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Abstract: In this paper, for the first time, an n-channel metal-oxide-semiconductor field-effect
transistor (NMOSFET) layout with a Z gate and an improved total ionizing dose (TID) tolerance is
proposed. The novel layout can be radiation-hardened with a fixed charge density at the shallow
trench isolation (STI) of 3.5 × 1012 cm−2. Moreover, it has the advantages of a small footprint,
no limitation in W/L design, and a small gate capacitance compared with the enclosed gate layout.
Beside the Z gate layout, a non-radiation-hardened single gate layout and a radiation-hardened
enclosed gate layout are simulated using the Sentaurus 3D technology computer-aided design (TCAD)
software. First, the transfer characteristics curves (Id-Vg) curves of the three layouts are compared to
verify the radiation tolerance characteristic of the Z gate layout; then, the threshold voltage and the
leakage current of the three layouts are extracted to compare their TID responses. Lastly, the threshold
voltage shift and the leakage current increment at different radiation doses for the three layouts are
presented and analyzed.

Keywords: bulk NMOS devices; radiation hardened by design (RHBD); total ionizing dose (TID);
Sentaurus TCAD; layout

1. Introduction

The total ionizing dose (TID) effect is one of the mechanisms that causes radiation-induced
anomalies in semiconductor devices. The TID mechanism induces the generation of trapped charges
in the dielectrics and interface states along the Si/SiO2 interfaces, causing degradation of a transistor’s
performance [1–4]. Due to the downscaling, the net-charge trapping in oxides with a thickness of less
than 10 nm is modest [5–9]. Since the thickness of the gate oxide of the simulated transistors is 2 nm,
in this work, the net-charge trapping in the oxides is negligible. Therefore, the effects on thick oxides,
such as the shallow trench isolation (STI), dominate the TID response of metal-oxide-semiconductor
field-effect transistors (MOSFETs) [10]. Moreover, the charge trapped in the spacer oxide or at its
interface modifies the parasitic series’ resistance, reducing the drive current [11].

In a conventional non-radiation-hardened single gate layout, the STI’s parasitic conduction path
(the red arrow in Figure 1a) induced by the TID effect, which is visible only in an n-MOSFET, occurs
along the sidewall oxide between the source and the drain, and leads to an increase in the drain
current as the radiation dose increases [1]. A widely studied layout with radiation hardness, called the
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enclosed gate layout [12–14], which requires tradeoffs in application [14,15], is presented in Figure 1b.
For instance, a very small width over length ratio (W/L) is not realistic for an Enclosed Layout
Transistor (ELT), for which the minimum achievable W/L is 2.26 [15], which is a significant concern in
analog circuits [16]. Moreover, a larger gate capacitance will cause a longer time delay, which is not
favorable for digital circuits. A large footprint is another disadvantage of the enclosed gate layout.
In circuit design, the area penalty induced by design has been the main drawback [17].

In order to eliminate the parasitic path and overcome the disadvantages of an enclosed gate
layout, for the first time, an n-MOSFET layout with a Z gate is proposed. Moreover, the proposed Z
gate layout is applicable to more complicated structures, such as fin-field-effect transistors (FinFETs),
tunnel-field-effect transistors (TFETs), and nanowires [18–22]. In this paper, devices with the proposed
Z gate layout achieve total-dose hardness by eliminating these edges, but at the expense of fabrication
feasibility due to the asymmetric active area design, as shown in Figure 1c. First, the effectiveness of
the proposed layout to eliminate the leakage current is demonstrated by Id-Vg curves. Then, the total
shift of the threshold voltage and the variation of the leakage current, before and after the radiation
is applied, are calculated for the single gate layout, the enclosed gate layout, and the Z gate layout,
respectively. Further, the three simulated layouts are compared with respect to the threshold voltage
shift and the leakage current increase as a function of the fixed charge density. Comparing the static
characteristics of the different transistor layouts, it is found that the Z gate layout exhibits the best TID
response compared with the conventional layouts and ELTs.
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2. Device Structure and Simulation

The Z gate layout achieves the radiation hardness by introducing two short extra gates that
separate the active area and the isolation oxides. It should be noted that the precise, effective W/L ratio
model of the proposed layout is not available at present; so, the channel width of the Z gate layout
in this work is defined as shown in Figure 1c. A report [15] proposed an effective W/L model of an
enclosed gate layout, and concluded that the only way to obtain a low aspect ratio is to increase the L
value. In the rectangular shape of an enclosed gate layout, the minimum W/L achievable is 2.26, and is
almost reached with L = 7 um [15], which implies a considerable waste of area and a large capacitance
issue. Although a precise W/L model of the Z gate layout is not available at present, the drain current
level of the Z gate layout, when compared with the drain current of a single gate layout with the same
W, L, and the overdrive voltage (Vgt, Vgt = Vgs − Vth), is nearly the same. It assumes that a Z gate
layout does not need to increase the L value that high to achieve the same effective W/L with a single
gate layout, and, thus, has a smaller footprint and gate capacitance.

In the simulation, the main parameters were kept the same for all three layouts. The lateral
spacers were formed by a layer of SiO2 and a thick layer of Si3N4, and the STI was inserted using the
SiO2. Because the enclosed gate layout was not able to achieve a small W/L at L = 0.12 µm, the values
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of R1 and R2 were 0.15 µm and 0.27 µm, respectively, and the effective W/L was calculated by the
formula given in [14], and it was equal to 13.6. The main parameters of the transistors in the simulation
are listed in Table 1.

The TID effect on the MOSFET was modeled by adopting the fixed-charge insulator model
provided by the sentaurus technology computer-aided design (TCAD) software, which can be used to
set a fixed charge density between the STI and the active region [23]. All simulations were performed
using a hydrodynamic model with high-field saturation and mobility degradation models that included
doping dependence and carrier–carrier scattering. We simulated the effects of the total radiation dose
by increasing the fixed charge density on the sidewall oxide [24]. It should be noted that this work
is focused only on the effects of fixed charges; so, the interface states were neglected for the reasons
below. When a complementary metal-oxide-semiconductor (CMOS) device is exposed to radiation,
hole trapping results in fixed charges and interface states in the thick oxides. According to a report
on the radiation-induced fixed charge density and interface state density in MOS capacitors [25],
the radiation-induced flat band voltage is predominantly shifted by the fixed charges. The effect
of the interface states is minor. Therefore, in this simulation, the interface states were neglected,
and only the fixed charge density was modified to reflect the total ionizing dose effect [24]. Moreover,
the effects of interface traps were left out of the simulations due to a lack of empirical information about
several parameters of interface traps, such as trap energy and density and the capture cross-section,
which are necessary for accurate simulations [26]. In addition, we can see from the literature [26]
that the tendencies of ∆Vth and ∆SS extracted from the simulation results are in good agreement
with those from the experimental data of 5 Mrad. Through the three-dimensional (3D) simulation
results, they confirm that, for sub-100 nm gate-all-around metal-oxide-semiconductor field-effect
transistors (GAA MOSFETs), the fixed charges in the gate spacer predominantly determine ∆Vth
and ∆SS, i.e., the TID effect. Note that interface traps were not taken in the simulation in this paper.
Although that may result in some disagreement in the current levels as obtained with the experimental
counterparts, this case does not have much impact on our findings, because the focus of this paper is
not on the exact values of currents but on the general trends and relative results of Z gate, enclosed
gate, and single gate layouts due to the TID effect.

Table 1. The parameters that were used for the device’s simulation.

Parameter Value

Length of channel 0.12 µm
Width of channel 0.21 µm

Thickness of n-type poly gate 100 nm
Thickness of gate oxide 2 nm

Doping of source/drain region 1.0 × 1019 cm−3

Depth of source/drain region 100 nm
Doping of p-type substrate 4.0 × 1017 cm−3

3. Results and Discussion

3.1. The Id-Vg Simulation Results

In order to verify that the Z gate layout is able to work well in a non-radiation environment,
we simulated the Id-Vg curves of the Z gate layout, the enclosed gate layout, and the single gate
layout at the fixed charge density of 3 × 1010 cm−2 to model the non-radiation scenario. The following
simulation results focus on the analysis of the radiation tolerance characteristics of the proposed layout.
The degradation of devices is mainly characterized by the threshold-voltage shift and the off-state
leakage current [27]. As we know, IDSS is the maximum current that flows through a FET transistor,
which is when the gate voltage (VG) supplied to the FET is 0 V. Additionally, it is only valid when
the FET transistor is a junction field-effect transistor (JFET) or depletion MOSFET. However, as the
proposed Z gate layout transistor is an enhanced MOSFET, we think that the parameters of IDSS and
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the IDSS/Ioff ratio are unnecessary to investigate. The threshold-voltage is determined by the linear
extrapolation method in the linear region; thus, the simulation was performed with a very small VDS,
i.e., 20 mV, 50 mV, and 100 mV [24,27,28]. In this paper, VDS was taken as 20 mV. Moreover, the TID
effect will be more serious when VDS reaches VDD [27]. This can be mainly attributed to the fact that
more trapped charges at the STI/body interface will sufficiently reduce the potential barrier and result
in a larger leakage current at a high drain voltage. In addition, the use of a 20 mV drain bias gives the
best results for the Z gate layout in comparison to the alternatives (results not shown). Thus, in this
paper, the three layout types are simulated at the drain bias of 20 mV, which sweeps the gate bias from
0 V to 1.5 V.

The simulation results of the Id-Vg curves of the single gate layout are shown in Figure 2a, where it
can be seen that the leakage current significantly increases as the fixed charge density increases, and that
the on-current increases slightly as the fixed charge density increases. The simulation results of the
Id-Vg curves of the enclosed gate layout are shown in Figure 2b, where the Id-Vg curves almost overlap
with each other, demonstrating a small impact of the TID effect on the enclosed gate layout.

The simulation results of the Id-Vg curves of the Z gate layout are shown in Figure 2c, wherein
it can be seen that the leakage current increases slightly as the fixed charge density increases.
The radiation tolerance characteristic of the Z gate layout was verified by comparison with that
of the single gate layout. The curves of the Z gate layout are similar to those of the enclosed gate layout;
namely, the leakage current increased very little as the fixed charge density increased, demonstrating
that the Z gate layout was radiation tolerant at the fixed charge densities at the STI of 3.5 × 1012 cm−2,
the same as the enclosed gate layout.
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3.2. Comparison of Key Transistor Performance Parameters

To compare the TID response of the transistors fairly, the threshold voltage and leakage current
parameters were extracted at the fixed charge density of 3 × 1010 cm−2 and 3.5 × 1012 cm−2 to model
the pre- and post-radiation scenarios, respectively. The results of the threshold voltage and leakage
current are listed in Tables 2 and 3, respectively.

In Table 2, the threshold voltage of the non-radiation-hardened single gate layout at pre- and
post-radiation is 363 mV and 138 mV, respectively, and the total shift is 225.56 mV; for the other
two radiation-hardened layouts, the total shift is below 30 mV. Thus, regarding the shift value in
descending order, the order of three layout types is the single gate layout, the Z gate layout, and the
enclosed gate layout.
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Table 2. Vth in the pre- and post-radiation scenarios.

Layout Vth-pre (mV) Vth-post (mV) ∆Vth (mV)

single gate 363 138 226
enclosed gate 374 374 <1

Z gate 354 329 25

In Table 3, the leakage current of the single gate layout pre- and post-radiation is 0.458 nA and
3.44 µA, respectively, and the total shift is approximately 3.44 µA. The order of magnitude of the
leakage current increase of the other two radiation-hardened layouts was about 1×10−9 A compared
to the enclosed gate layout. Regarding the increment value in descending order, the order of the three
layout types is the single gate layout, the Z gate layout, and the enclosed gate layout.

Table 3. Ioff in the pre- and post-radiation scenarios.

Layout Ioff-pre (A) Ioff-post (A) Increment

single gate 4.58 × 10−10 3.44 × 10−6 3.44 µA
enclosed gate 7.91 × 10−10 7.95 × 10−10 0.004 nA

Z gate 6.46 × 10−9 1.17 × 10−8 5.24 nA

The above-presented comparison of the three layout types regarding the two parameters
demonstrates that the enclosed gate layout achieved the best radiation-hardness performance, and
the Z gate layout was more effective in mitigating the TID effect on the transistor than the single
gate layout.

The threshold voltage shift and the leakage current of the single gate layout, the Z gate layout,
and the enclosed gate layout at different charge densities are depicted in Figures 3 and 4, respectively.
In Figure 3, it can be seen that the threshold voltage shift of the single gate layout changed non-linearly
with the fixed charge density. The shift increased rapidly at a low charge density, and then slowly
decreased after reaching the peak value at the fixed charge density of about 2×1012 cm−2. As can
be clearly seen in the inner figure in Figure 3, the enclosed gate layout’s shift was kept very small,
and the Z gate layout’s shift was similar to that of the single gate layout. It is shown that the shift
value of the single gate layout at different charge densities was much larger than that of the other
two layouts. The largest shift value of the single gate layout, the Z gate layout, and the enclosed gate
layout was 37 mV, 6 mV, and 0.09 × 10−3 mV, respectively. In the inner figure in Figure 3, it can be
seen that the enclosed gate layout’s shift was smaller than that of the Z gate layout. The enclosed
gate layout achieved great performance regarding the radiation hardness; however, the enclosed gate
layout comes with disadvantages that cannot be ignored, hindering its application to certain circuits.
In such situations, the Z gate layout is a better solution.

The difference between the three layouts regarding the leakage current was even more obvious.
As shown in Figure 4, the leakage current of the single gate layout increased rapidly at a low charge
density, and then slowly decreased after reaching the peak value at the fixed charge density of about
2 × 1012 cm−2, showing a similar trend as the other two layouts (the trend of the enclosed gate layout
is not shown in Figure 4), but at a different order of magnitude. The order of magnitude of the
leakage current increase of the single gate layout was about 1 × 10−7 A, and for the other two layouts,
it was about 1 × 10−10 A. Thus, it is shown that, compared with the single gate layout, the leakage
current increase of the other two layouts was very small, demonstrating the great radiation-hardened
characteristic of these two layouts. As can be seen in the inner figure in Figure 4, the leakage current
increase of the enclosed gate layout was still relatively small, showing the best radiation tolerance
among the three layouts. The largest leakage current increase of the single gate layout, the enclosed
gate layout, and the Z gate layout was 0.66 µA, 1.06 nA, and 0.8 × 10−3 nA, respectively. The reduction
in the leakage current of the enclosed gate layout and of the Z gate layout compared with the single
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gate layout was 0.660 µA and 0.659 µA, respectively. According to the results, the Z gate layout
performed differently from the enclosed gate layout; however, the Z gate layout was still as effective
as the enclosed gate layout regarding the leakage current reduction. Consequently, the Z gate is a
better solution at the fixed charge density of 3.5 × 1012 cm−2. In addition, the radiation effects will
deteriorate even more as the channel length shrinks due to short-channel effects, which are attributed
to the positive charge trapped at the STI/body interface by the radiation [27,28]. This is a serious
problem for a highly scaled device operating in an irradiated environment.
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4. Conclusions

A novel n-MOSFET layout with a Z gate was proposed and analyzed using the Sentaurus 3D
TCAD software. By comparing the proposed layout with the single gate layout and the enclosed
gate layout with respect to the threshold voltage and the leakage current, the radiation-hardened
characteristic of the Z gate layout was verified. Besides this, the proposed layout effectively reduces
the impact of the TID effect on the transistor’s performance compared with the single gate layout;
also, the Z gate layout overcomes the drawbacks of the enclosed gate layout, such as a large footprint,
a limitation in the W/L’s design, and a large capacitance. Thus, the Z gate is a better solution at the
fixed charge density of 3.5 × 1012 cm−2.

Author Contributions: Conceptualization, Y.W.; Investigation, C.S.; Software, W.P.; Investigation, X.-j.L., J.Y., F.C.,
and C.-h.Y.
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