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Abstract. Using a van der Waals gas as the working substance the so called Curzon and Ahlborn-
Novikov engine is studied. It is shown that some previous results  found in the literature of finite time 
thermodynamics can be written in a more general form, means of this gas and by taking a non linear 
heat transfer law. 
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1. Introduction  
In classical equilibrium thermodynamics the efficiency of a reversible thermal engine operating 
between two reservoirs, at temperatures ww TT 21 > , is known to be: 
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In this description the temperatures of the working substance along the isothermal branches, wT1 , 
2,1=i , are assumed to be the same as the corresponding reservoirs; as a consequence the  processes 

associated with the heat transfer between the engine and the reservoirs are ignored. 
     Novikov[1], Chambadal[2] and Curzon and Ahlborn[3], by independent way, took into account 
those processes and in doing so the temperatures of the reservoirs, 21 TT > , enter the thermodynamic 
description together with the temperatures of the working substance in contact with the reservoirs. The 
relations between these temperatures in this cycle are 11 TT w <  and 22 TT w > , see Fig. 1. They also 

assumed that the heat transfer is represented by Newton's law and at the same time the Clausius 
equality 
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holds. 1Q  is the absorbed heat by the engine and 2Q  is the rejected heat by the engine. This last 
assumption is known as endoreversibility  hypothesis. Upon the maximization of the power yield of 
the cycle obtained (Fig. 1), named Curzon and Ahlborn-Novikov cycle, they found the efficiency 
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Equation (1.3) has been obtained also by  De Vos[4], Rubin[5] and Gordon[6] with different methods. 
As well as some authors have analized equation (1.3) and its consecuences[7-10], and they have 
discussed advances in the named finite time thermodynamics.  
   Angulo-Brown[11] has given a method to obtain the efficiency through the maximization of the so 
called ecological function: 
 
                                                                         σ2TPE −≡ ,                                                              (1.4) 
 
where P  is the cycle power output and  σ  is the entropy production associated to the heat transfer 
processes[12,13]. The efficiency obtained in this way, when it is using Newton's heat transfer law, is 
the following one[11,14]  
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where β  is the ratio  
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     It has also been found by numerical comparison that )(βη =E  has values very near the semisum 
( )CANCs ηηη += 2

1  for the whole span  10 ≤≤ β , where Cη  and  CANη  are shown in Equations (1.1) 

and (1.3) respectively. 
 

 
Fig. 1. Curzon and Ahlborn-Novikov cycle in the temperature T  and entropy S  plane. 1T  and 2T  are the temperatures of 

            hot and cool reservoirs respectively; wT1  and wT2  are the hot and cool temperatures of the system respectively. 

  
     Other authors have analized some aspects related with this ecological function; thus Cheng and 
Chen[15] optimized the ecological performance of Carnot heat engine with heat resistance and internal 
irreversibilities; Chen et al.[16] presented a generalized Carnot heat engine model with heat resistance, 
heat lekage and internal irreversibilities, and derived the optimal ecological relation for Newton's heat 
transfer law between the working fluid and the heat reservoirs[17]; Zhu et al.[18] further discussed the 
effect of the heat transfer law on the ecological performance of the generalized irreversible Carnot heat 
engine (the Curzon and Ahlborn-Novikov engine), and derived the optimal performance with Dulong 
and Petit's heat transfer law. More recently, Chen et al.[19] provided ecological optimization results 
for a generalized irreversible Carnot refrigerator with heat resistance, heat lekage and internal 
irreversibilities, which was proposed by Chen et al.[20-22]. 
     On other hand, Chen et al.[23] and Arias-Hernández et al.[24] have pointed out that the 
performance of an irreversible Carnot engine depends on the heat transfer law, but its properties still 
hold the same; so that, one can take a different heat transfer law to obtain a different form of the 
efficiency. In this sense the efficiency has also been calculated with Dulong and Petit's heat transfer 
law by Arias-Hernández and Angulo-Brown[25], and Angulo-Brown and Páez-Hernández[26], 
maximizing E . Those numerical results  have shown that η  value changes with the heat transfer law 
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one assumes. Velasco et al.[27] have studied both the power and the ecological function optimizations, 
using Newton's transfer law through De Vos formalism[4].  
     The consequences of Dulong and Petit's heat transfer law on the performance of the heat engine 
have been also discussed by some others authors: O'Sullivan[28] discussed the Dulong and Petit's heat 
transfer law in detail,  Chen et al.[29] derived the fundamental optimal relation between power output 
and efficiency of an endoreversible Carnot engine, Wu et al.[30] derived the optimal profit of an 
endoreversible Carnot engine, Zhu et al.[18] derived the optimal ecological performance.  
     Some of the above quoted authors do not take into account the time of the adiabatic branches 
explicitly. By taking into account the time explicitly for all the branches of the cycle in terms of 
thermodynamic properties, and with the heat transfer Newton's law, Gutkowics-Krusin et al.[31] have 
shown that the Curzon and Ahlborn-Novikov efficiency CANη  is an upper bound for the efficiency as a 

function of both the ratio 
1

2
T
T≡β  and the ratio of the maximum and the minimum volume spanned by 

the cycle, through the quantity 
1

3ln V
V , see Fig. 1.  

     Ladino-Luna and de la Selva[14] also have shown that the ecological efficiency as a function of 

1

3ln V
V  and β  reduces itself to Eq. (1.5) when ∞→

1

3
V
V , as well as shown in reference [31] for the case 

of power output for the Curzon and Ahlborn-Novikov efficiency.  
     On other hand, Ladino-Luna[32] has shown that the expression of power output and the efficiency 
of the heat engine by maximization of power output, and by using Dulong and Petit heat transfer, can 
be written also as a power series in the parameter λ , λ ~

minmax lnln
1

VV − . To arrive to the previous result 

it was necessary to build the power output as 
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where tott  is the time of duration of the cycle including the time of the adiabatic branches; k  is a 

constant parameter, with 1>k ; x  is the ratio of the cold  temperatures, both of the engine  and of the 
reservoir; z  is the ratio of the cold and hot temperatures of the engine.    
     Also, Ladino-Luna[33] has shown that ecological function has the same form in [14] if it is taken as 
working substance a van der Waals gas as well as it is using an ideal gas as the working substance, in 
the case of Newton heat transfer law, by taking the change bVV −→ , where b  is a constant that 
depends on the system. Efficiency with van der Waals gas reduces to the efficiency with ideal gas 
when b  goes to zero. It was necessary to build the entropy production in the same parameters as the 
power output was, as soon as  
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where 
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λ , and its corresponding ecological function like 
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     In the present work  use is made of a non linear heat transfer law, dt

dQ  ~ kTT )( 0− with 1>k , 

particularly the Dulong and Petit heat transfer law, taking into account explicitly the time for all the 
branches of the cycle for the Curzon and Ahlborn-Novikov engine, to find the functions )( bVPP −=  
and )( bVEE −=  and to combine the form of them in references [31,32,33], taking a van der Waals 
gas as the working substance.  Furthermore it is easy to look that )( bVP −  and )( bVE −  reduce to the 
ideal gas case when the new parameter VWλ ~ )ln()ln(

1
minmax bVbV −−−  goes to λ  in references [31,32]. Thus 

Eqs. (1.6), (1.7) and (1.8) will be found as a limit when 0→b  and 1→k . The Dulong and Petit heat 
transfer law has been chosen because the main ocurring heat transfers in the system are conduction 
through the wall separating the working fluid from the thermal bath, and convection within the 
working fluid. Radiative heat transfer is of smaller magnitude. It is followed the procedure employed 
in [14], [31] and [32] references. The conclusions and comparison of results here obtained with the 
results obtained in these references are shown in the last section.  
   

2. The van der Waals gas 
The internal energy in the case of a van der Waals gas is written as [34]  
 

                                                                 
V

anTTnCU
2

0 )( −−= ,                                                      (2.1) 

 
for  n  moles with a change of temperature 0TTT −=∆ , at volume V , and with the characteristic  

constant a  of the system, and the constant heat capacity C . So that taking the temporary derivative for 
an adiabatic process, 
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,                                                            (2.2)  

 
the first law of thermodynamics leads to  
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dt
dVpp

dt
dVp

dt
dQ

dt
dU

extext )( −−−= ,                                            (2.3) 

 
taking p  as the internal pressure and extp  as the presure of surroundings. Combining Eq. (2.2) and 

Eq. (2.3), in mechanical equilibrium, one obtains 
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,                                                            (2.4) 

 
so that, for a non linear heat transfer law  
 

                                                                    kTT
dt
dQ )( 0−= α ,                                                            (2.5) 

 
with the constant thermal conductance α , and the constant exponent k , 1>k , from Eq. (2.4), in an 
isothermal branch, 
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an )()( 02

2
−=+ α .                                                   (2.6) 

  
     On other hand, the state equation for a van der Waals gas, with a constant b  characteristic of the 
system, is 

                                                                      2
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whose derivative respect  T  at  constantp =  leads to 
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By taking 1=n , Eq. (2.7) into Eq. (2.6) leads to    
 

                                                              kTT
dt
dV

bV
RT

)( 0
0 −=

−
α .                                                        (2.9) 

 
In the case of a Curzon and Ahlborn-Novikov cycle (Fig. 1), for the heat exchange between the engine 
and the reservoirs, Eq. (2.9) leads to the time of the isothermal branches by taking its integration. 
     Moreover in the case of an adiabatic branch 0=dt

dQ , so that Eq. (2.3) reduces to 
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dt
dVp

dt
dU −= ,                                                             (2.10) 

 
and by integration of Eq. (2.1) with  1=n , one obtains 
 
                                                               )ln(ln bVRTCV −−= ,                                                      (2.11) 

 
or as it is usually written, 
 

                                                               constantbVT VC
R

=− )( .                                                      (2.12) 
 
Also, the time of duration of the adiabatic branches can be obtained by integration of (2.9). Therefore 
the time of duration of all branches in the cycle can be obtained from Eq. (2.9), and Eq. (2.12) leads to 
the relation between temperarures of the engine and the changes of volume in the adiabatic 
transformation. 
 
3. Power output and ecological function 
Taking into account the difference of temperatures between the engine and the reservoirs (Fig. 1), it 
can be written the time for all of the branches in the cycle from Eq. (2.9). It is taking 1=n  moles. For 
the isothermal branches, Eq. (2.9) is written as 
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and by direct integration of Eqs. (3.1) one gets  
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Analogously the time for the adiabatic branches can be obtained as  
 

                                 
bV
bV

TT
RT

t k
w

w

−
−

−
=

2

3

11

1
2 ln

)(α
,   and   

bV
bV

TT
RT

t k
w

w

−
−

−
=

4

1

22

2
4 ln

)(α
,                      (3.3)  

  
Now, taking into account Eq. (2.12), for the first adiabatic branch, 
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and for the second adiabatic branch, 
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and the combination of Eqs. (3.4) and (3.5) permits to have the relation 
 

                                              
bV
bV

bV
bV

−
−

=
−
−

1

4

2

3 ,   or,   
bV
bV

bV
bV

−
−

=
−
−

1

2

4

3                                                (3.6) 

 
    The main problem is to build an expression for the power output P and for the ecological function E.  
From the definition 

tott
WP = , the power output of the cycle, can be written as, 

 

                                                    
( )

bV
bV

TT
T

TT
T

bV
bV

T
T

ww

k
w

w
k

w

w

R
VC

w

wTT
P

−
−

−−

−
−

⋅



 +









+−

⋅=

1

3

22

2

11

1

1

3

1

2

ln

lnln)(

)()(

21

α ,                                          (3.7) 

 
with 12 QQW +=  obtained by Eqs. (2.5) and (3.2), and where the total time of the cycle, 

4321 ttttttot +++= , has been simplified by using Eq. (3.6). The substitutions 
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bV
bV

zx
z

x

bV
bVk

kk

R
VC

zzT
P

−
−

−−

−
−





 +





 +−

=

1

3

1

3

ln

lnln)1(

)()1(
1

1

β

α
,                                                 (3.8) 

 
or, by using  )1(
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C=γ , and the logarithm properties,  
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where 
bV
bVVW

−
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=
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3ln)1(
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γ

λ . One can see that 0→b  leads to λλ →VW  in Eq. (1.6) such as it was found 

in reference [32];  also one can see that 0→b  and 1→k  reduce (3.9) to expression of P in reference 
[31]. An expression of power in VWλ  leads to the efficiency that can be obtained following the 

procedure in those references. The efficiency obtained in this form also reduces to the efficiency 
obtained in the before cited references with the same limits.  
     In the case of ecological function it is necessary to build the entropy production σ , 

tott
S∆=σ , so that 

 
                                                               4321 →→ ∆+∆=∆ SSS ,                                                         (3.10)   

 
where 21→∆S  is the change of entropy in the first isothermal branch and 43→∆S  is the change of 

entropy at the second isothermal branch. For heat reservoirs, T
QS =∆ , assumed as it is only in the 

transfer processes between the reservoirs and the engine, 
 

                      
bV
bV

T
TR

T
QS w

−
−==∆ →

→
1

2

1

1

1

21
21 ln   and  

bV
bV

T
TR

T
QS w

−
−==∆ →

→
3

4

2

2

2

43
43 ln                      (3.11) 

 
so that Eq. (3.10) can be written as 
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and by using Eq. (3.6) and Eq. (2.12) one can obtain Eq. (3.12) in the form 
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The entropy production takes the form 
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or by taking a factorization of wT1  and taking also the changes in Eq. (3.8) it is found the entropy 

production as 
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then, by using Eq. (1.4), Eq. (3.2) and Eq. (3.15) the ecological function can be written as 
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One can see that the estructure of Eq. (3.16) leads to (1.8) when the limit 1→k  is. It is also obtained 
the case of Newton heat transfer with an ideal gas as the working substance when 1=k  and 0=b . A 
general form of ecological function and power output function can be obtained replacing VWλ  instead 
of λ , and with approximations for the cases when 1>k . PDPz  and PDPη  in reference [32] are 
modified with the substitution bV −  instead of V . The corresponding maximization of ecological 
function taking Dulong-Petit's heat transfer and a van der Waals gas as the working substance can be 
found with the substitution VWλ  instead of λ  in all of the process to build the ecological efficiency. In 

the case of power output with the same substitution, following the procedure in reference [32], one 
obtains the approximate formula for the efficiency when VWλ  goes to zero (infinite compression ratio), 
and a similar power series of the efficiency as a function of  VWλ ,  

 
               ))()()(1(1),(1 32
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With the approximate function PDPz , obtained in reference [32],  
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and at the limit 0→VWλ  one obtains PDPVWPDPVW ηλη == )0(  where PDPη  is the same approximate 
efficiency found in reference [32].  Figure 2 shows a comparison between CANη  and PDPVWη  at zero 
order in VWλ . As one can see, CANVWPDPVW ηλη <= )0( , so CANη  can be consider as an upper bound 

for the efficiencies that taking into account the time of the adiabatic branches in the Curzon and 
Ahlborn-Novikov cycle. 
     Equation (3.18) is obtained by taking the condition 0=∂

∂
x
P  in Eq. (3.9). The function 

),,( βλ zxx VW=  obtained in this way is substituted in the resulting expression from the condition 
0=∂

∂
z
P , and it permits to get a function ),( βλVWzz = , for a given parameter k , and by thickness 

approximations for the resulting exponents at the limit 0→VWλ  one gets, 
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     For the Dulong-Petit's heat transfer, 4

5=k , (3.19) goes to (3.18), with values for the parameter β  
as 10 << β . 
 

 
Fig. 2. Comparison between the Curzon and Ahlborn-Novikov efficiency, CANη , and the efficiency PDPVWη  at zero 

order 
            in VWλ , for the Dulong and Petit's heat transfer law. 

 
4. Conclusions 
A first result is emboided in Eqs. (3.9) and (3.15). It expresses the fact that the efficiency for a Curzon 
and Ahlborn-Novikov engine depends on both the size of the engine, which is represented by the 

parameter VWλ ~ ( ) 1

1

3ln
−

−
−

bV
bV , and on the heat transfer law one uses for describing the heat exchange 

between the working fluid and the thermal reservoirs. The estructure of those equations shows that all 
calculation made to evaluate the performance of an engine with a van der Waals gas as working 
substance leads to the same calculation made with an ideal gas as working substance, and by using any 
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heat transfer law of the form of Eq. (2.5). With acceptable approximation in the case 4
5=k , it is 

possible to obtain numerical results that one can compare with other results found in the literature. Our 
results also conserve the dependence on the compression ratio, bV

bV
−
−

1

3 . For a known value of b one can 

find that exits a leading term of the corresponding efficiency that corresponds to the exact numerical 
value calculated without explicitly taking into account the dependence on the compression ratio, and it 
is an upper bound for the value of the efficiency; in fact the larger the ratio bV

bV
−
−

1

3 , the larger the 

efficiency becomes. It can also been shown that for the Dulong-Petit’s heat transfer law and the ideal 
gas law, the limits 0→VWλ  and 1→k  lead to the Curzon and Ahlborn-Novikov result. 
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