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Abstract: We present an electrostatic microelectromechanical systems (MEMS) resonant scanner with
large out-of-plane translational stroke for fast axial-scanning in a multi-photon microscope system
for real-time vertical cross-sectional imaging. The scanner has a compact footprint with dimensions
of 2.1 mm × 2.1 mm × 0.44 mm, and employs a novel lever-based compliant mechanism to enable
large vertical displacements of a reflective mirror with slight tilt angles. Test results show that by
using parametrical resonance, the scanner can provide a fast out-of-plane translational motion with
≥400 µm displacement and ≤0.14◦ tilt angle over a wide frequency range of ~390 Hz at ambient
pressure. By employing this MEMS translational scanner and a biaxial MEMS mirror for lateral
scanning, vertical cross-sectional imaging with a beam axial-scanning range of 200 µm and a frame
rate of ~5–10 Hz is enabled in a remote scan multi-photon fluorescence imaging system.
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1. Introduction

Optical imaging in vertical cross-sections with sub-cellular resolution is essential to biomedical
research and clinical diagnosis because histology-like images can be provided to distinguish different
features of tissue for early detection of cancer and other diseases. By combining axial and lateral
scanning, this capability can be provided. Conventionally, axial scanning in confocal and multi-photon
microscopes is achieved with the movement of either the objective or stage, and images in the vertical
plane are reconstructed from a series of horizontal images. This approach is limited in speed and is
prone to motion artifacts from vibrations introduced in the sample.

New methods to perform remote axial scanning have been developed to overcome these
limitations, including group velocity dispersion (GVD)-based [1–4] and tunable lens-based temporal
focusing [5,6]. Axial scanning with GVD modulation can achieve high speeds, but results in blurry
images [4]. The use of a tunable lens for axial scanning has the advantages of high speed, low
cost, and ease of integration, but suffers from changes in magnification and numerical aperture
(NA) [6]. A remotely-located axial scan mirror that reflects the excitation beam has recently been
demonstrated to move the focus [7–9]. High scan speeds can be achieved with mirrors that have
minimal inertia. This method has been used successfully to collect aberration-free images at high
speeds with a multi-photon microscope. Two high numerical aperture objectives are used to introduce
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equal but opposite aberrations in the excitation wavefront during scanning [8]. However, the scanning
mechanisms used to move the mirror are based on bulky actuators, such as either a galvanometer or
voice coil motor, which results in the difficulty of miniaturizing the system.

To realize axial scanning in a miniature instrument, a compact translational actuator that provides fast
scan with large displacements and small tilting angles is needed. Microelectromechanical systems (MEMS)
technology is well-suited to this application, and some recent advances have been made in MEMS
translational actuators. In general, to achieve large displacements, thermoelectric, piezoelectric, and
electromagnetic actuation mechanisms are usually used in MEMS actuators. Thermoelectric actuators can
provide large displacements at low voltages, but have slow response times [10,11]. Thin-film piezoelectric
scanners can achieve large displacements with high speeds, but require complex fabrication
processes [12,13]. Electromagnetic actuators have been developed with fast response times and good
displacement, but this technology has high power consumption and is difficult to scale down in size [14,15].
Compared with other actuation mechanisms, electrostatic approaches typically have small actuation
force and the pull-in effect, but offer the advantages of low power consumption and complementary
metal-oxide-semiconductor (CMOS)-compatible fabrication. Electrostatic MEMS actuators that use the
principle of parametric resonance have achieved large axial displacements up to several hundreds of
microns [16–19].

We have previously demonstrated an electrostatic MEMS scanner with axial scan capabilities to
collect vertical cross-sectional images in a dual-axis confocal endomicroscope [17] and a multi-photon
microscope [19]. Here we demonstrate a MEMS scanner with a smaller footprint and a higher speed to
further extend the applicability of this axial scan technique in a multi-photon microscope system for
real-time vertical cross-sectional imaging.

2. Scanner Design and Fabrication

2.1. MEMS-Based Remote-Scan Multi-Photon Imaging System

Figure 1a shows the schematic of a MEMS-based remote scan multi-photon imaging system.
A bi-axial torsion MEMS mirror (M1, Figure 1b) and an out-of-plane translational MEMS scanner (M2)
are used to perform lateral and axial scanning, respectively. Figure 1b shows the bi-axial torsional
MEMS mirror [20]. This scanner employs a gimbal geometry that enables a 1.8 mm-diameter reflective
mirror to rotate around the inner X- and outer Y-axes. The X-axis is defined as the fast axis with a
resonant frequency of ~4.3 kHz, and the Y-axis is defined as the slow axis with a resonant frequency of
~1.05 kHz. Based on the optical design of the remote scan unit, the translation of M2 results in the axial
displacement of the focus below the tissue surface with a magnification of ~2:1. That is, to achieve an
imaging depth of 200 µm, the axial scanning device needs to provide a displacement of 400 µm.
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Figure 1. (a) Schematic for microelectromechanical systems (MEMS)-based remote scan multi-photon
microscopic system. Key: HWP: half wave plate, LP: linear polarizer, L1-6: lenses, Obj1-2: objectives,
M1: MEMS bi-axial torsional mirror for lateral scanning, M2: MEMS out-of-plane translational scanner,
M3: fixed reflective mirror, PBS: polarizing beam splitter, QWP: quarter wave plate, DM: dichroic
mirror, BPF: band pass filter, PMT: photomultiplier tube; (b) photo of MEMS bi-axial torsional mirror.
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2.2. Design of the Out-of-Plane Translation MEMS Scanner

The basic structure for the out-of-plane translational MEMS device used for axial scanning in
the multi-photon imaging instrument is shown in Figure 2A. A central reflective mirror is supported
by four lever-based suspensions, and four comb-drives are used for actuation. The suspensions
and the mirror form a compliant mechanism that can transfer the rotation of the lever into vertical
translation of the mirror. This device is fabricated in a silicon on insulator (SOI) wafer with movable
structures, comb-drives, and electrical pads formed in the silicon device layer. A cavity is opened
in the silicon handle layer, and narrow trenches are opened in the silicon device layer for electrical
isolation. The scanner has a dimension of 2.1 mm × 2.1 mm × 0.54 mm for integration into a miniature
instrument. The mirror is designed with a diameter of 0.8 mm to cover the focused beam dimension
over the expected 400 µm scan range. The lever-arm of the suspension is designed to have a spiral
shape with a length of 1.33 mm to achieve a large vertical displacement. It also couples to the mirror
and the anchor through two H-shaped torsional springs and one multi-turn folded-beam spring,
respectively. The design of the H-shaped torsional spring is used to enable large rotations while
providing high resistance to lateral bending, and the design of the multi-turn folded-beam spring is
used to enable large deflections in its folding direction while providing a high resistance to lateral
bending. The comb-drive has an in-plane structure, in which movable and stationary comb fingers
with the same thickness are formed in the silicon device layer. Unlike conventional vertical staggered
comb-drives, the in-plane comb-drive can only work in resonance to enable out-of-plane motions of
the mirror. Based on the principle of parametric resonance, a driving voltage signal with a frequency
near at 2 ω0/n—where ω0 is the natural frequency of the out-of-plane motion and n is an integer
≥1—should be used for actuation.
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Figure 2. Schematics for out-of-plane translational MEMS scanner with a level-based compliant
mechanism. (A) Front view of the basic structure; (B) cross-section view of the out-of-plane translational
motion enabled by the level-based compliant mechanism. Key: CD: comb drive, LA: spiral-like
level arm, P1-2: electrical pads, RM: reflective mirror, S1: H-shaped torsional spring, S2: multi-turn
folded-beam spring, T: electrical isolation trench.

We optimized the geometry of springs to provide fast stable axial scanning with >400 µm
displacement while avoiding spring failure. Figure 3 shows results for modal analysis of the optimized
scanner using ANSYS software. The first mode is chosen as the desired out-of-plane translational
motion with a resonant frequency of 1216.1 Hz, and the second mode is an in-plane translational
motion with a resonant frequency of 4649.3 Hz. According to these results, the optimized structure will
provide a stable out-of-plane translational motion with high resistance to parasitic vibrations. Figure 4
shows the stress distribution through the scanner, where there is a maximum value of ~638.2 MPa near
at the fixed end of the H-shaped torsional spring with ±250 µm axial displacement. This value is well
below the limit for fracture strength of single crystal silicon [21].
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2.3. Fabrication Process

A robust SOI micromachining process is developed for fabrication, which achieves a yield of
>95%. Figure 5 shows the process flow, which starts with a 4-inch SOI wafer with a 40 µm silicon
device layer, a 1 µm silicon dioxide (SiO2) buried layer, and a 500 µm silicon handle layer. To avoid
scratching and contaminating the reflective mirror surface, a 0.5 µm SiO2 film was used as a hard
mask, and was first deposited on the surface of the device layer by a plasma-enhanced chemical vapor
deposition (PECVD) process. A 1 µm PECVD SiO2 layer was also deposited on the backside surface to
avoid photoresist burning during the deep reactive-ion etching (DRIE) process for removing backside
silicon with a large open area (Figure 5a). Two masks (Figure 5b,c) and two DRIE silicon etching steps
(Figure 5d,e) were used to define and form the scanner structures in the device and handle layers of
the SOI wafer. The movable structures were released using a buffered hydrofluoric acid solution (BHF)
to etch away the SiO2 layers followed by an isopropyl alcohol (IPA) rinsing and drying. A 70 nm layer
of aluminum (Al) film was coated on the device layer to provide >85% reflectivity over the visible and
near-infrared spectrum (Figure 5f). This film was also used as the metal contact layer for electrical
pads to perform wire bonding.
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Figure 5. Process flow: (a) deposition of plasma-enhanced chemical vapor deposition (PECVD) SiO2

hardmask layers; (b) patterning of the front side SiO2 layer; (c) patterning of the backside SiO2 layer;
(d) deep reactive-ion etching (DRIE) of the device layer; (e) DRIE of the handle layer; (f) SiO2 buffered
hydrofluoric acid solution (BHF) release-etching, isopropyl alcohol (IPA) rinsing, IPA drying, and
evaporation of Al layer.

3. Performance Characterization

Figure 6 shows scanning electron microscope (SEM) images of a fabricated device. The surface
quality of the reflective mirror was characterized by an optical surface profiler (NewView 5000, Zygo,
Berwyn, PA, USA). Measurements show that the mirror has a radius of curvature of ~2.6 m and a root
mean square (RMS) roughness of ~2 nm.
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Figure 6. Scanning electron microscope (SEM) images of the fabricated scanner. (a) the complete device
structure; (b) the multi-turn folded-beam spring; and (c) the H-shaped torsional spring.

We characterized the dynamic performance of the scanner using a displacement sensor to measure
the out-of-plane translational displacement and a position sensing detector (PSD) to determine the
tilt angle. Due to the compact geometry of the air damping, the squeeze film effect especially has a
significant impact on out-of-plane translation. We reduced damping and achieved high-amplitude
out-of-plane translation under ambient conditions by mounting the scanner onto a substrate with
a ~0.5 mm-deep open-wall cavity. The scanner was driven into resonance by sweeping the drive
frequency of a square-wave voltage at near twice the natural frequency of the out-of-plane translational
mode. Figure 7 shows an image of the out-of-plane blur motion of the scanner.

Figure 8 shows that the dynamic response curves of the scanner exhibit a complex dynamic
nonlinearity. We observed stiffness softening, mixed softening–hardening and hardening behaviors in
the device by adjusting the voltage (Figure 8a) and the duty cycle (Figure 8b) of the square-wave drive
signal. A relatively flat response region with large amplitudes (>400 µm) and wide adjustable frequency
range (~390 Hz) was observed when forward sweeping the frequency of a drive signal with 80 V and
50% duty cycle, and a maximum amplitude of 480 µm was obtained at ~2.57 kHz. Measurements of
the tilt angles about X and Y axes of the mirror over the frequency range for out-of-plane translational
motion are also shown (Figure 9). The tilt angle is ≤0.14◦ for both X and Y axes when driven by a
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drive signal with 80 V and 50% duty cycle. The response curves for tilting and translation are similar
and have the same frequency response range. This result suggests that tilting is not from vibration in
other mechanical modes, but rather caused by process variations in the geometry of individual springs,
resulting in the asymmetry of the scanner.
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Figure 8. Frequency response curves of the out-of-plane translation motion. (a) Driven by square-wave
signals with a 50% duty cycle at various voltages, the scanner exhibits a stiffness hardening behavior
and a stiffness softening–hardening-mixed behavior during frequency upsweep and downsweep of the
drive signals, respectively; (b) driven with square-wave signals that have different duty cycles at 80 V,
the scanner exhibits not only stiffness hardening or softening–hardening-mixed behaviors, but also a
stiffness softening behavior with upsweep of the frequency of a drive signal with a 75% duty cycle.
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4. Imaging Result

Multi-photon excited fluorescence images of mouse colonic epithelium that express tdTomato
were collected ex vivo at a frame rate of 5 Hz. Figure 10a shows a representative image obtained in the
horizontal (XY) plane over a field of view (FOV) of 270 µm × 270 µm. For horizontal cross-sectional
images, only the biaxial MEMS scanner was used to perform 2D Lissajous scanning in the XY plane.
The inner X-axis and the outer Y-axis were respectively defined as the fast axis and the slow axis.
Figure 10b shows an image of the same specimen obtained in the vertical (XZ) plane over a FOV of
270 µm × 200 µm by using the biaxial MEMS scanner and the out-of-plane translation scanner to
perform 1D lateral scanning and axial-scanning, respectively.
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Figure 10. Multi-photon excited fluorescence images of mouse colonic epithelium that constitutively
expresses tdTomato ex vivo reveal crypt structure. (a) The image in horizontal (XY) plane was collected
using the biaxial MEMS scanner only; (b) the image in vertical (XZ) plane collected by using both the
lateral and axial MEMS scanners.

5. Discussion and Conclusions

Axial scanning is needed to collect optical sections of tissue in the vertical plane, the direction for
development of normal epithelium and invasion of disease. Standard objectives or stages that move
in this dimension are slow, and collected images are prone to movement artifacts. Using a remotely
located axial scanner/mirror is a promising technique that overcomes many limitations of conventional
methods. A light-weight compact mirror that performs fast axial scanning may improve performance
and extend applicability of this technique to miniature imaging instruments. This work presents a
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novel compact MEMS out-of-plane translational scanner developed to perform fast axial-scanning
for a multi-photon microscopic system with a remote scan architecture. This scanner can achieve
a fast (~1.27 kHz) out-of-plane translational motion with large axial displacements (≥400 µm) and
slight tilt angles (≤0.14◦) at ambient pressure. By employing this scanner and a biaxial MEMS mirror,
vertical cross-sectional imaging with a beam axial-scanning range of 200 µm and a frame rate of
~5–10 Hz are enabled. The ability to acquire 3D images is limited because the scanner works in
resonant mode only. Optical magnification in the current multi-photon system is ~2:1. This can
introduce sensitivity to optical aberrations and difficulty for scanner design. The lever-based compliant
mechanism demonstrated in this work can quasi-statically transfer small tilt angles into large pure
axial displacements if vertically staggered comb drives are used. Future work will further optimize
the structural design and modify the fabrication process to develop a scanner that can work in
quasi-static mode.
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