiloxane, is bonded on top of the glass.
Trajectories of blood cells from numerical studies and experimentations are reported, and both results
exhibited close agreement.

Keywords: dipping; medium exchange; dielectrophoresis; microfluidics; microchannel; parametric
studies; blood cells

1. Introduction

Sample preparation is the first and essential step in any kind of analytical system in the fields of
biotechnology, food processing, medical diagnostics, and microassay systems. Often, the success of
these analyses relies on the accuracy and the quality of the sample being used. The conventional sample
preparation procedures are tedious, require highly skilled labor, and are extremely time consuming.
Furthermore, the conventional cell analysis techniques are based on extracting the averaged properties
of a population of cells that are prone to inaccuracies because of the heterogeneous gene expression and
large variations in the behavior and physical properties, even in the same type of cells. The problem
gets more complicated when detections/operations of rare cells, for instance, detection and isolation
of circulating cancer cells from blood samples, are involved. Microfluidics has emerged as a promising
field with the potential to improve traditional sample preparation methods, diagnostics, and prognostic
techniques [1]. The ability of single cell manipulation has been the driving factor in the development
of microfluidic lab-on-chip platforms, to gain an insight into cellular behavior in response to controlled
stimuli. These single-cell operations have enabled accurate electrical and mechanical characterization
of individual cells [2,3], and are increasingly applied in the fields of disease detection, immunology,
plant biology, environmental monitoring, and medical diagnostics [4]. Other great advantages offered
by microfluidics are small sample usage, cost-effectiveness, fast response, portability, less wastage of
material, ease of integration, and biocompatibility.
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The target micro-objects can be manipulated in two common ways: either trapping them in
physical or virtual cages, or allowing them to move in a continuous-flow method. The former method
is more cumbersome, and requires a special protocol for successful operation. The continuous-flow
based method, on the contrary, offers the advantages of being less labor-intensive, has high throughput,
and reduces the time of operation significantly. Continuous cell manipulation methods can be further
classified into active and passive methods. Active approaches employ an external force for continuous
manipulation of cells into a designated position in a microchannel. In passive continuous-flow methods,
the cells are influenced by hydrodynamic forces and the geometry of the microchannel.

Various innovative techniques have been used efficiently for effective and controlled manipulation
of micro-objects. Magnetic techniques have been utilized to divert the paths of mammalian
cells laterally in a ferrofluid solution [5]. Piezoelectric transducers have effectively been used to
generate acoustic forces for medium exchange of polystyrene (PS) particles [6]. Other techniques for
manipulation of single cells include optical [7], electric [8], and mechanical [9] methods. Among them,
the electrical-based technique, called dielectrophoresis (DEP) [10], to perform medium exchange and
cell dipping, is introduced in this work. Dielectrophoresis is a popular choice for cell manipulation
because of its simplicity, high selectivity, and ease of integration with other microfluidic devices [11].
The non-uniform electric field for DEP force in the microchannel is generated using a variety of
electrode configurations, including coplanar configuration [12,13], top and bottom configuration [14],
sidewall electrodes [15], and the more recently introduced inherently aligned and customized liquid
metal electrodes [16,17].

Medium exchange in microchannels is the process of transporting cells suspended in a medium
to another parallel-flowing medium inside the same channel. The target cells are deflected once in
the microchannel by applying an external force field. Cell dipping is the process of changing the
environment of the target cells twice. The cells are diverted from the first carrying medium to the
second one for a short duration, and are then brought back to the original medium [18]. Turbulent
mixing of fluids does not take place in microscaled devices because of the extremely slow laminar
flows, leading to extremely small Reynolds numbers, ~0.01–1. Mixing by diffusion requires a long
channel, and can be easily avoided by using shorter microchannels [19]. The applications of dipping
phenomenon are numerous: it can be successfully utilized to exchange the medium of the target
particles—such as cells or their constituents—before further processing. The medium can be a buffer
solution, either for cell washing or eliminating cellular waste materials. In other instances, the medium
may also be a reagent intended for surface functionalization, labeling, or refilling the nutrients of the
target species. Since extremely small amounts of the sample and mediums are involved, all the target
particles are exposed to the same concentration of the desired medium, decreasing the possibility of
functionalization non-uniformity for the given population of particles. Lastly, the techniques can be
influential in opening new avenues for on-chip study of cells, particles, proteins, and DNA.

We have introduced a dielectrophoresis-based microdevice to perform cell/particle medium
exchange and dipping in a continuous-flow manner. The simple design of the microdevice makes it
possible to fabricate the microdevice using standard microfabrication only. Hence, the fabrication of
the microdevice is easier, as compared to the devices with top-bottom or three-dimensional vertical
electrodes arrangement [15]. Moreover, a higher efficiency in cell dipping and medium exchange is
possible, since the current microdevice creates a higher non-uniform electric field as compared to the
parallel vertical electrodes. The cells/particles are manipulated based on their sizes, as well as their
electrical properties, as evident from Equation (1). The operating frequency and electric properties
of both the microparticles and the carrying medium are chosen, to ensure that all microparticles
experience the repulsive nDEP force from both sets of electrodes. The microparticles, suspended in a
medium, are dipped in the adjacent parallel-flowing medium, by pushing them using an electrode set
at the surface of the substrate, and under one of the sidewalls of the microchannel. The dipping time of
these microparticles can be changed in a controlled manner by changing the flow velocity, the distance
between the two sets of electrodes, and the applied voltage and frequency. As the microparticles
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traverse through the channel, they are pushed towards the original medium again by the nDEP force
from the opposite electrodes set. Hence, a very controlled dipping operation is possible by employing
the proposed device. For medium exchange, only a single set of electrodes is utilized to immerse the
particles in the second medium; the second set is not powered on. In medium exchange applications,
the cells that are introduced are carried into the microchannel through one medium, and leave the
channel while being suspended in the second medium.

2. Theory

Dielectrophoresis describes the migration of neutral (but polarizable) particles in the presence
of a non-uniform electric field [20]. It is a simple, relatively fast, and noninvasive technique that
has been extensively used for successful manipulation [21], characterization [22], and separation of
microparticles [23], bacteria [24], yeast [25], cancer cells [26], DNA [27], and other microentities [28,29].

When a dielectric object is placed in an inhomogeneous electrical field, its surface charges are
redistributed: equal and opposite charges are separated at its boundary, leading to the generation
of an induced dipole moment. The direction of translation of the micro-objects depends on the
relative polarizability of the target objects compared to the suspending medium. If the micro-object
is more polarizable than the medium, it is pushed towards the higher electric field region, and the
phenomenon is known as “positive dielectrophoresis (pDEP)”. In the opposite direction, called
negative dielectrophoresis (nDEP), the object translates towards regions of lower field strength.
Mathematically, the time-averaged DEP force acting on a spherical object of radius rp suspended
in a medium having permittivity εm in the presence of a non-uniform electric field, is stated as [30]

FDEP = 2πεmrp
3Re[ fCM]∇|Erms|2 (1)

Re[ fCM] =
ε∗p − ε∗m
ε∗p + 2ε∗m

(2)

where ε∗p = εp +
σp

(jω)
and ε∗m = εm + σm

(jω)
represent the complex dielectric permittivity of

the target object and the suspending medium, respectively. The term ∇ is the gradient operator,
Erms represents the root-mean-squared value of the electric field, and ω denotes the angular frequency
of the applied signal.

The relative polarizability of the micro-objects is described in Equation (2) by the real component
of Clausius–Mossotti factor Re[ fCM]. The range of Re[ fCM] spans from −0.5 to +1; a negative value
represents nDEP, whereas it is positive for the pDEP phenomenon.

Numerous researchers have introduced a variety of microfluidic platforms for accurate cell
manipulation and dipping. In some of the devices, an electrical trap or a physical barrier was
created inside the microchannel to cage the cells. The trapped cells, such as red blood cells (RBCs),
were then exposed to multiple fluids—reagents or washing mediums—that were introduced either
serially, or by changing relative flow rates of the fluids in the case of side-by-side flowing mediums
in a single channel [31]. Continuous-flow cell dipping devices performed medium exchange and
washing/cleaning by introducing two parallel-flowing fluids in the channel. The target cells were then
deviated multiple times by DEP forces using diagonally-oriented microelectrodes [31]. A two-staged
dipping device was developed by cascading two particle exchangers to functionalize nanoparticles.
A particle exchanger consisted of two overlapping channels, with buffer and reagent streams flowing
in the channels separately. The nanoparticles introduced in a buffer were diverged to the reagent
medium in the first stage, and were pushed back later to the cleaning buffer by lateral DEP force
generated by the electrode array on one side of the channel [32]. In order to solve the diffusion mixing
issue in the device, an optimized version of the device was introduced that employed a wider channel
and a combination of dielectrophoresis and electrophoresis phenomenon by patterning electrodes on
both sides, and a shifted array of electrodes inside the microchannel [33]. Another technique, called
deterministic lateral displacement, initially introduced as continuous-flow particle/cell separation
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method, was exploited [34]. Other techniques involve the use of standing bulk [35] or surface acoustic
waves [36] to switch the micro-objects to different fluids. Tilted-angle standing surface acoustic wave
technology is also reported in the literature to displace the cells for washing purpose [37].

3. Device Design and Operation

A schematic diagram of the proposed nDEP-based dipping and medium switching device is
shown in Figure 1. The device comprises of a straight microchannel with a set of electrodes with their
edges inside the channel at each side of the micro-channel. The device also contains two inlets and
two outlets for introducing and discharging both the particles and the two-different mediums. The
microparticles are introduced into the channel through the inlet closer to the first set of electrodes. Once
the microparticles pass near the first set of electrodes, they will experience a negative dielectrophoretic
force that push them away from the electrodes towards the minimum electric field gradient regions.
The magnitude of the repulsive force is precisely controlled so that the target objects are immersed in
the adjacent fluid stream—the dipping medium. The target microparticles are dipped in the second
medium for a predetermined time, and are then pushed back into the original medium by the second
set of electrodes using the same principle. The dipping time is mainly controlled by the flow rate of
the sample and the distance between the two sets of electrodes.
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Figure 1. Microchannel design with two arrays of electrodes on opposite sides of the microchannel.
Two different fluids enter the microchannel from inlet 1 and inlet 2. The cells (denoted as red object),
suspended in a medium, are introduced from inlet 1, and are captured from outlet 1 in the same
medium for dipping, and from outlet 2 during medium exchange process. The flow direction is from
left to right, as indicated by the arrow.

In addition to the DEP force, the microparticles are subjected to three other significant forces
during their motion inside the microchannel. These forces are sedimentation (the combined effect
of gravity and buoyancy forces) and drag forces, as shown in Equation (3). Other effects, such as
Brownian force, Joule heating effect, virtual mass effect, particle–particle interaction, particle–wall
interactions, and wall repulsion, are assumed negligible, and are neglected [38,39] . The finite element
analyses of the microdevice are shown in Figure 2. Fx

Fy

Fz
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0(

ρm − ρp
)
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+ 2πεmr3
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 (3)

In Equation (3), µ represents fluid viscosity [N·s·m−2], and ρp is the density of the microparticles
[kg·m−3]. Moreover, the terms u and vp denote the velocity of the fluid medium and that of the particle
[m·s−1], respectively. Finally, the term g is the acceleration due to gravity [m·s−2]. The second term on
the right-hand side of Equation (2) represents the drag force experienced by a single microparticle in the
fluid. For the case of multiple particles, the shielding effect reduces the drag forces for microparticles
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that are in close proximity to each other. The magnitude of the reduced drag is obtained by multiplying
the drag force with a drag correction factor Dcor given in Equation (4) [38]:

Dcor =
1

1 + kdensity ·Particle Density
(4)

The value of kdensity (density scaling factor) in Equation (4) is obtained empirically, and is detailed
in [38].
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Figure 2. The simulation results from COMSOL Multiphysics 5.2 showing (a) the electric potential
inside the channel after AC 15 Vp-p (Volts) is applied to the electrodes; (b) the x-component of the
velocity field (µm/s) when fluids from two different inlets are introduced into the channel at the same
flow rates; and (c) the trajectory followed by the microparticles in the microchannel showing successful
dipping operation. The red circles represent the particles, whereas the streamlines of both the fluids are
represented in blue and red colors. Both the fluids flow from left to right.

4. Microdevice Optimization

In this section, the effect of numerous geometric and operational parameters on particle trajectories
is discussed. The parameters studied include channel height, electrode width/gap length, particle
diameter, applied voltage, and the flow rate of both mediums. MATLAB and COMSOL MultiphysicsTM

are used to perform all the parametric studies. Since the two sets of electrodes are identical, the effect
of only one set on target objects is studied.

Figure 3 depicts the particle trajectories along the width of the channel for different values of
electrode length, and the spacing between two adjacent electrodes. Both the electrode length and
spacing are increased equally from 10 µm to 100 µm, keeping all other parameters constant. Moreover,
the channel length is kept fixed at 5000 µm in all the cases. It is observed that the displacement of
the microparticles along the width at the end of the channel increases initially on increasing electrode
length/spacing, until it reaches a maximum value at length/spacing of ~60 µm. Thereafter, the final
displacement along the width of the microchannel starts decreasing as the electrode length/gap is
further increased. At smaller length/gap, the nDEP force, although stronger in magnitude, is confined
to only a smaller effective area above the electrodes. Increasing electrode length/gap reduces the
magnitude of the DEP force closer to the electrodes, and increases this area of influence for DEP force,
causing the particles to be pushed farther into the microchannel. However, a reverse trend is observed
on further increasing electrode length/gap after a certain threshold value. After the optimized gap
length, the increased spacing between the electrodes decreases the repulsive nDEP force, causing a
decrease in the steady-state deflection along the width of the channel for the particles.
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Figure 3. Particle trajectories for different electrode/gap width values calculated using FEM. Applied
frequency: 10 kHz. Medium conductivity: 10 mS/m. Medium density: 1000 kg/m3. Density of the
particle: 1050 kg/m3. Diameter of the particle: 5.6 µm. Channel width: 95 µm. Flow rate: 5 µL/h.
Applied voltage: 10 Vp-p.

The particle trajectories for different values of the channel widths and same flow rates of both
fluids are displayed in Figure 4. The channel width is changed from 80 µm to 240 µm, to study the
effect on the displacement of microparticles along channel width. To ensure dipping or medium
exchange in the current device, it is imperative that the particles are pushed beyond the centerline
along the width of the channel. For the same electrode/gap width and flow rate, Figure 4 shows that
channel widths between 80 µm and 200 µm ensure dipping, and medium exchange operations with
different immersion times for the same flow rates of both fluids. The lower the channel width, the
faster the target particles are immersed in the second medium. On the other hand, channels wider than
240 µm do not facilitate successful dipping at the selected flow rate, since the nDEP force generated by
the electrodes is not enough to push the particles into the second medium beyond the centerline along
channel width.
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Figure 4. Particles trajectories for different channel width values generated using FEM. Applied
frequency: 10 kHz. Medium conductivity: 10 mS/m. Medium density: 1000 kg/m3. Density of the
particle: 1050 kg/m3. Diameter of the particle: 5.6 µm. Electrode/gap width: 60 µm. Flow rate of both
fluids: 5 µL/h. Applied voltage: 10 Vp-p.

The next parameter studied is the diameter of the microparticles. Figure 5 shows the trajectories
of particles with different diameters. DEP force, as indicated in Equation (1), is proportional to cubic
radius rp

3 of the particle. On the other hand, the drag force is proportional to only rp. It is evident
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that larger the particle size, the larger the DEP force will be, and the higher the displacement in the
direction along the width of the channel.
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Figure 5. Particle trajectory for different particle diameters. Applied frequency: 10 kHz. Medium
conductivity: 10 mS/m. Medium density: 1000 kg/m3. Density of the particle: 1050 kg/m3.
Electrode/gap width: 60 µm. Channel width: 200 µm. Flow rate: 5 µL/h. Applied voltage: 10 Vp-p.

In Figure 6, the particle trajectories for different flow rates are generated. The flow rate directly
affects the displacement of the particle in the direction along the channel length. Figure 6 suggests
that as the flow rate of fluids is decreased, microparticles are pushed deeper into the channel along its
width, since the drag force plays a dominant role compared to the other forces.
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Figure 6. Particle trajectory for different flow rates of fluids in the microchannel. Applied frequency:
10 kHz. Medium conductivity: 10 mS/m. Medium density: 1000 kg/m3. Density of the particle:
1050 kg/m3. Electrode/gap width: 60 µm. Channel width: 200 µm. Particle diameter: 5.6 µm. Applied
voltage: 10 Vp-p.

Finally, the effect of applied voltage on the trajectory of a microparticle was studied. The particle
trajectories for different applied voltages (peak-to-peak) is shown in Figure 7. It can be seen that the
higher the applied voltage, the higher the displacement of the microparticles along channel width.
Equation (1) shows that the DEP force is proportional to ∇(E·E). Hence, higher applied voltages tend
to create a higher nDEP force, pushing the microparticles further away from the electrodes.
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5. Experimental Validation

The PDMS-based microdevice (Figure 8) to perform the dipping operation successfully is
fabricated using standard photolithographic techniques. The microdevice comprises of microelectrodes
patterned on a glass wafer bonded with the PDMS channel. The two layers of the device are fabricated
separately. A layer of gold (Au) is sputtered on the glass wafer (4 inch diameter and 500 µm thick),
after depositing a thin layer of chromium (Cr) on it. The thin Cr layer improves the adhesion of
the Au layer on the glass wafer. Next, a positive photoresist Shipley PR1800 (MicroChem Corp.,
Westborough, MA, USA) is spin-coated, exposed to ultraviolet light using a photolithography system
(KLOE 650, KLOE, Montpellier , France), and developed in MF319 developer (MicroChem Corp.),
at room temperature, to pattern the photoresist layer on the glass wafer. The exposed Au parts are
then etched away, while those protected by the positive photoresist remain unaffected. Next, the Cr
exposed layer is etched away using Cr etchant. In the next step, the photoresist is stripped off using
acetone, leaving behind the Au microelectrodes on the glass wafer. Finally, the glass wafer is diced so
that each piece can be used as a separate device.

In order to make the PDMS microchannels, an SU-8 2025 mold is first patterned on silicon (Si)
wafer. Separately, the PDMS base and curing agent are mixed at 10:1 by weight. The mixture is then
poured on the mold, degassed, and finally cured at 80 ◦C for two hours. Both the glass wafer and
the PDMS microchannel are cleaned in plasma cleaner, and then aligned under the microscope before
they are thermally bonded to each other. A few droplets of ethanol are used to delay the bonding
process between the PDMS and glass, and perform the alignment. The microdevice is fabricated
using the optimized geometrical parameters—e.g., electrode width, electrodes spacing, channel width,
etc.—obtained from numerical analyses.
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Based on the numerical results, each electrode array is designed to have 10 pairs of electrodes with
electrode width, electrodes spacing, and channel width 60 µm, 60 µm, and 80 µm respectively.
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After the device was completed, modified blood samples to carry out experiments was prepared.
Human blood samples from anonymous healthy donors were obtained after addressing appropriate
institutional ethics and privacy concerns. The participants gave their informed consent for inclusion
before they participated in the study. The study protocol was approved on the 19 January 2015 by
the Ethics Committee of the office of research support at Khalifa University. The protocol for sample
preparation is as follows: (1) The blood sample is first centrifuged in the centrifuging machine to
separate the cells from the high conductivity plasma; (2) After being separated from the plasma,
the blood cells are placed in a low conductivity sucrose/dextrose medium (10 mS/m) [21]. In the
experiments, the cells are allowed to pass through the microdevice using a syringe pump from one of
the inlets at a flow rate of 5 µL/h. The medium conductivity of 10 mS/m ensures that RBCs are under
the influence of nDEP at the operating frequencies. From the second inlet, only the sucrose/dextrose
medium without RBCs with a different conductivity value (12 mS/m) is pumped into the microchannel
using a separate syringe pump. An AC signal of 20 Vp-p at the frequency of 10 kHz was applied
to the electrodes using a function generator. The frequency of 10 kHz is selected to ensure nDEP
phenomenon for the blood cells. The effect of the nDEP force on the blood cells is observed under
a microscope. Figure 9 shows the results obtained during the experiments. Figure 9a depicts the
phenomenon of medium exchange when a single set of electrodes (bottom) is powered ON, while the
other (top) set is powered OFF. The blood cells are deflected only once during the medium exchange
procedure. Figure 9b explains the phenomenon of blood cells dipping in the microchannel. The cells
are initially deflected from the bottom electrode set, and are again deflected from the top electrode set,
dipping the cells into the top-flowing medium, and again, to the original bottom medium.
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Figure 9. (a) The trajectories followed by red blood cells (RBCs) showing medium exchange process.
The lower electrodes are powered ON, while the upper electrode sets are powered OFF; (b) Operation
of cell dipping. Both the electrodes are turned ON. The blood cells are flowing from left to right. Flow
rate is 5 µL/h, applied voltage is 20 Vp-p, applied frequency is 10 KHz, and the frame rate 60 frames
per second.

Separately, the trajectory of a single RBC under the influence of nDEP with one of the electrode
sets is also obtained during the experiment. Figure 10 displays a comparison between the path
followed by a single blood cell during the experiment, and the trajectory of the cell obtained in the FEM
model. A good match can be seen between the experimental and the analytical results. The maximum
deviation between the experimental and numerical results, as shown in Figure 10b, is recorded to be
only 12.22%.
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Figure 10. (a) Trajectory followed by a single RBC during the experiment; (b) Comparison between the
experimental and the numerical results with maximum deviation of 12.22%. Electrode width: ~60 µm.
Gap between electrodes: ~60 µm. Channel width: ~80 µm. Flow rate: 5 µL/h. Particle diameter: 5.6 µm
in FEM and RBC in the experiment. Applied voltage to the electrodes: 20 Vp-p. Applied frequency:
10 kHz. Frame rate: 60 frames per second.

6. Conclusions

In conclusion, a theoretical model of a microfluidic device for dipping and medium exchange
processes is presented. Numerical parametric studies are performed for different geometrical and
operational parameters. A microfluidic device is fabricated using the optimized parameters obtained
in the parametric studies. The experiments involving actual blood cells are performed, and agreement
can be seen in both the experimental and numerical trajectories. Finally, the presented model is capable
of performing dipping and medium exchange processes in many polarizable cell lines, as long as the
applied frequency is below their crossover frequencies to ensure nDEP. Moreover, dipping and medium
exchange are possible, as long as the right parameters are selected from the presented parametric study
in this paper.
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