Next Article in Journal
Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers
Previous Article in Journal
Low-Cost High-Speed In-Plane Stroboscopic Micro-Motion Analyzer
Article Menu

Export Article

Open AccessArticle
Micromachines 2017, 8(12), 352; doi:10.3390/mi8120352

Wide Linearity Range and Highly Sensitive MEMS-Based Micro-Fluxgate Sensor with Double-Layer Magnetic Core Made of Fe–Co–B Amorphous Alloy

1
Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
2
Material Science and Engineering School, Central South University, Changsha 410000, China
*
Authors to whom correspondence should be addressed.
Received: 21 October 2017 / Revised: 19 November 2017 / Accepted: 29 November 2017 / Published: 30 November 2017
View Full-Text   |   Download PDF [6557 KB, uploaded 1 December 2017]   |  

Abstract

This paper reports a novel micro-fluxgate sensor based on a double-layer magnetic core of a Fe–Co–B-based amorphous ribbon. The melt-spinning technique was carried out to obtain a Fe–Co–B-based amorphous ribbon composite of Fe58.1Co24.9B16Si1, and the obtained amorphous ribbon was then annealed at 595 K for 1 h to benefit soft magnetic properties. The prepared ribbon showed excellent soft magnetic behavior with a high saturated magnetic intensity (Bs) of 1.74 T and a coercivity (Hc) of less than 0.2 Oe. Afterward, a micro-fluxgate sensor based on the prepared amorphous ribbon was fabricated via microelectromechanical systems (MEMS) technology combined with chemical wet etching. The resulting sensor exhibited a sensitivity of 1985 V/T, a wide linearity range of ±1.05 mT, and a perming error below 0.4 μT under optimal operating conditions with an excitation current amplitude of 70 mA at 500 kHz frequency. The minimum magnetic field noise was about 36 pT/Hz1/2 at 1 Hz under the same excitation conditions; a superior resolution of 5 nT was also achieved in the fabricated sensor. To the best of our knowledge, a compact micro-fluxgate sensor with such a high-resolution capability has not been reported elsewhere. The microsensor presented here with such improved characteristics may considerably enhance the development of micro-fluxgate sensors. View Full-Text
Keywords: magnetic sensor; micro-fluxgate sensor; MEMS; Fe–Co–B amorphous ribbon magnetic sensor; micro-fluxgate sensor; MEMS; Fe–Co–B amorphous ribbon
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Guo, L.; Wang, C.; Zhi, S.; Feng, Z.; Lei, C.; Zhou, Y. Wide Linearity Range and Highly Sensitive MEMS-Based Micro-Fluxgate Sensor with Double-Layer Magnetic Core Made of Fe–Co–B Amorphous Alloy. Micromachines 2017, 8, 352.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top