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Abstract: In this paper, a systematic study of a fully developed electroosmotic flow of power-law
fluids in a rectangular microchannel bounded by walls with different zeta potentials is described.
Because the upper and lower layers of most microchannels are made of different materials, it is
necessary to study the flow characteristics for cases in which the microchannels have different zeta
potentials at each wall. The electrical potential and momentum equations were solved numerically
using a finite element analysis. The velocity profiles and flow rates were studied parametrically by
varying the fluid behavior index, channel aspect ratio, and electrochemical properties of the liquid
and the bounding walls. The calculated volumetric flow rates in a rectangular microchannel were
compared with those between two infinite parallel plates.
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1. Introduction

Electroosmotic flow (EOF) is one of the most important techniques in a microfluidic system
because conventional pressure-driven flows are inefficient owing to a high surface-to-volume ratio at
the microscale. The mechanism and underlying physics of an EOF are now considered rather classical
materials, as described in many different textbooks [1–4]. Most studies on EOFs have assumed that
the medium in the microchannel is a Newtonian fluid, which is a rational consideration because most
electrolytes or buffer solutions used in microfluidic devices are Newtonian. However, biological fluids
such as blood, saliva, and DNA solutions, which are frequently used in microfluidic devices such as
biochips, are non-Newtonian in nature. Because non-Newtonian fluids show different flow behaviors
than Newtonian fluids, it is suitable for a non-Newtonian model to predict the appropriate EOF [5–12].

Among the various models for non-Newtonian fluids, the power-law model has been the
most chosen rheological model for EOFs occurring in a microchannel, owing to its simplicity and
adequateness in terms of the flow behavior [13,14]. Using the power law, Das and Chakraborty
analyzed the EOF behavior of blood samples as functions of the blood concentration [7]. Zhao et al.
analyzed the behavior of an EOF in a slit channel using the power-law, and solved the analytical
expressions for the shear stress, dynamic viscosity, and velocity distribution [15]. In addition, they
obtained a general Smoluchowski slip velocity using the Carreau model [16]. Bharti et al. investigated
the electroviscous effects in a steady, fully developed flow of a power-law fluid through a cylindrical
microchannel using the finite difference method [13]. Tang et al. numerically studied a non-Newtonian
power-law fluid in a microchannel when applying the lattice Boltzmann methodology [17]. Berli
reported the theoretical expressions of the flow rate and output pressure of the electrokinetic pumping
of non-Newtonian fluids through cylindrical and slit microchannels [18]. Vasu and De solved the
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EOF behavior of power-law fluids in a slit microchannel at a high zeta potential without applying
a linear Debye-Hückel approximation [19]. Babaie et al. reported the EOF of a power-law fluid in a
slit microchannel by combining the pressure gradient in the channel [20]. Ng and Qi presented an
analytical model for the EOF of a power-law fluid through a slit channel while gradually varying
the channel height and wall potential [14]. In addition, some efforts have focused on viscoelastic
fluids in two-dimensional microchannels under the combined influence of electroosmotic and pressure
gradient forces. Afonso et al. investigated the steady-state slip flow with symmetric or asymmetric
zeta potentials at the walls [21]. Wang et al. investigated the unsteady slip flow with asymmetric zeta
potentials at the walls [22].

In most lab-on-a-chip systems, the cross-sections of the microchannels, made using modern
micromachining technology, are close to a rectangular shape [23,24]. However, in studies on the EOF
of a non-Newtonian fluid, there has been very little research on the flow inside a rectangular channel
as compared to research on circular and parallel plate microchannels. Park and Lee obtained the
volumetric flow rate using the Helmholtz-Smoluchowski velocity for viscoelastic fluids while applying
the Phan-Thien Tannar model with and without a pressure gradient [12]. Vakili et al. reported a
hydrodynamically fully developed EOF of a power-law fluid in a rectangular channel with a changing
aspect ratio using a numerical solution through a finite difference procedure [24]. Zhao et al. studied
the transient EOF of power-law fluids in a rectangular microchannel driven by three modes of an
electric field, i.e., a direct current (DC) electric field, an alternating current (AC) electric field, and a
combined AC and DC electric field using a finite element method [25]. The above studies are based on a
symmetric rectangular channel structure, assuming identical zeta potentials of the walls encompassing
the microchannel. However, there are many cases that call for using different materials to fabricate
a useful microchannel. A common example is a microchannel made with a polydimethylsiloxane
(PDMS) top and a silicon dioxide (glass) bottom [26]. Datta et al. obtained analytical solutions in
the form of a Fourier series for EOF in a rectangular channel with variable wall zeta-potential for
Newtonian fluids [27], however, EOF in a rectangular channel with asymmetric zeta potential for
non-Newtonian fluids has not yet been reported.

In the present study, we generalize previous studies on power-law fluids and introduce bounding
walls with different zeta potentials and different aspect ratios of the rectangular channel. Herein, we
report the characteristics of an EOF by comparing and looking into the velocity profiles and volumetric
flow rates in rectangular channels and between infinite parallel plates.

2. Mathematical Formulation

We consider a fully developed steady-state electroosmotic flow, as shown in Figure 1, where a
constant direct current (DC) of electric field Ẽex is applied to a non-Newtonian fluid with a constant
density ρ̃ and electric permittivity ε̃ confined to a rectangular channel, where w̃ and h̃ indicate the
width and height, respectively. Each boundary bears an electric charge upon contact with a fluid.
We assume that the top and side walls are quantified based on zeta potential ζ̃t, and that the bottom
wall is quantified based on zeta potential ζ̃b. Thin nano-scale regions with excess ions, called an
electrical double layer (EDL), are formed adjacent to each boundary, as indicated by the hatched area
in the figure, and are labeled as exaggerated EDL for clarity. The flow is caused by the electrostatic
reaction between an external electric field Ẽex and an excessive amount of ions in the EDLs, which will
drag the entire fluid through viscous dissipation.
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Figure 1. Schematic diagram of electroosmotic flow in a rectangular microchannel and boundary 
conditions. 

3. Results 

In the calculations, the following parameters and constants are used: the external electric field, 
𝐸𝐸�𝑒𝑒𝑒𝑒 = 10 kV; the relative permittivity, 𝜖𝜖𝑟𝑟 = 80; the vacuum permittivity, 𝜖𝜖0̃ = 8.85 × 10−12 F/m; the 
absolute temperature, 𝑇𝑇� = 300 K; the bottom wall zeta potential, 𝜁𝜁𝑏𝑏 = −60 mV; the Boltzmann 
constant, 𝑘𝑘�𝑏𝑏 = 1.38 × 10−23 J/K; the valence of ions, 𝑧𝑧 = 1; and the dynamic viscosity of Newtonian 
fluid, 𝜇𝜇�0 = 1.12 × 10−3 N ∙ s/m2. In this study, we neglected the effect of pressure gradient and the 
electroviscous effect.  
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potentials of all boundaries are the same, the velocity profiles along the centerline of the channel 
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five different flow behavior indices. The present results (lines) and those by Zhao et al. [15] (symbols) 
are shown to coincide exactly for all five cases shown. Because the top and bottom are symmetrical, 
only half of the velocity profiles are displayed. For a purely viscous Newtonian fluid (𝑛𝑛 = 1.0), a 
characteristic plug-flow type EOF with a Helmoholtz-Smoluchowski is observed in the core region, 
with large velocity gradients in the thin boundary regions. Under the same electroosmotic conditions, 
as the flow behavior index decreases (𝑛𝑛 < 1) , the flow velocity in the core region increases 
conspicuously, and then decreases as the flow behavior index increases (𝑛𝑛 > 1). This is because 
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distribution has the same tendency as the fluid consistency index (𝑚𝑚) increases, which can also be 
seen in the results of Zhao et al. [15]. Therefore, we kept the fluid consistency index 𝑚𝑚 = 1 in  
this paper. 

Figure 1. Schematic diagram of electroosmotic flow in a rectangular microchannel and
boundary conditions.

We describe this EOF theoretically based on a system of equations nondimensionalized using h̃,
Ẽex h̃, ũs = −εζ̃tẼex/µ̃0, and t̃ = h̃/ũs as the characteristic length, electric potential, velocity, and time,
respectively, where ũs and µ̃0 are the conventional Smoluchowski velocity and dynamic viscosity of
Newtonian fluids, and the superscript tilde denotes dimensional form. The velocity field of a fluid in a
rectangular channel is governed by the dimensionless continuity and Cauchy momentum equations,
which are given as follows:

∇·u = 0, (1)

Re
Du
Dt

= −∇p +∇·τ + fe, (2)

where u is the velocity vector, p is the pressure, τ is the stress tensor, and fe is the body force. The
dimensionless stress tensor τ can be expressed based on the strain rate tensor, D, as:

τ = 2µ(D)D, (3)

where D = {∇u + (∇u)T}/2 and µ(D) is the effective viscosity. The effective viscosity for the power
law fluid is given by:

µ(D) = m
(√

2D : D
)n−1

, (4)

where m is the flow consistency index, which is nondimensionalized using µ̃0h̃n−1/ũn−1
s , and n is the

flow behavior index. We consider the unidirectional flow that can be represented as u = u(y, z)ex,
where u is the x-component of velocity and ex is the unit vector along the x-direction. For the EOF,
the only driving force is generated through the interaction between the external electric field Ẽex and
the charge density in the EDL region. A dimensionless body force in Equation (2) can be obtained
by introducing dimensionless zeta potential based on the top and side walls ER = ζ̃t/(Ẽex h̃) to the
Cauchy momentum equation, which gives us fe = ∇2φ∇φ/ER: the details of the dimensionless form
are described in Appendix A. The total electric potential can be represented as φ(x, y, z) = −x+ ϕ(y, z),
where−x and ϕ(y, z) are the electric potential owing to an external electric field and the zeta potentials,
respectively. If we limit the present analysis to microchannels where the Debye length λ̃D is much
smaller than the height h̃ of the channel, the electric potential owing to the zeta potential can be
described through the Poisson-Boltzmann equation, which can be linearized using a Debye-Hückel
approximation as:

∇2 ϕ = ϕ/L2
D, (5)

where LD = λ̃D/h̃ is the nondimensional Debye length. Here, the Debye length (λ̃D), a measure of

the EDL thickness, is expressed as λ̃D =
√

ε̃k̃BT̃/2ẽ2z2ÑA c̃0 for an aqueous solution of a symmetrical
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electrolyte, where k̃B is a Boltzmann constant, T̃ is the absolute temperature, ẽ is the elementary
charge density, z is the charge number of ions, ÑA is the Avogadro’s number, and c̃0 is the mole
concentration (mol/m3).

In the present analysis, both EDL potential field and electroosmotic flow field are solved in the
partial differential equation (PDE) module of finite element numerical analysis package COMSOL
Multiphysics 5.1. In our work, a PDE governing the EDL potential (Equation (5)) and a PDE governing
electroosmotic flow field (Equation (2)) are both constructed from the general form of PDE in COMSOL,
which is based on the numerical method used in the work by Zhao et al. [15]. Through the body force
term fe = ∇2φ∇φ/ER, these two PDEs are coupled together. A no-slip condition was applied to each
wall, and a symmetric condition was applied to the symmetric surface, as shown in Figure 1.

The parameters used in this study are the zeta potential ratio (ZR = ζ̃b/ζ̃t), ranging from −1 to 2;
the fluid behavior index (n), ranging from 0.8 to 1.2; the channel aspect ratio (AR = w̃/h̃), ranging
from 0.5 to 5; and the dimensionless Debye length (LD), ranging from 0.005 to 0.01.

3. Results

In the calculations, the following parameters and constants are used: the external electric field,
Ẽex = 10 kV; the relative permittivity, εr = 80; the vacuum permittivity, ε̃0 = 8.85× 10−12 F/m;
the absolute temperature, T̃ = 300 K; the bottom wall zeta potential, ζ̃b = −60 mV; the Boltzmann
constant, k̃b = 1.38× 10−23 J/K; the valence of ions, z = 1; and the dynamic viscosity of Newtonian
fluid, µ̃0 = 1.12× 10−3 N·s/m2. In this study, we neglected the effect of pressure gradient and the
electroviscous effect.

When the width and height of the rectangular channel are sufficiently large and the zeta potentials
of all boundaries are the same, the velocity profiles along the centerline of the channel should coincide
with the analytical results derived by Zhao et al. [15]. Figure 2 shows such cases for five different
flow behavior indices. The present results (lines) and those by Zhao et al. [15] (symbols) are shown to
coincide exactly for all five cases shown. Because the top and bottom are symmetrical, only half of
the velocity profiles are displayed. For a purely viscous Newtonian fluid (n = 1.0), a characteristic
plug-flow type EOF with a Helmoholtz-Smoluchowski is observed in the core region, with large
velocity gradients in the thin boundary regions. Under the same electroosmotic conditions, as the
flow behavior index decreases (n < 1), the flow velocity in the core region increases conspicuously,
and then decreases as the flow behavior index increases (n > 1). This is because shear-thickening
fluids (n > 1) require larger shear stresses than Newtonian fluids as the velocity gradient increases.
As a result, shear-thickening fluids have lower velocity gradients than Newtonian fluids under the
same conditions.

Figure 3a,b show the velocity profiles along the centerline of the square channel with identical
zeta potential for five different fluid consistency indices (m) with a fixed Debye length (LD = 0.03).
Velocity distributions for a shear-thinning fluid (n = 0.8) are plotted in Figure 3a, and those for a
shear-thickening fluid (n = 1.2) are plotted in Figure 3b. The results show that the velocity distribution
has the same tendency as the fluid consistency index (m) increases, which can also be seen in the results
of Zhao et al. [15]. Therefore, we kept the fluid consistency index m = 1 in this paper.

When the top and bottom boundaries are of different materials, and thus of different zeta
potentials (ZR 6= 1), the symmetry of the EOF is broken. Various velocity profiles that differ from
those above will then be possible. Figure 4a–d show the velocity distributions in a rectangular channel
for four different zeta potential ratios with a fixed aspect ratio (AR = 1), Debye length (LD = 0.03),
and behavior index (n = 0.9). Figure 4e,f show the velocity profiles along the centerline according to
the zeta potential ratio for a flow index of 0.9 (Figure 4e) and 1.1 (Figure 4f), respectively. The velocity
profile of a Newtonian fluid is also added for comparison. In addition, the symmetry case of ZR = 1
is included in the figure as a reference. If the zeta potential at the bottom boundary is larger than
those at the other boundaries (ZR > 1), the entire EOF is enhanced, with the center portion near
the bottom wall being more pronounced. If the zeta potential at the bottom boundary is lower than
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those at the other boundaries and has the same sense (0 < ZR < 1), the flow at the center portion
near the bottom wall is less pronounced. If the bottom boundary is electrochemically inert (ZR = 0),
the EDL adjacent to the bottom boundary does not contribute to the EOF. The flow is thus generated
from viscous dissipation originating from the top and side boundaries. When the zeta potential at the
bottom boundary has the opposite sense (ZR < 0), the Maxwell stress at the bottom EDL will generate
an EOF in the opposite (−x) direction, as shown in the figure. The smaller the behavior index of the
power-law fluid, the greater the velocity gradient near the EDL. As described above, the entire EOF of
the shear-thinning fluid is enhanced compared with the Newtonian case.Micromachines 2017, 8, 165 5 of 12 
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Figure 4. Velocity distribution in a square microchannel with LD = 0.03 and n = 0.9 for different zeta
potential ratios: (a) ZR = 0; (b) ZR = 0.5; (c) ZR = 1.0; and (d) ZR = 1.5. Velocity profiles along the
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The flow enhancement should also vary depending on the aspect ratio of the rectangular channel.
Figure 5 shows the velocity profile along the center of a rectangular channel for four different aspect
ratios with a fixed zeta potential ratio (ZR = 2), Debye length (LD = 0.03), and behavior index
(n = 0.8). The symbols indicate the EOF generated between the infinite parallel plates, whereas the
line shows the velocity profile in the rectangular channel. If there are no side walls (an EOF is generated
between the parallel plates), the velocity profile at the centerline between the top and bottom walls
is linear outside of the EDL. Because the velocity induced by the zeta potential of the side wall is
different from the velocity at the centerline, a velocity gradient for the width direction is created, and
the velocity of the middle part becomes less pronounced, with a bent velocity profile, as shown in the
figure. When ZR < 1, the velocity profile will be bent in the opposite direction. When the channel
is widened, the velocity gradient is lowered, the influence of the velocity induced by the side wall
will decrease, and the velocity profile of the core portion becomes closer to a linear state. The flow
enhancement can be examined more quantitatively by studying the flow rate, which can be obtained
through an integration of the velocity in the cross-section of the microchannel. Here, the flow rate
ratio (QR) is used to examine the flow characteristics in a rectangular channel. The flow rate ratio
can be obtained by dividing the volumetric flow rate per unit area in a rectangular microchannel by
that between infinite parallel plates without side walls. Figure 6a,b show the relationship between the
ratio of the flow rate and the aspect ratio of the microchannel for various zeta potential ratios when
LD = 0.03. In Figure 6a, QR is plotted against the aspect ratio for a shear-thinning fluid (n = 0.8),
whereas QR of a shear-thickening fluid (n = 1.2) is plotted in Figure 6b. The shear-thinning and
-thickening fluids tend to be quite similar. In both cases, they are affected by the side walls in the same
way although there is a difference in degree. When the zeta potential of the bottom wall is larger than
that of the side walls (ZR > 1), QR always has a value of less than unity because the velocity of the
middle portion of the channel is less pronounced by the influence of the side wall. Intuitively, as AR
increases, QR approaches unity, which means that the wider the channel is, the less it is affected by the
side wall. As shown in Figure 6b, QR at AR = 0.5 is smaller than at AR = 1 when ZR = 0.5. This is
because the width of the channel becomes narrower, and the velocity gradient section overlaps and is
not sufficiently influenced by the velocity increase from the side walls.
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the side wall. Intuitively, as 𝐴𝐴𝑅𝑅  increases, 𝑄𝑄𝑅𝑅  approaches unity, which means that the wider the 
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Figure 5. Velocity profiles according to the channel aspect ratio at 𝐿𝐿𝐷𝐷 = 0.03, 𝑍𝑍𝑅𝑅 = 2, and 𝑛𝑛 = 0.8. Figure 5. Velocity profiles according to the channel aspect ratio at LD = 0.03, ZR = 2, and n = 0.8.
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Figure 6. The flow rate ratio according to the channel aspect ratio and zeta potential ratio at LD = 0.03:
(a) n = 0.8 and (b) n = 1.2.

Increasing the Debye length LD turns the plug-flow type velocity profiles into a more parabolic
shape, as shown in Figure 7. Figure 7a–d show the velocity distributions in a rectangular channel for
four different dimensionless Debye lengths (LD) for a shear-thickening fluid (n = 1.1) at ZR = 1.5.
The velocity profiles of the Newtonian fluids are almost identical around the center, irrespective of
the Debye length. On the other hand, the power-law fluid flow enhancement will thus appear with a
decrease in LD. The shear-thinning fluid increases the core velocity as the EDL thickness decreases
(Figure 7e), and the shear-thickening fluid decreases the core velocity (Figure 7f). In Figure 8, QR
is plotted against LD for five different index values with fixed aspect (AR = 1) and zeta potential
(ZR = 0.5) ratios. Regardless of the index value, QR tends to decrease almost linearly as the Debye
length increases, because the flow rate decreases as the flow enhancement area around the side wall
widens. As the index increases, the QR graph according to the Debye length decreases in parallel.
Interestingly, the value of QR decreases from more than unity to less than unity for all cases as the
Debye length decreases. This means that, if the Debye length is small, the flow rate per unit area of an
EOF in a square microchannel is larger than that of an EOF generated between the infinite parallel
plates under the same conditions. Intuitively, QR is always considered to be larger than unity when
ZR < 1 because the side walls with a relatively large zeta potential increase the flow rate. However, if
the Debye length is sufficiently large, the velocity increment caused by the EDL near the side walls
will overlap before becoming fully developed. Therefore, the influence of the flow rate decreasing by
the no-slip condition of the wall becomes larger than the effect of velocity enhancement owing to free
charges in the EDL of the side walls.
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Figure 7. Velocity distribution at different values of Debye length for 𝑛𝑛 = 1.1  and 𝑍𝑍𝑅𝑅 = 1.5 :  
(a) 𝐿𝐿𝐷𝐷 = 0.005; (b) 𝐿𝐿𝐷𝐷 = 0.01; (c) 𝐿𝐿𝐷𝐷 = 0.05; and (d) 𝐿𝐿𝐷𝐷 = 0.1. Velocity profiles along the centerline 
according to different Debye lengths for 𝑍𝑍𝑅𝑅 = 1.5 and 𝐴𝐴𝑅𝑅 = 1. Symbols, Newtonian fluid: (e) shear-
thinning (𝑛𝑛 = 0.9) and (f) shear-thickening (𝑛𝑛 = 1.1) fluids. 

Figure 7. Velocity distribution at different values of Debye length for n = 1.1 and ZR = 1.5:
(a) LD = 0.005; (b) LD = 0.01; (c) LD = 0.05; and (d) LD = 0.1. Velocity profiles along the
centerline according to different Debye lengths for ZR = 1.5 and AR = 1. Symbols, Newtonian
fluid: (e) shear-thinning (n = 0.9) and (f) shear-thickening (n = 1.1) fluids.
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Figure 8. The flow rate ratio according to the Debye length for different behavior indices.

4. Conclusions

We studied electroosmotic flows of non-Newtonian fluids with an asymmetric boundary in a
rectangular microchannel by applying the power-law method. Zeta potentials on the top and bottom
boundaries are allowed to assume mutually different values, and thus they can be made up of different
materials. Based on numerical simulations, the fluid flow and electric potential distribution, coupled
through the hydrodynamic and Maxwell stress contributions, were analyzed based on the conservation
laws, including the momentum and linearized Poisson-Boltzmann equation.

Flow enhancement of a power-law fluid was characterized in terms of the ratio of zeta potential,
behavior index, aspect ratio of the channel, and Debye length. The velocity profiles of the power-law
fluids show a more enhanced flow as the behavior index decreases, corresponding to the shear-thinning
hydrodynamic features. In addition, it is apparent that an increase in the flow rate gives rise to a higher
AR and lower ZR when the zeta potential of the bottom is substantial (ZR > 1). Power-law fluids in the
presence of side walls consistently have flow rates beyond the EOF generated between infinite parallel
plates when the zeta potential at the top is substantial (0 < ZR < 1). As the Debye length increases,
the flow rates of the power-law fluids decrease almost linearly. It can be concluded from the results
that, depending on the Debye length and difference in zeta potential, the flow rate in a rectangular
microchannel may be greater or less than the flow rate between two parallel infinite plates under
identical conditions. This work can help in understanding the hydrodynamics of rheological fluids,
such as biological fluids including blood, saliva, and DNA solutions, in a typical channel employed in
a lab-on-a-chip system.
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Appendix

The Cauchy momentum equation can be non-dimensionalized in the following ways:

ρ̃(dũ)
dt̃

= −∇̃ p̃ + ∇̃·τ̃ + f̃e (A1)

ρ̃
ũ2

s

h̃
du
dt

= − µ̃0ũs

h̃2
∇p +

µ̃0ũs

h̃2
∇·τ +

ε̃Ẽ2
ex

h̃
∇2φ∇φ (A2)

ρ̃ũs h̃
µ̃0

du
dt

= −∇p +∇·τ +
ε̃Ẽex ζ̃t

µ̃0

1
ũs

Ẽex h̃
ζ̃t
∇2φ∇φ (A3)

Re
du
dt

= −∇p +∇·τ +
1

ER
∇2φ∇φ (A4)

where the superscript tilde denotes dimensional form.
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