
micromachines

Perspective

High-Throughput Particle Manipulation Based on
Hydrodynamic Effects in Microchannels

Chao Liu 1 and Guoqing Hu 2,3,*
1 CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in

Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China; liuchao@imech.ac.cn
2 State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and

Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
3 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: guoqing.hu@imech.ac.cn; Tel.: +86-10-8254-4298

Academic Editors: Weihua Li, Hengdong Xi and Say Hwa Tan
Received: 14 January 2017; Accepted: 23 February 2017; Published: 1 March 2017

Abstract: Microfluidic techniques are effective tools for precise manipulation of particles and cells,
whose enrichment and separation is crucial for a wide range of applications in biology, medicine,
and chemistry. Recently, lateral particle migration induced by the intrinsic hydrodynamic effects
in microchannels, such as inertia and elasticity, has shown its promise for high-throughput and
label-free particle manipulation. The particle migration can be engineered to realize the controllable
focusing and separation of particles based on a difference in size. The widespread use of inertial and
viscoelastic microfluidics depends on the understanding of hydrodynamic effects on particle motion.
This review will summarize the progress in the fundamental mechanisms and key applications of
inertial and viscoelastic particle manipulation.

Keywords: particle manipulation; inertial lift; viscoelastic effects; microfluidics; lab on a chip;
high throughput

1. Introduction

Cells, bacteria, virus, and biomacromolecules are particles with sizes ranging from tens of
micrometers to tens of nanometers (Figure 1). The precise manipulation of these bioparticles is
essential to various research and application fields [1,2]. For example, the detection of circulating
tumor cells (CTCs) is essential to the early prognostic of cancer and the research on determination of
their phenotype and genotype, which can provide better understanding of metastasis process and
better guidance of cancer therapy [3–5]. However, CTC detection is challenging due to extremely low
CTC concentration (1–100 CTCs/mL of blood) and large blood cell background. Therefore, a prior
separation step of CTCs with high-throughput is critical for accurate and sensitive detection.

Conventional separation techniques often rely on immunocapture. Although useful for clinical
and research purposes, cells may suffer irreversible damage during labeling. Moreover, the purity and
retrieval of CTCs could be affected by the significant variation of the presence of specific biomarkers
such as epithelial cell adhesion molecule (EpCAM) or human epidermal growth factor receptor 2
(HER-2) on CTC surface, even for the same tumor type [6,7]. For example, CellSearch® system uses
magnetic nanoparticles coated with anti-EpCAM antibodies to capture CTCs from human blood.
Although being the only Food and Drug Administration (FDA)-cleared tested technique for capturing
and enumerating CTCs, CellSearch® system was recently discontinued due to its high miss rate and
low CTC viability. The system fails to identify CTC from 7.5 mL blood samples (the manufacturer’s
protocol) for nearly half of the 430 tested cancer patients. To achieve a reliable detection, at least 30 mL
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peripheral blood instead of 7.5 mL has to be collected [8], requiring the ability of high-throughput
sample handling [5].

In addition to the immunocapture-based techniques, researchers have tried to enrich and isolate
cells and particles based on their physical properties, such as size, shape, deformability, density,
compressibility, charge, polarizability, and magnetic susceptibility. Exploiting these biomarkers, extensive
methods have been developed, including hydrodynamics-based methods [9], acoustophoresis [10],
dielectrophoresis [11], magnetophoresis [12], optophoresis [13], and centrifugation [14] (Table 1).
Among them, the manipulation techniques using hydrodynamic effects in microchannels have attracted
increasing attention because of the merits from their simple implementation and often high throughput.
Specifically, in this review, we will focus on discussing the recent innovations for the hydrodynamic
manipulation of particles. To do so, we will first briefly describe the techniques based on particle’s
following streamlines at low Reynolds number Re (Re = ρUD/η, where U is the characteristic
velocity, D the characteristic channel dimension, ρ the fluid density, and η the fluid dynamic viscosity).
Their advantages and limitations will serve as an introduction and motivation for the more recent
techniques based on particle’s cross-stream migration caused by hydrodynamic lift forces. The inertial
microfluidics is discussed in detail, with emphasis on the fundamental mechanisms and the applications
in high-throughput particle manipulation. Examples of specific microfluidic devices will be described
and organized regarding their functions and designs, followed by the latest progress in the fundamentals
of particle migration that provide better guidelines for the inertial microfluidic communities. We further
discuss the more recent innovations in particle manipulation using viscoelastic effects, which enable
more flexible working flow conditions and applicable particle sizes.
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Note: a : diameter; ρ : density; α : compressibility; ε : permittivity; σ : electric conductivities; χ : 
magnetic permeability; n : reflective index. 

  

Figure 1. The size ranges of typical types of bioparticles. Cells, bacteria, virus, and biomacromolecules
are particles with sizes ranging from tens of micrometers to tens of nanometers.

Table 1. Typical force field types used for microfluidic cell manipulation.

Technique Separation Marker Mechanism Force Scaling with
Diameter

Acoustophoresis a, ρ, α Ultrasonic sound wave a3

Dielectrophoresis a, ε, σ Non-uniform electric field a3

Magnetophoresis a, χ Magnetic field a3

Optophoresis a, n Optical field Optical gradient force: a3

Scattering force: a6

Centrifugation a, ρ Centrifugal force a3

Note: a: diameter; ρ: density; α: compressibility; ε: permittivity; σ: electric conductivities; χ: magnetic permeability;
n: reflective index.

2. Particle Manipulation Based on Low-Reynolds Number Hydrodynamic Effects

These techniques include pinched flow fractionation (PFF) [15,16], hydrodynamic filtration [17,18],
deterministic lateral displacement (DLD) [19,20], and hydrophoresis [21–24], which presume that the
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particle center will strictly follow the streamline at low Re (Figure 2). They are typically based
on the fluid and particles interacting with microstructures to separate particles by size, shape,
and deformability [25,26]. In PFF, the suspension of particles with different sizes is introduced from a
side microchannel into the main microchannel. The flow rates are tuned to pinch particles into a narrow
stream and adjacent to the wall, making the centers of all particles located at different streamlines
according to their size difference. In a sudden expansion at the downstream, the particles with different
sizes are separated with a large lateral distance relative to expansion. With a similar operating principle,
hydrodynamic filtration introduces particle suspension from a single inlet of a microchannel with
multiple perpendicular branched outlets. The initially dispersed particles are gradually aligned along
the side walls by repeatedly withdrawing a small portion of fluid from the main stream through the
branched outlets. In the downstream of the microchannel, smaller particles enter into the branched
outlets earlier than larger ones because the smaller particles locate closer to the side walls. Therefore,
this technique enables particle separation and concentration simultaneously. To determine the size
cutoff of the filtered particles, this technique requires precise microchannel fabrication to finely control
the velocity profile and flow rate ratio at the branch point. Different from the above two techniques,
DLD relies on a micropillar array in which each pillar row is laterally offset with respect to the
predecessor row with a finely tuned distance. This design creates different streamline groups that
move in the mainstream direction or along the offset sides of the predecessor pillars, depending on the
pillar-streamline distance. Due to the steric hindrance of the pillar wall and the streamline following
of microparticles, particles smaller than a critical size repeatedly move through the pillar gaps in
an average mainstream direction, whereas particles larger than the critical size are laterally “bumped”
along the offset direction due to the larger particle-pillar distance. The lateral distance between the
large and small particles accumulates after multiple pillar rows, resulting in a final separation. Using
these techniques, label-free separation has been achieved for diverse blood cell types [15,18,27] and
CTCs [28]. It is worth mentioning that DLD has a very good size resolution, but with a very low
throughput. Very recently, size sorting of nanoparticles down to 20 nm and exosomes has been
demonstrated using DLD at the flow rates of ~10 nL/h [20]. Hydrophoresis is a separation technique
using the particle motion influenced by a microstructure-induced pressure field. It typically uses
microfluidic devices containing slanting obstacles to generate a lateral pressure gradient that induces
helical recirculation and consequently focuses microparticles at different lateral positions depending
on their size or deformability. Hydrophoresis also has a high separation resolution, enabling the
discrimination of microparticles with diameter differences as small as 7.3% [21]. PFF and DLD often
require sheath flows, which help to obtain high separation resolutions. However, sheath flows might
cause several challenges: (1) the branched inlets for sheath flow make poor device parallelizability;
(2) the control and operation become complex with sheath flows; and (3) the sample throughputs are
limited due to the large sheath–sample flow ratio. Therefore, these techniques are commonly used for
handling small volumes of samples.
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published by Royal Society of Chemistry, 2005); and (c) deterministic lateral displacement [29] 
(Reproduced with permissions from Inglis et al., Applied Physics Letters; published by American 
Institute of Physics Publishing, 2004). 
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Different from the aforementioned methods, inertial microfluidics works by driving particles 
cross-stream migration utilizing inertial lift arising from the fluid flow nonlinearity at finite Re [30]. 
Due to its enhanced strength with increasing flow rate, inertial lift is favorable for high-throughput 
particle manipulation. Suspended in a pressure-driven flow of finite Re, particles will laterally 
migrate due to the acting inertial lift, which can be briefly attributed to the competition between 
two effects: (1) the shear-gradient-induced lift arising from the curvature of the Poiseuille velocity 
profile that drives the particle toward the wall; and (2) the wall-induced lift that pushes the particle 
away from the wall (Figure 3). The magnitude of inertial lift scales as 2 4

LF U a∝ ρ  [30,31]. 
Although fluid inertia was traditionally thought to be insignificant in microfluidic systems, 
microchannels are more favorable to realize deterministic particle control than macroscale channels. 
To produce a sufficient large shear gradient, very high flow speeds are required in macroscale 
channels, resulting in turbulent flows where the precise control is broken down. By contrast, 
microchannels can still generate large shear gradients even at relatively low flow speeds. 

  

Figure 2. Hydrodynamic particle separation: (a) Pinched flow fractionation [15] (Reproduced with
permissions from Takagi et al., Lab on a Chip; published by Royal Society of Chemistry, 2005);
(b) hydrodynamic filtration [17] (Reproduced with permissions from Yamada et al., Lab on a Chip;
published by Royal Society of Chemistry, 2005); and (c) deterministic lateral displacement [29]
(Reproduced with permissions from Inglis et al., Applied Physics Letters; published by American
Institute of Physics Publishing, 2004).

3. Inertial Manipulation of Particles

Different from the aforementioned methods, inertial microfluidics works by driving particles
cross-stream migration utilizing inertial lift arising from the fluid flow nonlinearity at finite Re [30].
Due to its enhanced strength with increasing flow rate, inertial lift is favorable for high-throughput
particle manipulation. Suspended in a pressure-driven flow of finite Re, particles will laterally migrate
due to the acting inertial lift, which can be briefly attributed to the competition between two effects:
(1) the shear-gradient-induced lift arising from the curvature of the Poiseuille velocity profile that
drives the particle toward the wall; and (2) the wall-induced lift that pushes the particle away from the
wall (Figure 3). The magnitude of inertial lift scales as FL ∝ ρU2a4 [30,31]. Although fluid inertia was
traditionally thought to be insignificant in microfluidic systems, microchannels are more favorable
to realize deterministic particle control than macroscale channels. To produce a sufficient large shear
gradient, very high flow speeds are required in macroscale channels, resulting in turbulent flows
where the precise control is broken down. By contrast, microchannels can still generate large shear
gradients even at relatively low flow speeds.
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lift using special structures [43–46] or curved channel shapes [47–52]. 

 
Figure 4. Inertial particle ordering in straight microchannel: (a) schematics shows a high-throughput 
cell ordering in parallel straight microchannels; (b) the competition of two opposite lift forces results 
in particle focusing at specific lateral positions; and (c) the massively parallel inertial microfluidic 
device and zoom-in images of particles and blood cells flowing in a single microchannel [39] 
(Reproduced with permissions from Hur et al., Lab on a Chip; published by Royal Society of 
Chemistry, 2010). 

  

Figure 3. General mechanism of inertial lift: shear-gradient-induced lift arising from the curvature of
Poiseuille velocity profile and wall-induced lift arising from the wall repulsion [32,33]. (Reproduced
with permissions from Martal et al., Annual Review of Biomedical Engineering; published by Annual
Reviews, 2014 and Reproduced with permissions from Amini et al., Lab on a Chip; published by Royal
Society of Chemistry, 2014).

3.1. Inertial Particle Focusing in Straight Microchannels

The focusing of cells is essential to their detection and characterization [34–36], whose accuracy
and sensitivity highly depend on the focusing quality (the percentage of particles focused at the
expected positions). In straight microchannels, the particle focusing depends only on the inertial
migration. The shape of microchannel cross-section affects the focusing pattern: particles are
focused into a ring in circular pipes [37], focused near the centers of the four channel walls in
square channels [9,38], or focused near the centers of the two long channel walls in rectangular
channels [39–42]. Therefore, 3D particle focusing cannot be achieved solely by inertial migration in
straight microchannels (Figure 4) [39]. An effective solution is to introduce the drag forces of secondary
flows to compete with the inertial lift using special structures [43–46] or curved channel shapes [47–52].
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Figure 4. Inertial particle ordering in straight microchannel: (a) schematics shows a high-throughput
cell ordering in parallel straight microchannels; (b) the competition of two opposite lift forces results in
particle focusing at specific lateral positions; and (c) the massively parallel inertial microfluidic device
and zoom-in images of particles and blood cells flowing in a single microchannel [39] (Reproduced
with permissions from Hur et al., Lab on a Chip; published by Royal Society of Chemistry, 2010).
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3.2. Inertial Particle Separation in Straight Microchannels

Inertial effects in straight microchannels can be used for particle separation (Figure 5) [53,54],
which is based on the size-dependent migration velocities resulting from the different scalings between
inertial lift (a4) and viscous drag force (a). Rectangular microchannels are more desirable for particle
separation due to the less equilibrium positions [38,55]. Mach et al. used a rectangular straight
microchannel with a gradually expanded segment to separate E. coli bacteria from human blood
samples [53]. The blood cells are focused along the side walls and enter into the branched outlets,
whereas bacteria remain dispersed and largely flow into the main outlet. The focusing quality of blood
cells degrades at large number densities due to the cell-cell interactions, which need to be minimized
via the dilution of blood samples, typically requiring that the length of the equivalent single-cell train
is less than 50% of the total microchannel length [33].
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(Reproduced with permissions from Mach et al., Biotechnology and Bioengineering; published by
Wiley Online Library, 2010); and (b) polystyrene particles with different diameters [54] (Reproduced
with permissions from Zhou et al., Lab on a Chip; published by Royal Society of Chemistry, 2013).

3.3. High-Throughput Particle Transfer and Detection Based on Inertial Microfluidics

The rapid transfer of particles and cells between disparate solutions is important to diverse
chemical and biological fields [56,57]. The controllable cell transfer across streams is always challenging
as it often requires sophisticated flow control, finely tuned externally applied fields, or precisely
manufactured structures. Using a microchannel with shifting aspect ratios (AR = W/H, where W is
the channel width and H is the height), Gossett et al. realized simple and controllable cell transfer
from the side wall to the centerline [42]. The flow rate ratio of transfer fluid to cell fluid is finely
tuned to make the transfer fluid occupy the centerline of the main microchannel. Consequently,
cells migrate across the interface and enter the transfer fluid at rates exceeding 1000 particles per
second. Inertial microfluidics can be also applied to high-speed CTC analysis via cooperation with
other high-speed devices [58,59]. Di Carlo’s group made a portable CTC clinical detection system
using a serpentine microchannel as the high speed cell focuser, achieving a throughput of 105 cells
per second (Figure 6) [58,59].
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Figure 6. Single-cell imaging flow analyzer based on 3D inertial focusing: (a) particle positions
relative to the focused laser beam in the cytometer apparatus; and (b) a flow analyzer that highlights
a microfluidic particle focuser and a real-time imaging system [58,59] (Reproduced with permissions
from Goda et al., Proceedings of the National Academy of Sciences of the United States of America;
published by National Academy of Sciences of the United States of America, 2012 and Reproduced with
permissions from Oakey et al., Analytical Chemistry; published by American Chemical Society, 2010).

3.4. Inertial Particle Separation in Curved Microchannels

Dean flow induced in curved microchannel exerts an additional drag force (Dean drag FD) on
particles, providing a more flexible separation principle. The competition between the inertial lift and
the Dean drag results in size-dependent equilibrium positions of particles due to the different force
scaling, i.e., FL ∝ a4 and FD ∝ a. Dean flows are characterized by Dean number, De = Re

√
D/R, where

R is the radius of curvature of the microchannel. The Dean velocity depends on the mainstream flow
rate and the curvature of the microchannel UDean ∝ De2η/(ρD) [60]. Introducing Dean flow changes
the particle migration by two aspects: (1) The Dean flow, parallel to the cross-section, can accelerate
the migration toward the equilibrium positions, and thus shorten the microchannel length [48].
(2) The ratio of FL to FD generally determines particle behaviors: (1) FL >> FD, particle migration is
dominated solely by inertial lift and the focusing pattern is expected to be the same with that in straight
microchannels; (2) FL � FD, particles just follow Dean flows neglecting the inertial lift and therefore
no particle focusing can be achieved; and (3) FL ∼ FD, inertial lift and Dean drag synergistically
affect the particle migration and lead to different focusing patterns depending on the ratio of FL to FD.
The applications of the inertial microfluidics lie in the third regime.

There are two types of curved microchannels commonly used for particle separation: spiral
(Figure 7) [49–52,61–64] and serpentine microchannels (Figure 8) [9,47,65,66]. Using a single spiral
microchannel, Kuntaegowdanahalli et al. successfully separated polystyrene (PS) beads with diameters
of 10, 15, and 20 µm with an efficiency of 90% [50]. They further separated two types of tumor cells,
SH-SY5Y neuroblastoma cells (average diameter of 15 µm) and C6 glioma cells (average diameter of
8 µm), with an efficiency of 80% and a throughput of 106 cells per minute [50]. Using a similar design,



Micromachines 2017, 8, 73 8 of 22

Hou et al. separated CTCs from diluted whole human blood with an efficiency of 85% [67]. All the
above devices require sheath flows, leading to limited sample throughputs. Sun et al. separated CTCs
from human blood with a high throughput of 2.5 × 108 cells per minute and an efficiency of 90% using
a high aspect-ratio microchannel with numerical optimization [68,69]. Bhagat and his collaborators
designed a spiral microchannel with a trapezoidal cross-section for particle separation with enhanced
resolution and throughput [51]. The trapezoidal design redistributes the Dean flow intensities and
inertial lift forces, making the focusing patterns more sensitive to the particle size and the flow rate.
The equilibrium positions can sharply shift with a large lateral distance at a size-dependent critical
flow rate, leading to a large separation distance. This design is further used for high throughput
separation of CTCs at a throughput of 56 mL blood per hour and a recovery of 80% [61].
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Figure 7. Inertial separation of circulating tumor cells in typical microchannel designs: (a) double
spiral microchannel [68] (Reproduced with permissions from Sun et al., Lab on a Chip; published by
Royal Society of Chemistry, 2012); (b) single spiral microchannel [61] (Reproduced with permissions
from Warkiani et al., Lab on a Chip; published by Royal Society of Chemistry, 2014); and (c) expansion–
contraction array microchannel [70] (Reproduced with permissions from Lee et al., Analytical
Chemistry; published by American Chemical Society, 2013).

Serpentine microchannels have their curvatures frequently alternated compared with spiral ones,
resulting in a more complex competition between the inertial lift and the Dean drag. On the other
hand, serpentine microchannels exhibit better parallelizability. Di Carlo et al. adopted asymmetry
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serpentine microchannel for investigating the inertial focusing behaviors of red blood cells (RBCs) and
found that: (1) RBCs suffer no discernable damage during the inertial manipulation; and (2) blockage
ratios κ higher than 0.07 are required for successful particle focusing [9]. Based on the asymmetry
serpentine design, they successfully separated PS beads with diameters of 9 and 3 µm and isolated
platelets from whole human blood [47]. Serpentine microchannels are often designed to be asymmetric
to avoid the offset of the counteracting secondary flows in the opposing segments. However, using a
symmetry serpentine microchannel, Zhang et al. successfully separated PS beads with diameters of
10 and 3 µm. The 3 µm beads (κ = 0.04) were tightly focused in their microchannels with D of 70 µm,
which is inconsistent with the previous claim by Di Carlo group [65,66]. This inconsistency indicates
an incomplete understanding of inertial focusing mechanisms.
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Figure 8. Particle separation in serpentine microchannels: (a) the separation of 10 µm and 3 µm
polystyrene beads in a symmetry microchannel [65] (Reproduced with permissions from Zhang et al.,
Scientific Reports; published by Nature Publishing Group, 2014); and (b) the separation of 9.3 µm and
3.1 µm polystyrene beads in an asymmetry microchannel [47] (Reproduced with permissions from Di
Carlo et al., Analytical Chemistry; published by American Chemical Society, 2008).

3.5. Fundamentals of Inertial Focusing and Recent Development

The optimization of inertial microfluidic devices often requires the evaluation of the focusing
pattern of targeted particles, which is determined by the lift force distributions. Since Segre and
Silberberg observed the inertial particle focusing in 1961 [37], a plenty of theoretical studies have been
proposed to reveal its underlying hydrodynamic mechanism [30,31,71–77]. All these analytical studies
were conducted by solving Navier–Stokes equations using the perturbation methods. Investigating
the motion of a sphere in a two-dimensional Poiseuille flow, Ho and Leal obtained an explicit formula
for the lift force: FL = CLρU2a4, where the lift coefficient CL is the function of the lateral position and
is independent of the detailed undisturbed velocity profile [30]. Their lift formula can successfully
explain the inertial focusing patterns in planar or tube Poiseuille flows. However, the restriction of
Re� 1 and κ� 1 limits its application to practical situations where Re is finite. Using the matched
asymptotic perturbation method, Asmolov extended the applicable Re to 3000 (Figure 9) [31]. Asmolov
and Matas calculated the lift forces at Re exceeding 1000 with the requisition of Rep � 1 and found that
with the increasing Re, the equilibrium position shifts closer to the channel wall and the magnitude of
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CL decreases, which is consistent with existing experimental and numerical results [31,78]. However,
it is still difficult to directly apply these theoretical studies to the realistic cases of finite-sized particles
(intermediate κ), where the particles strongly affect the ambient flow field and cause strong nonlinearity,
casting challenge on the theoretical analysis.
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Direct numerical simulation (DNS) is able to investigate the motions and acting forces of particles
without simplified models [79,80]. In DNS, the acting hydrodynamic force on a particle is calculated
by integrating the total stress over its surface. Di Carlo et al. obtained a position-dependent scaling for
inertial lift in square channels: FL ∝ ρU2a3/H near the channel center and FL ∝ ρU2a6/H3 near the
channel wall (Figure 10) [41], which is different from the uniform scaling law obtained by theoretical
calculations. Using the arbitrary Lagrangian–Eulerian method (ALE), Joseph’s group investigated the
inertial lift on a sphere in a slit and a circular tube [81] and found that the lift profile exhibits a convexity
change at higher Re (Re > 300). Here positive lift force directs toward the channel wall while the
negative one directs toward the channel center. At low Re (Re ∼ O(10)), the lift curve concaves
downwards with a positive slope near the channel center and a negative slope near the channel wall.
At high Re (Re > 300), the convexity becomes more complex: two concave-downwards segments
occur at the channel center with the equilibrium positions with a maximum in each segment and
a concave-upwards segment lies between the two concave-downwards ones. Asmolov’s theoretical
calculation also obtained a similar convexity change for Re > 300 [31]. Matas et al. experimentally
observed a distinguished double-ring focusing pattern in a tube at Re > 760, which can be explained
by the convexity change at high Re [78,82].



Micromachines 2017, 8, 73 11 of 22Micromachines2017, 8, 73 11 of 22 

 

 

Figure 10. The complex scaling of the inertial lift on finite-sized particles in square microchannels: 
2 3

LF U a H∝ ρ  near the channel center and 2 6 3
LF U a H∝ ρ  near the channel wall [41] 

(Reproduced with permissions from Di Carlo et al., Physics Review Letters; published by American 
Physical Society, 2009). 

Microchannels fabricated by the planar soft-lithography methods commonly have square or 
rectangular cross-sections [83]. In addition to the common four off-center focusing positions near 
each channel wall, more complex focusing patterns have been observed in square microchannels 
(Figure 11). Using the lattice Boltzmann method, Chun et al. found eight equilibrium positions in 
square channels at 100Re =  [84]. The similar focusing pattern was also observed in the 
experiments by Bhagat et al. [85]. The four equilibrium positions near the channel centers disappear 
at Re  exceeding 500 [84]. In rectangular microchannels, particles are typically focused near the 
centers of the long walls [39–42,53,86,87]. This reduction in equilibrium position makes rectangular 
microchannels more favorable for particle focusing and separation. However, six or even eight 
positions have also been observed in rectangular microchannels with similar AR  [85,88]. Zhou et 
al. experimentally showed that the rotation-induced forces play a role in particle migration toward 
the centers of the long walls [89]. However, the rotation-induced force always directs toward the 
center of the channel walls, and thus cannot explain the multiple equilibrium positions near the 
long walls. Gossett et al. numerically investigated the inertial migration of particles at Re = 80 in a 
microchannel with 2AR =  [42]. They found two stable equilibrium positions centered at the long 
walls and two unstable ones centered at the short walls, which is consistent with the typical 
focusing pattern. 

  

Figure 10. The complex scaling of the inertial lift on finite-sized particles in square microchannels:
FL ∝ ρU2a3/H, near the channel center and FL ∝ ρU2a6/H3 near the channel wall [41] (Reproduced
with permissions from Di Carlo et al., Physics Review Letters; published by American Physical
Society, 2009).

Microchannels fabricated by the planar soft-lithography methods commonly have square or
rectangular cross-sections [83]. In addition to the common four off-center focusing positions near
each channel wall, more complex focusing patterns have been observed in square microchannels
(Figure 11). Using the lattice Boltzmann method, Chun et al. found eight equilibrium positions in
square channels at Re = 100 [84]. The similar focusing pattern was also observed in the experiments by
Bhagat et al. [85]. The four equilibrium positions near the channel centers disappear at Re exceeding
500 [84]. In rectangular microchannels, particles are typically focused near the centers of the long
walls [39–42,53,86,87]. This reduction in equilibrium position makes rectangular microchannels more
favorable for particle focusing and separation. However, six or even eight positions have also been
observed in rectangular microchannels with similar AR [85,88]. Zhou et al. experimentally showed that
the rotation-induced forces play a role in particle migration toward the centers of the long walls [89].
However, the rotation-induced force always directs toward the center of the channel walls, and thus
cannot explain the multiple equilibrium positions near the long walls. Gossett et al. numerically
investigated the inertial migration of particles at Re = 80 in a microchannel with AR = 2 [42].
They found two stable equilibrium positions centered at the long walls and two unstable ones centered
at the short walls, which is consistent with the typical focusing pattern.
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Figure 11. Inertial focusing patterns in rectangular microchannels: (a) AR = 1, Re = 100 − 500,
κ = 0.11 [84] (Reproduced with permissions from Chun et al., Physics of Fluids; published by American
Institute of Physics Publishing, 2006); (b) AR = 2, Re = 1− 100, κ = 0.08 [85] (Reproduced with
permissions from Bhagat et al., Physics of Fluids; published by American Institute of Physics Publishing,
2008); (c) AR = 2, Re = 0− 230, κ = 0.2 [39] (Reproduced with permissions from Hur et al., Lab on
a Chip; published by Royal Society of Chemistry, 2010); and (d) (1) Re = 100, κ = 0.3; (2) Re = 200,
κ = 0.3; (3) Re = 100, κ = 0.1; and (4) Re = 200, κ = 0.1 [90] (Reproduced with permissions from
Liu et al., Lab on a Chip; published by Royal Society of Chemistry, 2015).

Using combination of numerical simulation and experiments, Hu’s group systematically
investigated the inertial focusing patterns for a wide range of Re, κ, and AR [90]. The typical focusing
near the centers of the long walls in rectangular microchannels is obtained at relative low Re. New stable
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equilibrium positions will emerge at high Re due to the stabilization of the sub-stable equilibrium near
the centers of the short walls or due to the attractive lift forces near the long walls. The critical Re
decreases with κ for fixed AR and decreases with AR for fixed κ. Although it has provided insights
for the fundamentals of inertial focusing, DNS is still burdensome when applied to practical long
microchannels with complex geometries. Hu’s group proposed a fitting formula for the inertial
lift on a sphere drawn from DNS data obtained in straight channels [91]. The fitting formula is
a function of the parameters of the local flow field, and thus is adaptable to complex microchannels.
Being implemented in the Lagrangian particle tracking method, the formula is used to fast predict
particle trajectories in some widely used microchannel types (Figure 12).
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Figure 12. The particle trajectories in a serpentine microchannel calculated by Lagrangian particle
tracking based on the explicit lift formula: (a) the schematics of the serpentine microchannel;
(b–d) simulation (top row) and experimental observation (bottom row) of particle trajectories are
shown at the: (b) 1st unit; (c) 10th unit; and (d) 20th unit; and (e) the Dean vortex forming in the
zigzag section at the flow rate of 50 mL/h (Re≈ 120) [91] (Reproduced with permissions from Liu et al.,
Lab on a Chip; published by Royal Society of Chemistry, 2016).

4. Viscoelastic Manipulation of Particles

High pressure is needed to generate an inertial flow in a scaled-down microchannel for the
manipulation of smaller particles [92]. By contrast, deterministic particle migration can be obtained
in viscoelastic fluids even at very low flow speeds, avoiding high pressure drops across the
microchannels [93,94]. In addition, the synergetic combination of inertial lift and elastic lift can achieve
a real 3D focusing at the microchannel centerline [95]. Most naturally-occurring biochemical samples,
such as blood, lymph, saliva, and protein solutions, are viscoelastic [96]. Therefore, the elasto-inertial
microfluidic particle manipulation may have wide applications in many biochemical fields.

4.1. Fundamentals of Particle Migration in Viscoelstic Fluids

Viscoelastic microfluidics typically use the aqueous solutions of synthetic or naturally-occurring
polymers as carrier mediums. The most commonly used polymers are poly(ethylene oxide) (PEO)
and poly(vinylpyrrolidone) (PVP), which have good water solubility. In a sheared or stretched
flow, the polymer chains are elongated along the flow direction, causing stress anisotropy, i.e.,
the non-zero normal stress differences [97]. The first and second normal stress differences are defined
as N1 = σxx − σyy and N2 = σyy − σzz, respectively (here x, y, and z denote the direction of the
flow, velocity gradient, and vorticity, respectively). The non-dimensional Weissenberg number (Wi)
characterizes the fluid elasticity, which is the ratio of the first normal stress difference to the viscous
shear stress. Wi can be expressed as

.
γλ using Oldroyd-B constitutive model, where

.
γ is the shear rate

and λ the relaxation time. Using the regular perturbation method, Ho and Leal calculated the lift force
on a small sphere (κ� 1) suspended in an inertialess Poiseuille flow of a second-order fluid, showing
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that the elastic lift stems from the imbalance of normal stress difference over the sphere size [93], i.e.,
Fe ∼ a3∇N1 (here the effect of N2 is neglected as |N2/N1| ≤ 0.1 for most polymer solutions [98]).
Oldroyd-B model gives the positive value of N1 = 2ηλ

.
γ

2, indicating compressive normal stresses on
the sphere surface that become stronger with increasing local shear rate. In a non-uniformly sheared
flow, a net lift force will drive particles toward the positions where

.
γ have minimums.

4.2. Particle Manipulation in Viscoelastic Microfluidics Devices

In square or rectangular microchannels, particles are focused at the center and four corners [95,99,100].
For Re of O(1), particles are only focused along the channel centerline due to synergetic combination
of the elastic lift and the wall-induced lift [95,101,102]. This simple focusing pattern can realize particle
separation by size difference via sheath flows, curved microchannels, or embedded structures (Figure 13).
Using a sheath flow to prefocus different-sized particles along the sidewall, they can be separated due
to lateral velocity difference determined by the balance between the elastic lift (Fe ~a3) and viscous drag
(Fd ~a). Separation using sheath flow can work at a relatively wide range of flow rates, but has limited
throughputs due to high ratio of sheath flow to sample flow rates. Therefore, whether or not using
sheath flows depends on the specific separation task. In addition, inducing secondary flow in curved
microchannels to compete with elastic lift can also achieve size-based separation of particles [103,104].
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Figure 13. Viscoelastic particle separation: (a) separation of PS particles of different diameters with
the aid of sheath flow [105] (Reproduced with permissions from Kang et al., Nature Communications;
published by Nature Publishing Group, 2013); (b) separation of red blood cells and platelets with the
aid of sheath flow [101] (Reproduced with permissions from Nam et al., Lab on a Chip; published
by Royal Society of Chemistry, 2012); (c) separation of rigid and deformable cells [99] (Reproduced
with permissions from Yang et al., Soft Matter; published by Royal Society of Chemistry, 2012);
and (d) separation of PS particles with different diameters in curved microchannel [103] (Reproduced
with permissions from Lee et al., Scientific Reports; published by Nature Publishing Group, 2013).

Most viscoelastic particle separations are based on the size-dependent migration velocities.
The particle size itself can also affect the focusing pattern. Liu et al. found that 15 µm particles are
focused at the both sides of the centerline of a 50-µm-high microchannel at optimized flow rates [106].
By contrast, 5 µm particles are always focused closer to the centerline than 15 µm ones at all investigated
flow rates. The mechanism of the off-center focusing relates to the strong coupling between the large
particles and the ambient flow field. When a large particle deviates from the channel centerline,
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the major portion of the viscoelastic fluid chooses to flow through the larger gap between the particle
and the channel wall [107]. Therefore, the shear rates and the resultant compressive normal stresses
are intensified at the near-center side of the particles, and consequently the particles are driven toward
the wall [80]. This off-center focusing pattern occurs for a wide range of AR and is determined by the
ratio of particle diameter to the narrowest channel dimension. In addition, this off-center focusing
can be obtained at a wide range of scales, from macro- to nanoscales, realizing sheathless separations
of diverse particles including microparticles, CTCs, RBCs, bacteria, nanoparticles, and biomoleculars
(Figure 14) [91,106].Micromachines 2017, 2, x  17 of 22 
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5. Conclusions 

High-throughput particle manipulation is of significance in diverse applications in biological, 
biomedical, and environmental fields, requiring the ability to handle large volumes of samples. The 
last decade has seen the rise of inertial microfluidics as a novel tool for high-throughput and 
label-free particle manipulation utilizing the controllable particle migration driven by inertial lift. 
However, the pure inertial manipulation achieves its optimal performance often at a narrow flow 
rate range and faces challenges in handling nanoparticles in down-scaled channels, limiting its 
widespread usage for the diverse applications. Introducing the viscoelastic effects of carrier 
medium, the elasto-inertial microfluidic devices can intensively extend the working flow rate range 
and reduce the applicable particle size. However, there is still a lack of conclusive understanding of 
particle motion in viscoelastic medium, leading to poor guidelines and difficulties in the design of 
elasto-inertial microfluidic systems. Systematic studies are urgently needed to elucidate the effects 
of complex rheological properties, channel geometry, and particle properties on the focusing 
pattern. Despite the success in laboratories, there are not many reported handling of clinical 
samples based on the inertial/elasto-inertial concept. To achieve better adaptability to realistic 
applications, a promising strategy is to couple inertial/elasto-inertial effects with other externally 
applied physical fields, such as electric, magnetic, and acoustic ones, to further improve the purity 
and resolution. 
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Figure 14. Sheathless separations of diverse binary bioparticle mixtures: (a) the separation of the mixture
of MCF-7/RBC (left) and RBC/E. coli (right) [106] (Reproduced with permissions from Liu et al., Analytical
Chemistry; published by American Chemical Society, 2015); and (b) the separations of smaller binary
mixtures of 100 nm/2000 nm polystyrene spheres (left) and λ-DNA/platelet (right) [91] (Reproduced with
permissions from Liu et al., Analytical Chemistry; published by American Chemical Society, 2016).

Viscoelastic focusing generally works at 1–2 orders of magnitude slower flow rate than inertial
focusing due to the focusing degradation at higher flow rates [95]. There are two defocusing mechanisms
and each of them corresponds to a solution. One is that the arising shear-gradient-induced lift drives
particles away from the channel centerline, indicating that elasticity needs to be enhanced to balance the
shear-gradient-induced lift. Kang et al. used a highly elastic medium (5 ppm λ-DNA solution, λ = 0.14 s)
to achieve tight particle focusing over a wide range of flow rates (0.005–2 mL/h) [105]. The other
mechanism is that the flow is destabilized when elasticity solely dominates at high Wi [108,109]. If fluid
inertia and elasticity simultaneously dominate, the flow will keep stable even at the regime in which
turbulent flow in the Newtonian fluid is observed. Lim et al. reported particle focusing at extremely
high flow rates (1200 mL/h, Re = 4630, Wi = 566) using a medium with low relaxation time (0.1 w/v %
hyaluronic acid (HA) solution, λ = 8.7 × 10−4 s) [102]. There seems to be contradiction between these
two mechanisms, implying an inconclusive understanding of particle migration in viscoelastic medium.

Considering the high price of DNA and HA, existing studies are more focused on optimizing the
performance of cheap synthetic polymers, such as PEO and PVP. Liu et al. found that an optimized
polymer solution for particle manipulation should have low viscosity, minimized shear shinning,
and strong elasticity. The shear thinning is ubiquitous for polymer solutions, especially at high
polymer concentration or large molecular weight [106]. Therefore, a trade-off should be properly
made between the minimized shear thinning and the necessarily strong elasticity. Liu et al. used
naturally denaturized PEO solution (4 × 106 Da) to successfully focus 5 µm particles in a 50 µm
high microchannel at throughputs one order of magnitude higher than those of newly prepared PEO
solutions [106] (Table 2). Compared with its newly prepared counterpart, the denaturized PEO solution
has lower viscosities and much weaker shear thinning and still remains highly elastic, eliminating the
focusing degradation at higher flow rates.
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Table 2. Comparison of recent works on particle focusing and separation using viscoelastic solutions.

Study
Minimum Particle
Size for Successful
Manipulation (µm)

Minimum
Effective

Blockage Ratio

Sample Flow
Rate (µL/h)

Focusing
Efficiency (%)

Separation
Efficiency (%)

Channel Geometry
and Footprint Journal Manipulation Type

Microparticle

Leshansky
et al. [94] 5 0.11 400–2000 >95 N/A Straight; N/A Physical Review

Letters Viscoelastic focusing

Kang et al.
[105] 5.8 0.116 5–2000 ~100 N/A Straight; 50 mm long Nature

Communications
Viscoelastic

focusing/separation

Lim et al.
[110] 6 0.075 3 × 106 ~90 N/A Straight; 35 mm long Nature

Communications
Elasto-inertial

focusing

Lu et al.
[111] 3 0.06 ~O(100) N/A ~100 Straight; 20 mm long Analytical

Chemistry

Elasto-inertial
pinched flow
fractionation

separation

Liu et al.
[106] 1 0.063 10–3000 ~100 ~100 Straight; 30 mm long Analytical

Chemistry
Elasto-inertial

focusing/separation

Lee et al.
[103] 1.5 0.038 ~O(100) N/A ~100 Spiral; 500 mm long Scientific Reports Viscoelastic

separation

Yuan et al.
[112] 3 0.053 600–4800 ~100 ~100 Straight; 48 mm long Lab on a Chip Elasto-inertial

focusing/separation

Nam et al.
[101] 5 0.1 30 N/A ~100 Straight; 25 mm long Lab on a Chip Elasto-inertial

focusing/separation

Yang et al.
[95] 5.9 0.118 40–320 N/A >95 Straight; 40 mm long Lab on a Chip Elasto-inertial

focusing

Nanoparticle

De Santo
et al. [113] 0.2 0.04 0.002–0.016 85 N/A Straight; 100 mm long Physical Review

Applied Viscoelastic focusing

Kim et al.
[114] 0.2 0.04 <0.96 Low: multiple

streams N/A Straight; 40 mm long Lab on a Chip Viscoelastic focusing

Liu et al.
[91] 0.1 0.014 0.32–2.45 84 >95 Double spiral; >60

mm long; 3 × 3 mm2
Analytical
Chemistry

Viscoelastic
focusing/separation
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5. Conclusions

High-throughput particle manipulation is of significance in diverse applications in biological,
biomedical, and environmental fields, requiring the ability to handle large volumes of samples.
The last decade has seen the rise of inertial microfluidics as a novel tool for high-throughput and
label-free particle manipulation utilizing the controllable particle migration driven by inertial lift.
However, the pure inertial manipulation achieves its optimal performance often at a narrow flow
rate range and faces challenges in handling nanoparticles in down-scaled channels, limiting its
widespread usage for the diverse applications. Introducing the viscoelastic effects of carrier medium,
the elasto-inertial microfluidic devices can intensively extend the working flow rate range and reduce
the applicable particle size. However, there is still a lack of conclusive understanding of particle motion
in viscoelastic medium, leading to poor guidelines and difficulties in the design of elasto-inertial
microfluidic systems. Systematic studies are urgently needed to elucidate the effects of complex
rheological properties, channel geometry, and particle properties on the focusing pattern. Despite
the success in laboratories, there are not many reported handling of clinical samples based on the
inertial/elasto-inertial concept. To achieve better adaptability to realistic applications, a promising
strategy is to couple inertial/elasto-inertial effects with other externally applied physical fields, such as
electric, magnetic, and acoustic ones, to further improve the purity and resolution.
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