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Abstract: Obtaining a correlation factor is a prerequisite for fusing multiple outputs of a mirco-
electromechanical system (MEMS) gyroscope array and evaluating accuracy improvement. In this
paper, a mathematical statistics method is established to analyze and obtain the practical correlation
factor of a MEMS gyroscope array, which solves the problem of determining the Kalman filter
(KF) covariance matrix Q and fusing the multiple gyroscope signals. The working principle and
mathematical model of the sensor array fusion is briefly described, and then an optimal estimate of
input rate signal is achieved by using of a steady-state KF gain in an off-line estimation approach.
Both theoretical analysis and simulation show that the negative correlation factor has a favorable
influence on accuracy improvement. Additionally, a four-gyro array system composed of four discrete
individual gyroscopes was developed to test the correlation factor and its influence on KF accuracy
improvement. The result showed that correlation factors have both positive and negative values; in
particular, there exist differences for correlation factor between the different units in the array. The test
results also indicated that the Angular Random Walk (ARW) of 1.57◦/h0.5 and bias drift of 224.2◦/h
for a single gyroscope were reduced to 0.33◦/h0.5 and 47.8◦/h with some negative correlation factors
existing in the gyroscope array, making a noise reduction factor of about 4.7, which is higher than
that of a uncorrelated four-gyro array. The overall accuracy of the combined angular rate signal can
be further improved if the negative correlation factors in the gyroscope array become larger.

Keywords: mircoelectromechanical system (MEMS) gyroscope; noise correlation; sensor array;
influence analysis; accuracy improvement

1. Introduction

Small, cheap and precise have become notable characteristics for the future of navigation and
guidance systems. Microelectromechanical system (MEMS) inertial sensors are particularly suitable for
constructing a compact and low-cost strap-down inertial navigation system because of their prominent
characteristics of cheapness, high reliability, small size and low power consumption [1], and even
traditional laser and fiber-optic navigation systems have been gradually replaced by MEMS navigation
systems in some fields. The performance of MEMS inertial navigation systems is mainly determined
by the precision of a micro inertial measurement unit (MIMU), which is used to measure angular rate
and the acceleration of the vehicle.

Several methods have been explored to improve MEMS gyroscope accuracy at a device level [2–4].
In recent years, other efforts and extensive research has also been undertaken on the accuracy
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improvement of gyroscopes. One of the competitive technologies is the photonic resonant micro optical
gyroscope (RMOG) [5–8]. Ciminelli and Dell’Olio et al. reported on large InGaAsP/InP ring resonators
for gyroscope applications in [5], where the device configuration includes a ring and a straight bus
waveguide with tapered ends. Furthermore, a large-radius InP resonator with a high Q-factor of
106 was designed, fabricated, and characterized for the first time in [6]. In particular, the sensing
element of a photonic InP-based gyroscope was designed, fabricated, and optically characterized
by Ciminelli et al. [8], in which the sensing element is a spiral resonator coupled to a straight bus
waveguide through a multimode interference coupler, and exhibits a Q-factor of approximately 600,000
with a footprint of approximately 10 mm2; here, the actual feasibility of a photonic gyro on a chip
through an established InP-based generic integration process was demonstrated for the first time.
Technology for RMOG is also focusing on accuracy improvement at device level and making further
progress for the accuracy of gyroscopes.

Previous studies have highlighted that three single gyroscopes configured on each sensitive axis
of a MIMU have been unable to provide an angular rate signal with a low drift error for long-duration
navigation, especially in such environments where the signals of satellites and geomagnetic and
scene-matching systems are seriously disturbed or lacking. The technology of multiple-sensor fusion
provides a new way for improving the precision of a MIMU [9–14]. An array of MEMS gyroscopes
can be configured and mounted on each orthogonally sensitive axis of a MIMU to provide redundant
signals at the same condition. Then, the fusion of multiple outputs of a gyroscope array could
improve the precision of angular rate measurement. The combined angular rate signals, together with
accelerometer signals, can be used for resolving the navigation parameter. Compared to a laser or
fiber-optic inertial measurement unit, such a MIMU system could provide equal or better accuracy by
employing some appropriate signal-processing algorithm, in addition to being of lower cost, smaller
size and higher reliability.

In the design of such a MIMU system based on gyroscope array fusion, the key is the modeling
and processing of multiple angular rate signals on each sensitive axis of the MIMU. In 2003, Bayard
and Ploen first proposed virtual gyroscope technology to combine four separate MEMS gyroscopes to
reduce noise and improve overall accuracy [15]. The simulated results showed that the performance of
individual gyroscopes could be effectively improved while giving a favorable correlation. In addition,
a MEMS gyroscope array composed of three individual gyroscopes was presented by Chang et al. [16],
in which a two-level Kalman filter (KF) scheme was designed to reduce the gyroscope’s drift and
improve the accuracy. In particular, the performance of a KF approach for fusing six fully uncorrelated
MEMS gyroscopes was further analyzed and evaluated in [17], and it demonstrated that performance
can be better than that of an averaging process. Additionally, Tanenhaus et al. reported a method
for constructing a MIMU [9,11] in which multiple gyroscopes are placed on each sensitive axis of
the MIMU, and a wavelet de-noising method was used to combine outputs of the gyroscope array.
Moreover, Lucian et al. also designed a redundant inertial attitude measurement system by placing
four separated gyroscopes on each sensitive axis of a MIMU [18]; it used a weighted statistical method
for making signal fusion of multiple gyroscopes through setting a weighted factor associated for each
sensor. Additionally, a virtual system consisting of four accelerometers and three gyroscopes mounted
at designated positions was designed for improving the measurement accuracy of angular rate in [19];
in particular, angular acceleration was calculated by the outputs of accelerometer array based on the
geometry relation of the sensors, and then an optimal estimate of input angular rate was obtained by
the KF from the measurements of the gyroscope array and angular acceleration.

Previous research has demonstrated that noise and bias instability that exists in individual
gyroscopes could be reduced through a fusion of a gyroscope array. However, a favorable correlation
that exists in the gyroscope array is the basis for achieving significant accuracy improvement. Obtaining
practical correlation factors is a prerequisite for the fusion of multiple gyroscope signals and the
evaluation of system performance; thus the aforementioned MIMU system based on a sensor array
could be successful implemented. However, unfortunately, previous studies mostly focus on the
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gyroscope array model, and few of them analyze the sensor’s correlation; it is difficult to effectively
analyze and obtain the correlation factor in a MEMS gyroscope array, thus the system covariance
matrix Q cannot be exactly determined in the implementation of KF. Furthermore, the influence of
correlation on the accuracy of the combined angular rate signal cannot be evaluated.

The correlation of a gyroscope array is referred to as the correlation between the gyroscope
units, which can be interpreted as the outputs of the component gyroscopes that satisfy a statistical
relationship. This relationship can be characterized and indicated by a correlation factor ρ and a
correlation matrix, where the non-diagonal elements of the matrix can be determined by a correlation
factor. In our previous work [16], we supposed that a constant cross-correlation exists between the
rate random walk (RRW) noises of the component gyroscopes in a gyroscope array. We attempted
to select a different correlation factor to form the KF covariance matrix Q for the fusion of outputs
of the array, and then the chosen correlation factor corresponding to the minimum drift error of the
combined angular rate signal can be regarded as the practical correlation factor in the gyroscope array.
However, due to the fact that the KF performance can be affected by other factors, the correlation
factor obtained by the above approach may not accurately reflect the actual noise correlation of the
gyroscope array; thus the correlation factor setting in the KF system may not match the statistical
distribution of the actual noise in the gyroscope array, and may lead to a distortion of the rate signal
estimate. In addition, the MEMS gyroscope noise has a slow time-varying random characteristic,
and the noise parameters are sensitive to working conditions such as temperature and operating
voltage [20]; in particular, the noise variances may vary with the changing of operating conditions.
The random characteristic of MEMS gyroscope noise makes it difficult to obtain the correlation factor
by using an exact solution.

Therefore, the focus of this work is mainly on the analysis of correlation for a MEMS gyroscope
array and its influence on accuracy improvement. A mathematical statistics method is presented to
analyze and obtain the practical correlation factor of a MEMS gyroscope array, which can be used to
determine the KF covariance matrix Q for successfully fusing multiple signals. Based on our previous
research regarding multiple signal fusion of a gyroscope array based on a typical gyroscope noise
model, the influence of a correlation factor on the drift error of the combined angular rate signal is
analyzed by theoretical analysis and computer simulation. Finally, the practical correlation factor and
accuracy improvement are tested and analyzed by a four-gyro array experiment. The objective of
this paper is to obtain the correlation factor in a MEMS gyroscope array and analyze the influence
of correlation on accuracy improvement. This research will provide a useful approach for selecting
specific gyroscope units to form an optimal array, which have favorable correlation factors for achieving
maximum improvement.

2. Mathematical Model of the Multiple Sensors Fusion

The principle of multiple signal fusion of a MEMS gyroscope array is shown in Figure 1, in which
the KF technique is used for fusing multiple rate signals to produce an optimal estimate of angular rate
signal and drift errors of array. In particular, a correlation between the gyroscope units is identified
to reduce noise, and it will affect the final accuracy of the combined angular rate signal. Obtaining a
practical correlation factor is very important for the fusion of a gyroscope array. The KF algorithm for
combining outputs of a gyroscope array is briefly described as follows.
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Figure 1. Principle of the multiple rate signals fusion of a MEMS gyroscope array.

In previous research [15,17,20], a typical stochastic error model is used to describe the MEMS
gyroscope as follows:

y(t) = ω(t) + b(t) + n(t),
.
b(t) = wb(t) (1)

where y(t) is the output rate signal of gyroscope, ω(t) is the input true rate signal, b(t) is the bias drift,
driven by a white noise wb denoted as Rate Random Walk (RRW), and n(t) is a white noise denoted as
Angular Random Walk (ARW).

As for a MEMS gyroscope array with a number of N, the gyroscope error model of Equation (1)
can be written as a vector form:

Z = [1, 1, · · · , 1]T1×N ·ω + b + v,
.
b = wb (2)

with:

Z = [y1, y2, · · · , yN ]
T ,b = [b1, b2, · · · , bN ]

T , wb = [wb1, wb2, · · · , wbN ]
T , v = [n1, n2, · · · , nN ]

T

where yi is the output signal of the ith gyroscope, Z(t) is the outputs of the gyroscope array in one
sensitive axis, bi is the bias drift of the ith gyroscope, wbi and ni is the RRW and ARW noise of the ith
gyroscope, respectively.

A KF technique is utilized to design an optimal filtering algorithm for estimating bias drift b and
input true rate signal ω, thus the KF state vector is comprised by X(t) = [b, ω]T, where the rate signal
ω is modeled as a random walk process [15,21]:

.
ω = nω (3)

with E[nω(t)] = 0 and E[nω(t)·nω
T(t + τ)] = qωδ(τ), and qω is the variance of white noise nω. Based on

Equations (2) and (3), the filtering state-space model for combining multiple MEMS gyroscopes can be
formed as [22]: 

X(t) = [b, ω]T
.
X(t) = F · X(t) + w(t)
Z(t) = H · X(t) + v(t)

(4)

where w(t) = [wb,nω]T is the system process noise and v(t) is the measurement noise, which both of
them are white noise with the variance as:



Micromachines 2018, 9, 22 5 of 17


E[w(t)] = 0, E

[
w(t)wT(t + τ)

]
= Qδ(τ)

E[v(t)] = 0, E[v(t)vT(t + τ)] = Rδ(τ)

E[wb(t)] = 0, E[wb(t)wb
T(t + τ)] = Qbδ(τ)

,Q =

[
Qb 0
0 qω

]
(5)

The KF coefficient matrices F and H can be referred to in [17]. If we suppose that correlation exists
in the sensor array between the RRW noises of the component gyroscopes, the correlated covariance
matrix Qb in Equation (5) can be determined by the correlation factor and RRW noise variance in an
off-diagonal form as:

Qb =


σ2

b1 ρ12 ·
√

σ2
b1σ2

b2 · · · ρ1N ·
√

σ2
b1σ2

bN

ρ21 ·
√

σ2
b2σ2

b1 σ2
b2 · · · ρ2N ·

√
σ2

b2σ2
bN

...
...

. . .
...

ρN1 ·
√

σ2
bNσ2

b1 ρN2 ·
√

σ2
bNσ2

b2 · · · σ2
bN


N×N

(6)

where σ2
b,i is the variance for RRW of the ith gyroscope, and ρij is the correlation factor between

the ith and jth gyroscopes of the array corresponding to the RRW noise (i = 1,2,...,N, j = 1,2,...,N).
Thus, in order to exactly determine the covariance matrix Qb and Q, the correlation factor ρij should
be obtained beforehand.

Through making a discretization of the continuous-time KF state-space model of Equation (4),
a discrete iterative KF approach described by Equations (7)–(10) are used to implement KF, and then
an optimal estimate of the state vector X(t) composed of bias drifts b and input angular rate signal ω

could be obtained by the following discrete iterative equations.

Pk/k−1 = Fk,k−1Pk−1FT
k,k−1 + Qk−1 (7)

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

(8)

Pk = (I−KkHk)Pk/k−1(I−KkHk)
T + KkRkKT

k (9)

X̂k = Fk,k−1X̂k−1 + Kk(Zk −HkFk,k−1X̂k−1) (10)

In order to discover the inherent property of KF, the feature of covariance P(t) and gain K(t) are
off-line analyzed by Equations (7)–(9), and the plots are shown in Figure 2, where the ARW and RRW
noise for the component gyroscopes are set as 0.1667◦/h0.5 and 600◦/h1.5, respectively. The period of
KF operation and iterative step are set as 0.01 s and 100.
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The plot of Figure 2 illustrates that the component values of the matrix P(t) will be linearly
increased with increasing iteration time, and will be diverged without approaching a steady-state
value, but the component values of the matrix K(t) approaches a steady-state value. In addition,
the steady and convergent property of the gain K(t) cannot be influenced by changing the filtering
parameters. Thus, in this work, an optimal estimate of input rate signal ω could be achieved by using
a steady-state gain KS, which is obtained by an off-line estimation approach, resulting in a simplified
implementation of KF and reduced computational load.

3. Analysis of Correlation Factor in MEMS Gyroscope Array

From Section 2, it can be seen that the obtaining of a practical correlation factor ρ in a gyroscope
array is a crucial aspect for implementation of the KF system, and as a result, the influence of correlation
on the accuracy improvement could be further evaluated. In this section, a mathematical statistics
method will be established to analyze the correlation of a MEMS gyroscope array and the obtaining of
a practical correlation factor.

In this work, the correlation factor is referred to as the correlation between the same noise items
of the gyroscope units. From Equations (1) and (6), the correlation factor ρij represents the correlation
between the RRW noises wbi(t) and wbj(t), which correspond to the ith and jth gyroscope in the array,
meaning ρij = ρwbi,wbj. In the following, two gyroscope units are selected as an example to analyze
the relationship between correlation factor ρy1,y2 of y1 with y2 and ρwb1,wb2 of RRW wb1(t) with wb2(t).
Based on this relationship, the correlation factor ρwb1,wb2 can be obtained, in that ρy1,y2 can be directly
calculated from the outputs of the gyroscope array. The principle and process flow of analyzing the
correlation factor is shown in Figure 3. It can be mainly divided into three steps:
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• Step 1: Analyze the relationship between the correlation factor ρy1,y2 and ρb1,b2 of bias drift b1

with b2, get the function ρy1,y2 = f 1(ρb1,b2).
• Step 2: Analyze the relationship between the correlation factor ρb1,b2 and ρwb1,wb2 of RRW wb1(t)

with wb2(t), get the function ρb1,b2 = f 2(ρwb1,wb2).
• Step 3: Use the functions f 1, f 2 and ρy1,y2 to obtain the correlation factor ρwb1,wb2 to form the

covariance matrix Qb and Q.

â Step 1:

Under the same conditions, assume that the outputs of the two gyroscope units including an
identical input true angular rate and different random noise are sampled and obtained as:
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{
y1(m) = ω(m) + b1(m) + n1(m)

y2(m) = ω(m) + b2(m) + n2(m)
(11)

From the definition of cross-correlation function, its value between the sequences of y1(m) and
y2(m) at τ = 0 can be formed as:

Ry1,y2(τ)
∣∣
τ=0 = Ry1,y2(0) = lim

M→∞

1
M

M−1

∑
m=0

[y1(m) · y2(m)] (12)

As for a gyroscope array with the same specification for component gyroscopes, the sequences
of b1 and n2 as well as b2 and n1 can be considered to be independent. It is essential to assume that
the sequences of n1 and n2 are independent when analyzing the relationship between the correlation
factors ρy1,y2 and ρb1,b2. With the condition of a static test, inserting Equation (11) into (12) yields:

Ry1,y2(0) = Rb1,b2(0) (13)

From Equation (1), it can be seen that the mean values of the sequences n and b both are zero and
independent with each other:

µbi
= 1

M

M−1
∑

m=0
bi(m) = 0, i = 1, 2

µni =
1
M

M−1
∑

m=0
ni(m) = 0, i = 1, 2

µbi
µni =

1
M

M−1
∑

m=0
[bi(m) · ni(m)] = 0, i = 1, 2

(14)

Using Equation (14), the variance of sequences y1(m) and y2(m) are given as:

σ2
y1

=
1
M

M−1

∑
m=0

[
y1(m)− µy1

]2
=

1
M

M−1

∑
m=0

[b1(m)]2 +
1
M

M−1

∑
m=0

[n1(m)]2 = σ2
d1
+ σ2

n1
(15)

σ2
y2

=
1
M

M−1

∑
m=0

[
y2(m)− µy2

]2
=

1
M

M−1

∑
m=0

[b2(m)]2 +
1
M

M−1

∑
m=0

[n2(m)]2 = σ2
d2
+ σ2

n2
(16)

where σ2
n and σ2

d are the variance of the sequences n and b, respectively. From the definition of
correlation factor, and the use of Equations (13), (15) and (16), it can be obtained:

ρy1,y2 =
ρb1,b2√

(σ2
d1
+ σ2

n1
)(σ2

d2
+ σ2

n2
)/σd1 σd2

(17)

where ρb1,b2 is the correlation factor between the bias drift b1 and b2 in the gyroscope array, and ρy1,y2

is the correlation factor between the gyroscope outputs of y1 and y2. The variances of σ2
n and σ2

d can be
obtained by the Allan variance technique [23]. Therefore, under the condition of static test, by the use
of Equation (17), the correlation factor ρb1,b2 can be obtained from the ρy1,y2 directly computed from
the outputs of the gyroscope units.

â Step 2:

The value of cross-correlation function between the sequences of b1 and b2 at τ = 0 is formed as:

Rb1,b2(0) = lim
M→∞

1
M

M−1

∑
m=0

[b1(m) · b2(m)] (18)
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From the discrete form of the random walk model, it yields:{
b1,m = b1,m−1 + wb1,m−1
b2,m = b2,m−1 + wb2,m−1

(19)

And then results in:

(1). b1,m · b2,m = b1,m−1b2,m−1︸ ︷︷ ︸
↙

+ b1,m−1wb2,m−1 + b2,m−1wb1,m−1 + wb1,m−1wb2,m−1

(2). b1,m−1b2,m−1 = b1,m−2b2,m−2︸ ︷︷ ︸
↙

+ b1,m−2wb2,m−2 + b2,m−2wb1,m−2 + wb1,m−2wb2,m−2

(3). b1,m−2b2,m−2 = b1,m−3b2,m−3︸ ︷︷ ︸
↙

+ b1,m−3wb2,m−3 + b2,m−3wb1,m−3 + wb1,m−3wb2,m−3

(4). b1,m−3b2,m−3 = b1,m−4b2,m−4︸ ︷︷ ︸
↙

+ b1,m−4wb2,m−4 + b2,m−4wb1,m−4 + wb1,m−4wb2,m−4

...
...

(m). b1,1b2,1 = b1,0b2,0 + b1,0wb2,0 + b2,0wb1,0 + wb1,0wb2,0

(20)

Using Equation (20), Equation (18) can be expressed as:

Rb1,b2(0) = lim
M→∞

1
M

M−1

∑
m=0

[b1(m) · b2(m)] = lim
M→∞

1
M

M−1

∑
m=1

[
m−1

∑
i=0

(wb1,iwb2,i + b2,iwb1,i + b1,iwb2,i)

]
(21)

Analysis result of the cross-correlation function indicates that the sequences b1 and wb2 are
independent, and the sequences b2 and wb1 are also independent. Therefore, the cross-correlation
function Rb1,b2(0) can be expressed as:

Rb1,b2(0) = lim
M→∞

1
M

M−1

∑
m=1

(
wb1,0wb2,0 + wb1,1wb2,1 + · · ·+ wb1,m−1wb2,m−1

)
= M · Rwb1,wb2(0) (22)

Based on the definition of correlation factor and Equation (22), the relationship between correlation
factor ρb1,b2 and correlation factor ρwb1,wb2 can be obtained as:

ρb1,b2 =
Rb1,b2(0)

σd1 σd2

= M ·
Rwb1,wb2(0)

σd1 σd2

(23)

And then:
ρb1,b2 = M ·

ρwb1,wb2

σd1 σd2 /(σb1 σb2)
(24)

where σ2
b is the variance of the sequences of RRW wb, which can be obtained by the Allan variance

technique, and ρwb1,wb2 is the correlation factor between the RRW noise wb1 and wb2 in the gyroscope
array. Therefore, in a practical KF implementation, the ρwbi,wbj can be calculated by using Equations (17)
and (24), and then to determine the covariance matrix Q in Equation (5).

4. Theoretical Analysis of the Correlation Influence on Noise Reduction

The noise characteristic of the combined angular rate signal and performance of the KF can be
analyzed and evaluated by the covariance P(t).The drift error of the combined angular rate signal can
be given as [15]:

Dvg =
1

H1
TQ−1

b H1 + 1/qω

(25)
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The above parameter qω reflects the dynamic characteristic of input rate signal. With regard to the
KF system, it determines the KF bandwidth. When setting the parameter qω as a larger value, the KF
bandwidth will become much larger than that of the component gyroscopes [17], and then the system
bandwidth is only determined by the component gyroscopes, which will be close to the bandwidth of
the component gyroscopes. In this case, the drift of combined angular rate signal is mainly influenced
by the correlation factor and number of array N, making it easy to analyze the effect of correlation on
noise reduction. Therefore, with regard to a gyroscope array with the same specification, assuming
that a constant cross-correlation exists in the array, the covariance matrix Qb of Equation (6) can be
expressed as:

Qb = σ2
b ·


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


N×N

(26)

Inserting Equation (26) and substituting qω → ∞ into Equation (25) yields:

Dvg = σ2
b

1 + (N − 1)ρ
N

(27)

Previous study has demonstrated that a negative correlation factor is much more favorable for
achieving higher accuracy improvement. Taking the constant correlation factor ρ = −0.1, −0.05, 0, 0.1,
0.3, the plot of gyroscope drift reduction versus number N is illustrated in Figure 4. It suggests that
the drift reduction ratio will be increased with the increase of number N; however, the graph slope
gradually becomes shallower with the increase of the number N while giving a positive correlation
factor (ρ = 0.1, 0.3). This implies that the increasing magnitude of the noise reduction is smaller
than that of the number N, thus the influence of number N on accuracy improvement will become
smaller and more insignificant as N increases. On the contrary, giving a negative correlation factor
(ρ = −0.1, −0.05), the graph slope steepens with the increase of the number N, which suggests that the
influence of increasing number N on accuracy improvement will be much more evident and significant.
Consequently, the number N needs to increase appropriately to obtain a higher improvement when the
gyroscope array has a negative correlation. In Section 5.1, the influence of the constant cross-correlation
on the drift of the combined angular rate signal will be analyzed in various simulations.
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5. Simulation and Experiment

In this section, the influence of the correlation factor on the drift reduction of the combined
angular rate signal will be analyzed by simulation and experiment. The noise statistic values of the
rate signal before and after KF combining are used as a criterion to evaluate the improvement.

5.1. Simulation Result

From the Section 4 it is known that the drift error of the combined angular rate signal will decrease
with increase of N; the number of N = 8 is chosen to implement the system. Assuming that a constant
correlation factor exists in the gyroscope array, here, four different correlation factors of ρ = {0.2, 0,
−0.13, −0.142} are selected to carry out the simulation. The outputs of gyroscope array are generated
by model (1) with a sampling period of 0.1 s. The procedure for simulating the outputs of gyroscope
array with a specific constant correlation can be summarized as follows:

• Step 1: Use a constant cross-correlation factor ρ to form the correlated matrix CorrM, which can
be referred to from Equation (26), and the CorrM should be defined as a positive definite matrix;

• Step 2: Perform the Cholesky factorization of matrix CorrM, ∆ = Chol(CoorM), where ∆ is an
upper triangular matrix;

• Step 3: Generate the RRW noise data SInd of a gyroscope array, and then form the correlated RRW
noise data SCorr with the correlation factor ρ, SCorr = ∆ · SInd;

• Step 4: Use the error model (1), generate the output signals of gyroscope array y1, y2, . . . , yN.

The RRW and ARW for the component gyroscopes are set as σb = 600◦/h1.5 and σn = 0.0833◦/h0.5,
respectively. Using KF discrete recursive equation of (7)–(10) and a steady-state gain KS, the results
of combined angular rate signal with different correlation factors are shown in Figures 5–8, and the
plot of compared Allan variance is illustrated in Figure 9. The results are listed in Table 1, where the
reduction factor RF associated with RRW noise is defined as:

RF = RRWsingle/RRWVg (28)

where RF is the reduction factor, RRWsingle is the RRW for the gyroscopes before KF filtering, and
RRWVg is the RRW for the combined angular rate signal after KF filtering.
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Figure 5. Filtering result of gyroscope array with ρ = 0: (a) Outputs of component gyroscopes;
(b) Output of combined gyroscope.
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Figure 6. Filtering result of gyroscope array with ρ = 0.2: (a) Outputs of component gyroscopes;
(b) Output of combined gyroscope.
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Figure 7. Filtering result of gyroscope array with ρ = −0.130: (a) Outputs of component gyroscopes;
(b) Output of combined gyroscope.
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Figure 8. Filtering result of gyroscope array with ρ = −0.142: (a) Outputs of component gyroscopes;
(b) Output of combined gyroscope.
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Table 1. Filtering results of the gyroscope array with different correlation factor.

Correlation Factor ARW (◦/h0.5) Bias Drift (◦/h) RRW (◦/h1.5) Reduction Factor (RF)

ρ = 0 0.0117 1.8401 195.2674 3.0727
ρ = 0.2 0.0112 1.7349 260.4219 2.3039

ρ = −0.130 0.0283 1.4410 68.6507 8.7398
ρ = −0.142 0.0301 0.7666 18.6092 32.2421

The results indicate that the RRW noise for the single gyroscope is remarkably reduced by fusing
the multiple outputs of a gyroscope array. Furthermore, the noise reduction factor obtained by a
negative correlation is greater than that of a positive one. Especially, the RRW noise of 600◦/h1.5 is
reduced to about 18.6◦/h1.5 with the correlation factor ρ = −0.142, making a reduction factor of about
32. In addition, the gyroscope bias drift has also been reduced.

5.2. Experiment Result

In the simulation section, the outputs of a gyroscope array with a specific constant correlation
can be intentionally generated to analyze KF performance. However, to date, a practical MEMS
gyroscope array with some specific correlation factors has been difficult to intentionally design, thus
in the experiment, four individual gyroscopes of N = 4 are used to form a gyroscope array that is not
consistent with the number N = 8 in simulation; it is selected just to test the influence of correlation on
accuracy improvement.

The prototype of the four-gyro array is shown in Figure 10. Firstly, the correlation factors of the
four-gyro array are tested by using the approach given in Section 3. Secondly, the bias drift of the
combined angular rate signal is tested and compared with the individual gyroscopes.
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5.2.1. Correlation Factor in Four-Gyro Array

The correlation factors between the component gyroscopes are not intentionally set in the
experiment, thus the practical correlation factors should first be tested and obtained to write them
into the KF covariance matrix Q (see Equation (6)), and then the outputs of gyroscope array can
be processed by KF to achieve a combined angular rate signal. Particularly, the tested correlation
factors can be used to analyze the accuracy improvement in theory, which can be compared with the
test results.

The cross-correlation matrix is utilized to characterize the RRW noise correlation in the array.
Using the approach given in Section 3, the three tests results of cross-correlation matrix are listed in
Tables 2–4.

Table 2. Cross-correlation matrix of RRW noise for four-gyro array (Test 1).

Gyro Number Gyro-1 Gyro-2 Gyro-3 Gyro-4

Gyro-1 1 0.2761 −0.4165 −0.0209
Gyro-2 0.2761 1 −0.0800 0.0295
Gyro-3 −0.4165 −0.0800 1 0.0864
Gyro-4 −0.0209 0.0295 0.0864 1

Table 3. Cross-correlation matrix of RRW noise for four-gyro array (Test 2).

Gyro Number Gyro-1 Gyro-2 Gyro-3 Gyro-4

Gyro-1 1 0.2821 −0.4021 −0.0817
Gyro-2 0.2821 1 −0.0919 −0.0612
Gyro-3 −0.4021 −0.0919 1 0.1033
Gyro-4 −0.0817 −0.0612 0.1033 1

Table 4. Cross-correlation matrix of RRW noise for four-gyro array (Test 3).

Gyro Number Gyro-1 Gyro-2 Gyro-3 Gyro-4

Gyro-1 1 0.2638 −0.4271 0.0037
Gyro-2 0.2638 1 −0.0897 0.0229
Gyro-3 −0.4271 −0.0897 1 0.0923
Gyro-4 0.0037 0.0229 0.0923 1

The result demonstrates that the correlation factors have both positive and negative values.
The maximum positive and negative value is about 0.28 and −0.4, respectively. In addition, there
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exist differences in the correlation factors between the different gyroscope units, but between the same
gyroscope units it is basically consistent, e.g., as for the gyroscope units of 1–2, the correlation factors
are 0.27, 0.28 and 0.26 in three tests, while the values are −0.41, −0.40 and −0.43 for units of 1–3.
In particular, Tables 2–4 illustrate the correlation factors between the units 1–2, 1–3, 2–3 and 3–4 are
close to or greater than 0.1, which can be regarded as correlated. By contrast, the values between the
units 1–4 and 2–4 are smaller than 0.05, so can be considered to be uncorrelated. Finally, the correlation
factors in Tables 2–4 can be used to form the covariance matrix Qb of Equation (6) to implement KF.

5.2.2. Drift Test Result of the Fused Sensor Array

The KF bandwidth is set as the same as the individual gyroscope at 40 Hz to test influence of
correlation factor on drift of the combined angular rate signal. From the plot of the KF frequency response
(Figure 11), it indicates a −3 dB bandwidth of 40 Hz when choosing the value of

√
qω = 11, 500◦/h .
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√

qω = 11, 500◦/h .

The noise density, ARW, and bias drift were tested to evaluate the influence of correlation factor
on accuracy improvement. Fast Fourier Transform (FFT) was adopted to evaluate the noise density of
rate signal. ARW and bias drift were evaluated by the Allan variance of a zero rate output recorded for
0.5 h with a rate of 200 Hz. The compared plots of noise density and root Allan variance are shown in
Figures 12 and 13. The results are listed in Table 5.
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Figure 12. FFT plot of combined angular rate signal compared to the single gyroscope.
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Table 5. Drift test results of the four-gyro array.

Terms Single Gyro Virtual Gyro Reduction Factor (RF)

Noise density
(◦/s/Hz0.5) 0.040 0.009 4.44

ARW (◦/h0.5) 1.57 0.33 4.76
Bias drift (◦/h) 224.2 47.76 4.69

The FFT plot indicates a noise floor of about 0.009◦/s/Hz0.5 and 0.04◦/s/Hz0.5 for the combined
angular rate signal and individual gyroscope, respectively, making a reduction factor of about 4.4.
In addition, from Figure 13, ARW and bias drift are observed to be 0.33◦/h0.5 and 47.8◦/h for the
combined angular rate signal, which makes a noise reduction factor of about 4.7 compared to the
individual gyroscope.

The test results demonstrate that the noise reduction factor is nearly 4.7 for a four-gyro array,
having some negative correlation factors (see Tables 2–4), while the reduction factor for a completely
uncorrelated four-gyro array is only 2.0. It can be seen that negative correlation has a critical effect on
accuracy improvement. The overall accuracy can be further improved if the negative correlation factors
between the gyroscope units become larger. Additionally, a better consistency of the correlation factors
between gyroscope array units is more favorable for improving accuracy. The experimental results are
not compared with the simulation, because: (1) the correlation factors between gyroscope units are not
consistent in the experiment test, but in the simulation we assume that a constant cross-correlation
between gyroscope units exists; (2) the correlation factors in the four-gyro array both have positive
and negative values, which is different from the correlation factors in the simulation. In addition, in
this study, a reduction factor is used as a criterion for evaluating the influence of correlation factor on
accuracy improvement; thus if the component gyroscopes with a lower drift are chosen to form the
array, the combined gyroscope rate signal with a better accuracy will be achieved.

6. Conclusions

In this paper, a mathematical statistics method is presented to analyze and obtain the practical
correlation factors of a MEMS gyroscope array, which solves the problem of determining a KF
covariance matrix Q and implementing the fusion of multiple signals. It can be used to select gyroscope
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units with specific correlation to form an optimal array. Both theory and simulation have shown that a
negative correlation has a favorable influence on accuracy improvement. The experiment demonstrated
that ARW and bias drift are observed to be 0.33◦/h0.5 and 47.8◦/h for the combined gyroscope for a
four-gyro array, which makes a noise reduction factor of about 4.7. With regard to a MEMS gyroscope
array composed of several discrete individual sensors, the test results displayed that there exist
differences in the correlation factors between the different units in the array. This is mainly due to the
separate detection circuit and sensitive structure of the component gyroscopes. The influencing factor
on the correlation in gyroscope array needs to be further studied in future work, with the hope that
some negative correlations could be intentionally designed that would considerably improve accuracy.
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