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Abstract: Based on the first resonance frequency measurement of multilayer beams, a simple
extraction method has been developed to extract the Young’s modulus of individual layers. To verify
this method, the double-layer cantilever, as a typical example, is analyzed to simplify the situation
and finite element modeling (FEM) is used in consideration of the buckling and unbuckling situation
of cantilevers. The first resonance frequencies, which are obtained by ANSYS (15.0, ANSYS Inc.,
Pittsburgh, PA, USA) with a group of thirteen setting values of Young’s modulus in the polysilicon
layer are brought into the theoretical formulas to obtain a new group of Young’s modulus in the
polysilicon layer. The reliability and feasibility of the theoretical method are confirmed, according
to the slight differences between the setting values and the results of the theoretical model. In the
experiment, a series of polysilicon-metal double-layer cantilevers were fabricated. Digital holographic
microscopy (DHM) (Lyncée Tech, Lausanne, Switzerland) is used to distinguish the buckled from the
unbuckled. A scanning laser Doppler vibrometer (LDV) (Polytech GmbH, Berlin, Germany) system
is used to measure the first resonance frequencies of them. After applying the measurement results
into the theoretical modulus, the average values of Young’s modulus in the polysilicon and gold
layers are 151.78 GPa and 75.72 GPa, respectively. The extracted parameters are all within the rational
ranges, compared with the available results.
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1. Introduction

Material mechanical parameters, such as Young’s modulus, residual stress, and so on, not only
have great effect on the functions of MEMS (Micro-Electro-Mechanical System) devices, but also
have great influence on yield, service life, and the work reliability of MEMS devices. However, it is a
challenging task to detect and measure the mechanical properties of thin films and membrane structures
for MEMS applications [1–4]. In surface micromachining technology, with the same membrane
structures, different processes will lead to different material properties. The different environment of
a process, such as temperature and irradiation, will also cause different properties of the materials.
Even from the same material, process, reactor, and environment when testing, there will also be
differences among the material properties of thin films. Thus, the mechanical parameters need to be
accurately measured in situ. As for the present measuring methods for mechanical parameters of thin
film materials, most of them are suitable for single-layer thin film materials. For the micromachining
technology of some materials, these methods for the single-layer thin film are no longer applicable.
Therefore, an in situ extracting method of material properties [5,6] for multilayer films is expected.
Until now, various theoretical methods have been presented for extracting mechanical parameters of
multilayer films, such as the resonance frequency method [7] and pull-in voltages [3,8].
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In this paper, a novel approach was proposed to extract the Young’s modulus of each layer with
multilayer beams using resonance frequency measurement. Firstly, a model of the resonance frequency
using multilayer beams with different widths was introduced. Then, taking the buckled and unbuckled
situations of multilayer beams into consideration, a method was presented to extract the Young’s
modulus in each layer by designing test structures. The presented theoretical model was verified by
FEM methods. Finally, some test structures, as a typical example, were fabricated and a scanning
laser Doppler vibrometer (LDV) (Polytech GmbH, Berlin, Germany) system was used to measure their
first resonance frequencies. The results turned out to be in good agreement with the rational values
in the available literature. Without applying residual stress into the model and calculations, the test
approaches and the calculation procedures became simple and easy.

2. Theory

2.1. Theory Model of the Multilayer Beam

The approach is to extract the Young’s modulus of each layer based on multilayer beams, and
the cross-section of an n-layer beam with different widths is shown in Figure 1. The length, width,
and height direction of the beam are along the x, y, and z axis, respectively. The length of the beam is l.
The width, thickness, Young’s modulus, Poisson’s ratio, and density of the ith layer are wi, hi, Ei, νi,
and ρi respectively.
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Figure 1. 3D view of an n-layer beam with different widths.

For composite multilayer beams studied in the paper, the widths are all five times longer than
the thicknesses, and the stress-strain relation should be analyzed under the plain-strain condition.
Thus, the Young’s modulus Ei should be substituted by the effective Young’s modulus Ẽi, as shown in
Equation (1):

Ẽi =

{
Ei , wi < 5hi
Ei

1−νi
2 , wi ≥ 5hi

(1)

As shown in Figure 1, the height of the bottom, z0, is 0 and the height of the ith layer is zi. Thus,
the expression of zi is shown in Equation (2):

zi =
i

∑
j=1

hi (2)

The distance of the neutral axis and the bottom of the beam is zc, which is expressed as [9]:
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The moment of inertia of the ith layer, Ii, with respect to the neutral axis of the beam is expressed
in Equation (4):

Ii =
∫

i
(z− zc)

2dAi =
1
3

wi

[
(zi − zc)

3 − (zi−1 − zc)
3
]

(4)

Here Ai is the cross-section area of the ith layer. The bending stiffness EI and the linear density
ρA of the beam are shown below [10]:

EI =
n

∑
i=1

Ẽi Ii (5)

ρA =
n

∑
i=1

ρi Ai (6)

2.2. The Deduction of the Curvature Radius

The paper takes multilayer cantilevers as the test structures. For a multilayer cantilever, if the
compressive stress of the top layer is predominant, the cantilever will have an upward deflection.
If the tensile stress of the top layer is predominant, the cantilever will have a downward deflection.
Both the upward and downward deflection has the same effect on the modeling and results. However,
if the downward deflection is too large to adhere to the substrate, cantilevers are difficult to, or cannot,
be vibrated independently and the results from these structures are invalid and discarded. Therefore,
the model proposed is suitable in small residual stress situations. Models, which can compensate the
influence of the large residual stress in the thin films, are shown in [11–13].

The paper takes the upward deflection, for example, and assumes that the buckled multilayer
cantilever has a uniform curvature radius, as shown in Figure 2. Figure 2 shows the relation between the
curvature radius and the maximum deflection of the multilayer cantilever, as expressed by Equation (7):{

θ = l/R
cos(θ) = [R− (z1 − zc)− zm]/[R− (z1 − zc)]

(7)
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Figure 2. Schematic of a buckled multilayer beam.

In Figure 2, R is the curvature radius of the multilayer cantilever, zm is the maximum deflection of
cantilever, l is the length of the unbuckled cantilever, xm is the length of buckled cantilever, z1 is the
thickness of the multilayer cantilever and zc is the height of the neutral axis. By solving Equation (7),
values of the curvature radius can be obtained accurately. Generally, the maximum deflection of the
beam is much smaller than the length of the beam, so xm can be approximated to l. Furthermore, z1 − zc

is also much smaller than the curvature radius of the cantilever, so after simplification and ignoring
z1 − zc, zm can be expressed by zm = R− R cos θ. Using the half-angle formula 2 sin2 θ

2 = 1− cos θ and
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the approximately simplification sin θ
2 = l

2R , a simplified equation, which is shown in Equation (8),
can be obtained:

R = l2/(2zm) (8)

2.3. The Theoretical Deduction for Material Parameters

If the longitudinal gradient residual stress is neglected, the single-layer cantilever will remain
unbuckled after release. The strain resulting from the residual stress tends to have less effect on the
vibration. Therefore, it is considered that the resonance frequency has nothing to do with the residual
stress when the single-layer cantilever remains unbuckled after release [14]. However, due to the
unmatched thermal stress, or other reasons, in most cases the multilayer cantilever will be buckled after
release. The deflection has an effect on the resonance frequency of the cantilever after release [15,16].

For unbuckled multilayer cantilevers after release, the approximate analytic formula of its first
resonant frequency is shown in Equation (9):

f1uc f =
1.8752

2πl2

√
EI
ρA

(9)

here subscript 1 represents the first resonant frequency, u represents that the cantilever is unbuckled,
and cf represents that the boundary condition is cantilever.

When the cantilever is buckled, the influence of deflection to resonance frequency cannot be
ignored. Assuming that R is the curvature radius of cantilever after release, a function describing its
first resonant frequency is shown in Equation (10) [15–17]:

1√
χ2

n−1
sin
(√

χn + 1 l
R

)
sinh

(√
χn − 1 l

R

)
+

cos
(√

χn + 1 l
R

)
cosh

(√
χn − 1 l

R

)
+ 1 = 0,

(10)

where:
χ2

n = ρAR4(2π fn)
2/EI. (11)

Equation (10) is a transcendental equation. Except rare cases (such as the simple trigonometric
equation), this kind of equation can only be solved approximately using numerical methods. There are
many approximate methods to solve the transcendental equation. Common methods are Newton’s
method, dichotomy, Mueller’s method, and so on [18,19]. There are numerous sets of solutions χn for
Equation (13). Each χn has the corresponding ith resonance frequency. However, to ensure that the
first resonance frequency f1 is obtained, the solution of Equation (10) should be the smallest one, χ1.

If the curvature radius of the cantilever tends to infinity, take the limit of Equation (10) and the
result is the same as Equation (9), which means when the curvature radius of the cantilever tends to
infinity, the vibrations of both the buckled and unbuckled multilayer cantilever have little difference.
Thus, in this situation, Equation (9) can describe its resonance frequency approximately.

2.4. The Extraction of Material Parameters

Under buckled or unbuckled situations of n-layer cantilevers, it only needs n types of cantilevers
to obtain the Young’s modulus of each layer. The widths of the jth cantilever are wj1, wj2, . . . , wjn and
the widths of the kth cantilever are wk1, wk2, . . . , wkn. If they have the same length, the vector (wj1,
wj2, . . . , wjn) and the vector (wk1, wk2, . . . ,wkn) should be linearly independent [20]. DHM (Lyncée
Tech, Lausanne, Switzerland) was used to distinguish the buckled from the unbuckled and determined
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using Equation (9) or Equation (11). By applying the smallest value χ1 into Equation (11), the changed
form of Equation (11) is shown in Equation (12):

f1bc f =
1

2π
· (

χ2
1 · EI

ρA · R4
)

1/2

(12)

Here, b represents that the cantilever is buckled. Assuming that the first resonance frequencies
measured are f 1, f2, . . . , fn, a set of equations is deduced from the theoretical formulas, as shown in
Equation (13): 

f1xc f ,1(Ẽ1, Ẽ2, . . . , Ẽn)− f1 = 0
f1xc f ,2(Ẽ1, Ẽ2, . . . , Ẽn)− f2 = 0

. . .
f1xc f ,n(Ẽ1, Ẽ2, . . . , Ẽn)− fn = 0

, (13)

where:

x =

{
b, when the cantilaver is buckled.
u, when the cantilaver is unbuckled.

Since each equation in Equation (13) is the linear equation, it can be shown in matrix form, which
is shown in Equation (14):

A


Ẽ1

Ẽ2

· · ·
Ẽn

 =


f1

2

f2
2

· · ·
fn

2

, (14)

where:

A =


a1 I11 a1 I12 · · · a1 I1n
a2 I21 a2 I22 · · · a2 I2n

...
... · · ·

...
an In1 an In2 · · · an Inn

, ai =


1.8754

4π2li
4ρAi

when the cantilever is unbuckled.

1
4π2

χ2
1i

ρAi Ri
4 when the cantilever is buckled.

Iij represents the moment of inertia of jth layer of the ith cantilever. li, ρAi, χ2
1i, and Ri represent

the length, the linear density, the smallest value χ1, and the curvature radius of the ith cantilever,
respectively. Since vectors which consist of widths of all of the cantilevers are linearly independent,
the matrix A is invertible. Therefore, Equation (13) is solvable.

Effective Young’s modulus Ẽi will be obtained from Equation (13) rather than Young’s modulus
Ei because the Poisson’s ratio νi in each layer is unknown. To make results more intuitive, the paper
sets exact values to the Poisson’s ratio in each layer. The way to obtain Poisson’ ratio νi is shown
in [21–23]. The Poisson’s ratio of each layer in a certain rational range has little effect on the results of
the Young’s modulus. For example, the rational range of the Poisson’s ratio in the polysilicon layer is
0.2~0.25 and the paper assumes 0.22 as the Poisson’s ratio in the polysilicon layer. It is obvious that
results obtained from this will have little differences among the results obtained from the Poisson’s
ratio in the polysilicon layer is 0.2 or other values in this rational range.

Solving Equation (13) will give many sets of results, but only one of them is required. Thus,
it is necessary to select only one rational result from them. For example, the Young’s modulus of
polysilicon has been reported in the range of 120 GPa~201 GPa [20]. Thus, only one result in this range
is correct.

3. Finite Element Modeling

The double-layer cantilever adopted in this paper can simplify the situation. To verify the validity
of the theoretical model, a set of double-layer cantilevers was analyzed by the FEM method. Since



Micromachines 2017, 8, 201 6 of 11

ANSYS (15.0, ANSYS Inc., Pittsburgh, PA, USA) cannot express the residual stress after release, heating
the structure in advance simulated the buckled cantilever. From bottom to top, the first layer of the
cantilevers was designed to be a polysilicon material, and the second layer was designed to be metal
material: gold. Assuming that the parameters of the metal layer are fixed, the only changes to the
Young’s modulus are in the polysilicon layer.

An available range of Young’s modulus of polysilicon is from 120 GPa to 180 GPa. This paper takes
thirteen values between it with the interval of 5 GPa and obtains thirteen values of the first resonance
frequency and the maximum deflection of the cantilevers, respectively, for theoretical deduction.
Dimensions and parameters of the cantilevers (except the Young’s modulus of the polysilicon layer)
are shown in Table 1.

Table 1. Dimensions and parameters of the cantilevers.

Dimension/Parameter Polysilicon Layer Metal Layer

Young’s modulus Ei (GPa) – 57
Residual stress σi (MPa) 10 −20

Poisson ratio νi 0.22 0.35
Density ρi (kg/m3) 2330 19,300

Length l (µm) 200 200
Width wi (µm) 30 30

Taking the Young’s modulus in the polysilicon layer as 120 GPa as an example, pictures of
a polysilicon-metal double-layer cantilever structure and pictures of the deflection values of the
cantilever (shown in Figure 3) can be obtained by using ANSYS (15.0, ANSYS Inc., Pittsburgh, PA,
USA) in both unbuckled and buckled situations.
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4. Simulation Results

When the difference between the curvature radius of the cantilever and the length of the cantilever
is not obvious, the cantilever has a large deflection. In this case, through its curvature radius
and the first resonance frequency, which is from ANSYS (15.0, ANSYS Inc., Pittsburgh, PA, USA),
theoretical values of the Young’s modulus in the polysilicon layer can be deduced accurately by solving
Equations (10) and (11).

When the cantilever has a small deflection, the deflection can be ignored approximately. In this
case, the theoretical values of the Young’s modulus in the polysilicon layer can be obtained by using
Equation (9) through its first resonance frequency of the cantilever.
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In both buckled and unbuckled situations of the cantilevers, the first resonance frequency is
obtained by ANSYS (15.0, ANSYS Inc., Pittsburgh, PA, USA), the maximum deflection of the cantilevers,
the curvature radius deduced, the theoretical values of the Young’s modulus in the polysilicon layer
and the comparison between setting values of the Young’s modulus in the polysilicon layer, as well as
ones in the theoretical model, are shown in Tables 2 and 3.

Table 2. Results when the cantilever is buckled.

Setting Values
of Young’s

Modulus in
Polysilicon

Layer E (GPa)

The First
Resonance
Frequency

from ANSYS
(Hz)

The Maximum
Deflection of

Cantilever
from ANSYS

(µm)

The Curvature
Radius (µm)

Theoretical Values
of Young’s

Modulus in the
Polysilicon Layer

E′ (GPa)

Error (%)
|(E− E′)/E|

120 30,076 4.1403 4830.57 110.591 7.841
125 30,466 4.0334 4958.60 115.353 7.718
130 30,848 3.9237 5085.56 120.114 7.605
135 31,223 3.8376 5211.59 124.877 7.499
140 31,593 3.7476 5336.75 129.664 7.383
145 31,956 3.6622 5461.20 134.443 7.281
150 32,313 3.5810 5585.03 139.222 7.185
155 32,665 3.5038 5708.09 144.008 7.092
160 33,013 3.4301 5830.73 148.813 6.992
165 33,355 3.3598 5952.74 153.604 6.907
170 33,693 3.2926 6074.23 158.406 6.820
175 34,027 3.2283 6195.21 163.216 6.734
180 34,356 3.1667 6315.72 168.016 6.658

Table 3. Results when the cantilever is unbuckled.

Setting Values of Young’s
Modulus in Polysilicon

Layer E (GPa)

The First Resonance
Frequency from ANSYS

(Hz)

Theoretical Values of
Young’s Modulus in the

Polysilicon Layer E” (GPa)

Error (%)
|(E− E′′ )/E|

120 30,074 110.650 7.792
125 30,464 115.413 7.670
130 30,846 120.173 7.560
135 31,221 124.937 7.454
140 31,590 129.711 7.349
145 31,954 134.503 7.239
150 32,311 139.282 7.145
155 32,663 144.069 7.052
160 33,011 148.874 6.954
165 33,353 153.665 6.870
170 33,691 158.468 6.784
175 34,025 163.278 6.698
180 34,354 168.078 6.623

From Tables 2 and 3, the differences between the setting values of the Young’s modulus in the
polysilicon layer and the values in the theoretical model are both not obvious. As the Young’s modulus
in the polysilicon layer increases, the curvature radius of the cantilever increases. For relatively large
curvature radii, errors from the calculations have less of an effect on its veracity. Thus final errors
decrease as the Young’s modulus in the polysilicon layer increases. In addition, comparing the buckled
situation with the unbuckled situation, slight differences between the theoretical values of the Young’s
modulus in the polysilicon layer and errors in the unbuckled situation are all less than the ones in the
buckled situation. This means that the cantilever does not have much deflection and using Equation (9),
therefore, is more accurate. The reliability and feasibility of the theoretical model is demonstrated by
slight errors which are all less than 8%.

Some of the reasons why setting values and theoretical values have differences are as follows.
Firstly, conditions in the theoretical model and the actual ones are not exactly the same. Secondly, when
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simulating, there might exist some uncontrollable factors which lead to the simulation environment
being different from the ideal environment. Thirdly, the deduction of the curvature radius of the
cantilever will bring in inevitable errors.

5. Experiments and Discussion

Test structures, which are double-layer cantilevers for simplification, were fabricated using
the MEMSCAP PolyMUMPS (MEMSCAP Inc., Durham, NC, USA) process based on surface
micromachining technology. Before measuring the first resonance frequency with an LDV (Polytech
GmbH, Berlin, Germany) system with a hardware modulus of MSV-400-M2, DHM (Lyncée Tech,
Lausanne, Switzerland) (R2200) was used to determine whether cantilevers had deflection and to
obtain the values of the curvature radius. Principles of LDV (Polytech GmbH, Berlin, Germany) and
DHM (Lyncée Tech, Lausanne, Switzerland) are provided in the Supplementary Materials.

For the double-layer cantilever, there are two unknown values of the Young’s modulus to obtain.
Thus, two double-layer cantilevers with the same length but different widths should be grouped for
calculation. The double-layer cantilevers were designed in two different lengths, and with the same
length, widths of two double-layer cantilevers should be linearly independent. Cantilever 4, as an
example, was shown in Figure 4 in scanning electron microscopy (SEM) photographs. The dimension,
the deformation by DHM (Lyncée Tech, Lausanne, Switzerland), and the first resonance frequency
measured of the cantilevers are shown in Table 4. To avoid the situation that the bottom layer of
the cantilever adheres to the substrate, test structures with suitable dimensions should be designed.
Simulated by ANSYS (15.0, ANSYS Inc., Pittsburgh, PA, USA), cantilever 1, whose residual stress
is −20 MPa in the polysilicon layer and 20 MPa in the metal layer, have a downward deflection of
−1.4304 µm. Residual stress of 20 MPa is enough to have a large deflection. Thus, compared to the
thickness of the sacrificial layer of 2 µm, cantilevers, whose dimensions are little different from that of
cantilever 1, may guarantee a relatively small possibility of substrate adhesion. However, it should
be noted that the suitable dimension mentioned above is applicable to the MEMSCAP PolyMUMPS
(MEMSCAP Inc., Durham, NC, USA) process and the dimensions of the test structures should be
adjusted according to the specific process. In fact, a short time on release, which results when the
multilayer cantilevers are relatively narrow, and the relatively large stiffness of multilayer cantilevers,
leads to little possibility of adhesion.
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Figure 4. A SEM picture of cantilever 4.

Assuming that the cantilever has a uniform curvature radius R, curvature radii are obtained by
numerical fitting from the deflection curves. The obtained curvature radii are shown in Table 5.
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Table 4. Parameters of the cantilevers.

Cantilever i Length
li (µm)

Width of the
Polysilicon
Layer w1i

(µm)

Width of
Metal

Layer w2i
(µm)

Thickness of
the

Polysilicon
Layer h1 (µm)

Thickness of
the Metal

Layer h2 (µm)

Initially
Buckled

or
Unbuckled

The First
Resonance
Frequency

fi (kHz)

Cantilever 1 150 15 5 1.5 0.5 buckled 74.38
Cantilever 2 150 15 9 1.5 0.5 buckled 68.28
Cantilever 3 200 15 5 1.5 0.5 buckled 41.72
Cantilever 4 200 15 9 1.5 0.5 buckled 38.75

Table 5. Results of numerical fitting for cantilevers.

Cantilever i
Curvature
Radius R

(µm)

Standard
Deviation
σR (µm)

Abscissa of
the Anchor
End x0 (µm)

Standard
Deviation
σx (µm)

Ordinate of
the Anchor
End z0 (µm)

Standard
Deviation
σz (µm)

Cantilever 1 12,997.32 24.60 2.98 1.40 × 10−1 5.06 × 10−3 3.34 × 10−4

Cantilever 2 9690.63 14.89 −1.37 1.20 × 10−1 1.73 × 10−3 4.09 × 10−4

Cantilever 3 13,011.4 12.10 2.27 0.93 × 10−1 3.31 × 10−3 3.03 × 10−4

Cantilever 4 9587.3 7.33 −0.94 0.79 × 10−1 1.86 × 10−3 3.61 × 10−4

Assuming that the Poisson’ ratio and density of the polysilicon layer are 0.22 and 2330 kg/m3,
respectively, and the Poisson’ ratio and density of the metal are 0.44 and 19,300 kg/m3, respectively,
the Young’s modulus of each layer can be calculated by the first resonance frequencies of the test
structures. Here is an example to use cantilever 1 and cantilever 2 to extract the Young’s modulus of
each layer. After applying the material parameters and the first resonance frequencies in Equations (10)
and (11), a system of two-element equations can be obtained, as shown in Equation (15):{

f1bc f ,1(Ẽ1, Ẽ2)− f1 = 0
f1bc f ,2(Ẽ1, Ẽ2)− f2 = 0

(15)

Solve Equation (15) and find the only answer which meets the practical range of the material
parameters. The reasonable answer is that the values of the Young’s modulus in the polysilicon layer
and in the metal layer are 156.77 GPa and 68.54 GPa, respectively. Similarly, the Young’s modulus
of each layer can also be extracted by cantilever 3 and cantilever 4. The results are shown in Table 6.
From Table 6, it is obvious that the results agree with the practical range of material parameters and
the values reported in [24].

Table 6. Results in different sets of cantilevers.

Cantilever i Young’s Modulus in the
Polysilicon Layer E1 (GPa)

Young’s Modulus in the Metal
Layer E2 (GPa)

Cantilever 1 and 2 156.77 68.54
Cantilever 3 and 4 146.78 82.89

Average value 151.78 75.72
Reference range reported in [24] 120~201 78

There are some issues that affect the accuracy of the results. Firstly, in practical processes,
photoetching, masking, and self-aligned processes can lead to dimension deviation between designed
structures and processed ones. Generally, in surface micromachining technology, dimension deviations
in a plane are no more than 0.5 µm and dimension deviations in thickness are no more than 0.02 µm.
It will have an inevitable influence on minimized devices. Secondly, squeezed damping in air may
lead to the inaccuracy of the first resonance frequency of the measured cantilevers [25,26]. Thus, the
amplification factor for the frequency response functions at points of the resonance frequencies are
needed to be greater than 20 [20].
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6. Conclusions

In this paper, an approach of extracting the Young’s modulus of each layer for multilayer films
was developed. Based on the first resonance frequency, a theoretical model was proposed for the
multilayer beam. The multilayer cantilevers were adopted as the test structures, and buckled or
unbuckled situations of the cantilevers were both considered. Its reliability and feasibility were
confirmed theoretically by the FEM method with less than 8% error. In experiments, double-layer
cantilevers have been fabricated for simplification. The Young’s modulus of each layer can be obtained
by using two double-layer cantilevers with the same length, but different widths. The experimental
results prove the accuracy of the presented approaches, and this study is suitable to extract the Young’s
modulus of each layer for multilayer films.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/8/7/201/s1,
Figure S1: (a) A schematic of the laser Doppler vibrometer (LDV); (b) A picture of LDV system, Figure S2:
(a) A schematic of the digital holographic microscopy (DHM); (b) A picture of DHM.
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