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Abstract: This paper reports on the design, fabrication and preliminary test results of a novel
microelectromechanical systems (MEMS) device—the acoustic gyroscope. The unique operating
mechanism is based on the “acoustic version” of the Sagnac effect in fiber-optic gyros. The device
measures the phase difference between two sound waves traveling in opposite directions, and
correlates the signal to the angular velocity of the hosting frame. As sound travels significantly
slower than light and develops a larger phase change within the same path length, the acoustic gyro
can potentially outperform fiber-optic gyros in sensitivity and form factor. It also promises superior
stability compared to vibratory MEMS gyros as the design contains no moving parts and is largely
insensitive to mechanical stress or temperature. We have carried out systematic simulations and
experiments, and developed a series of processes and design rules to implement the device.

Keywords: acoustic gyroscope; Sagnac effect; phase difference; sound waves; angular velocity;
sensitivity

1. Introduction

The gyroscope (gyro) is an inertial sensor determining the speed of rotational motions [1]. It has
a wide range of applications including the fields of consumer electronics, automotive, aerospace and
navigation [2–4]. Recently, gyros have witnessed a new wave of market growth driven by increasing
needs of Internet of Things (IoT) and wearable devices. Their functions have been extended from
basic motion sensing and navigation to much wider areas including human-machine interaction,
health monitoring, and fitness analysis [5–7]. Among them, microelectromechanical systems (MEMS)
vibratory gyros and fiber optic gyros are the most prevalent platforms in portable systems.

MEMS vibratory gyros are particularly attractive because of their small size, low cost, low
power consumption, and easy integration with complementary metal-oxide-semiconductor (CMOS)
circuitry [8–10]. They are based on the energy transfer between two orthogonal vibration modes as
a result of the Coriolis effect. However, typical MEMS gyros come with a number of intrinsic drawbacks.
The vibratory structure makes the device highly susceptible to external shock and vibration [11,12].
The structural design is inevitably associated with parasitic capacitive coupling and quadrature errors,
which collectively deteriorate the performance and limit wider adoption of the MEMS gyros.

Fiber-optic gyros, on the other hand, are based upon a different sensing mechanism (the Sagnac
effect), and do not involve the above issues. The device correlates angular speeds with interference
signals from two laser beams. It usually consists of thousands of fiber coils to maximize the optical
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path length in order to achieve low drift and a high scale factor [13,14]. However, this generally makes
the gyro too big and expensive for most consumer applications [12].

To overcome the drawbacks of the two classes of gyros, we propose a new MEMS device—the
acoustic gyro—in this work. It is based on the “acoustic version” of the Sagnac effect in the fiber-optic
gyro. The device measures the phase difference between two sound waves traveling in opposite
directions in a circular air duct, and correlates the phase difference with the rotational speed of the
waveguide. Since sound travels much slower than light, the acoustic gyro can develop a much larger
phase difference within the same path length compared to fiber-optic gyros, or, equivalently, it can
produce comparable sensing signals within a much shorter path length and significantly reduce the
device size. In addition, the fabrication of the acoustic gyro is fully compatible with CMOS processes
and it is readily integrated with peripheral electronics. In contrast to conventional MEMS gyros,
the acoustic gyro is intrinsically immune to mechanical stress and temperature changes. The device
also has a very simple structure that substantially lowers the manufacturing complexity.

This report expands on our previous work published in [15]. In this paper, we will present both
the theoretical evaluations and the very recent progress in process development and testing. We have
systematically evaluated and optimized a series of design rules to achieve acceptable process stability,
device yield and performance. According to our theoretical predictions and preliminary testing results,
the device can be packed into a 5 mm × 5 mm footprint and can potentially achieve a high sensitivity.

2. Materials and Methods

2.1. Working Principle of Novel Device

Figure 1 depicts the idea of the acoustic Sagnac effect in detail. A 3D finite element model (FEM)
using COMSOL multiphysics software (v5.0, COMSOL Co., Ltd., Stockholm, Sweden) is set up to study
the principle theoretically (Figure 1a). This model consists of a circular air duct, a sound transmitter,
and a set of receivers. It couples the acoustic-piezoelectric interaction module and aeroacoustic
module together. The former is used to simulate the sound transmitter and receivers with sound hard
boundary condition, including sound generation and electro-acoustical conversion efficiency. The latter
is adopted to emulate the pressure wave propagation in the air duct with no-slip boundary condition
of air flow. The simulation results show the principle as below. When the transmitter at 12 o’clock
position generates a pressure pulse, it induces two sound waves propagating in the clockwise and
counterclockwise directions, respectively. When the transmitter, the duct and the air in it are stationary,
the two wave fronts travel at the same speed and always meet at 6 and 12 o’clock positions (top in
Figure 1a). On the other hand, if the duct and the transmitter move relative to the air inside or vice
versa, the two sound waves propagate at different speeds (bottom in Figure 1a) and develop a phase
difference with each other over time. Placing sound receivers along the air duct would allow us to
quantify the phase difference and correlate the results with the rotating speed of the frame. The phase
difference related with frame angular velocity can be detected by the subsequent digital phase detector.
According to Reference [15], the phase shift ∆ϕ and sensitivity Sϕ (defined as the phase shift per unit
rotational velocity) of this device are

∆ϕ = 2π f · ∆t =
8π2R2Ω

v2 · f (1)

Sϕ = ∆ϕ/Ω =
8π2R2

v2 · f (2)

where R, f, v and Ω are the radius of the air duct, acoustic frequency, acoustic velocity and the rotating
speed of the frame, respectively. We can see from this formula the phase sensitivity is inversely
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proportional to the square of propagation velocity. The phase sensitivity between the acoustic and
fiber-optic gyros can be calculated as

∆ϕacoustic

∆ϕoptic
=

facoustic

foptic
·

c2
optic

c2
acoustic

=
10[MHZ]
193[THz]

·
(
3 × 108[m/s]

)2

(343[m/s])2 ≈ 4 × 104 (3)

where f optic is the light frequency using 193 THz [16–18], and f acoustic is the sound frequency as 10 MHz
which can propagated in air [19,20]. In this calculation we assumed the same ring radius R and angular
velocity Ω for both devices. The estimation indicated that the acoustic gyro could theoretically achieve
a phase sensitivity of 104 higher than that of an optical device with the same dimension. In other
words, the acoustic device could deliver comparable performance with significantly smaller size.
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Figure 1. (a) Simulated sound wave propagating in a circular air duct when the air is stationary (above) 
and flowing (below). The setting of (below) is equivalent to the situation where the air keeps 
stationary while the frame (together with the sound transmitter and receiver(s)) rotates in the opposite 
direction. The out-of-plane displacement is the height expression of acoustic pressure (Pa). (b) 
Emulation test with a hula-hoop as the circular air duct. Diameter of the duct is about 80 cm. Three 
40 kHz commercial ultrasonic ceramic transducers are installed inside the duct as acoustic transmitter 
and receivers. The transmitter and two receivers are marked as T1, R1 and R2, respectively. (c) Test 
results of (b). The phase difference between R1 and R2 changes when the ring rotates in clockwise 
and counterclockwise directions at ≈10°/s. The oscilloscope time base is 10 μs/div. 

The Sagnac effect in optics derives from the assumption that the speed of light is independent 
of the motion of its source or medium. Apparently the same rule does not apply to ultrasound. In 
fact, the Acoustic Sagnac effect results from the inertia of air—the transmission medium keeps 
stationary when the circular duct rotates. Therefore, the two acoustic waves travel at the same speed 
in the inertial reference frame of the observer. This effect has been further verified by the emulation 
test in Figure 1c,d, in which a hula-hoop was used as the air duct. Three 12.6-mm-diameter 40 kHz 
commercial ultrasonic ceramic transducers (TCT40-12T/R-1.2) are installed inside the hula-hoop duct 
working as an acoustic transmitter and two receivers, respectively. The two ultrasound receivers 
located at different positions (labeled as R1 and R2) were able to detect different phase shifts when 
the duct was rotated at various speeds. The test result shows the time difference between the two 
acoustic waves is about 1.5 μs at an angular velocity of ~20°/s. It is in good agreement with the 
theoretical prediction. 

2.2. Design and Structure 

Figure 2 illustrates our scheme to build the gyro on a miniature MEMS chip. Figure 2a,b show 
the top and side views of the device with dimensions. The device is fabricated by bonding a cap wafer 
(containing a circular trench and through silicon vias (TSVs)) to a base wafer hosting a set of 
aluminum nitride piezoelectric micromachined ultrasonic transducers (AlN-PMUTs). The AlN-
PMUTs are used as the acoustic transmitter as well as the receivers. The trench on the cap wafer 

Figure 1. (a) Simulated sound wave propagating in a circular air duct when the air is stationary
(above) and flowing (below). The setting of (below) is equivalent to the situation where the air
keeps stationary while the frame (together with the sound transmitter and receiver(s)) rotates in the
opposite direction. The out-of-plane displacement is the height expression of acoustic pressure (Pa);
(b) Emulation test with a hula-hoop as the circular air duct. Diameter of the duct is about 80 cm.
Three 40 kHz commercial ultrasonic ceramic transducers are installed inside the duct as acoustic
transmitter and receivers. The transmitter and two receivers are marked as T1, R1 and R2, respectively;
(c) Test results of (b). The phase difference between R1 and R2 changes when the ring rotates in
clockwise and counterclockwise directions at ≈10◦/s. The oscilloscope time base is 10 µs/div.

The Sagnac effect in optics derives from the assumption that the speed of light is independent of
the motion of its source or medium. Apparently the same rule does not apply to ultrasound. In fact,
the Acoustic Sagnac effect results from the inertia of air—the transmission medium keeps stationary
when the circular duct rotates. Therefore, the two acoustic waves travel at the same speed in the inertial
reference frame of the observer. This effect has been further verified by the emulation test in Figure 1c,d,
in which a hula-hoop was used as the air duct. Three 12.6-mm-diameter 40 kHz commercial ultrasonic
ceramic transducers (TCT40-12T/R-1.2) are installed inside the hula-hoop duct working as an acoustic
transmitter and two receivers, respectively. The two ultrasound receivers located at different positions
(labeled as R1 and R2) were able to detect different phase shifts when the duct was rotated at various
speeds. The test result shows the time difference between the two acoustic waves is about 1.5 µs at
an angular velocity of ~20◦/s. It is in good agreement with the theoretical prediction.

2.2. Design and Structure

Figure 2 illustrates our scheme to build the gyro on a miniature MEMS chip. Figure 2a,b show the
top and side views of the device with dimensions. The device is fabricated by bonding a cap wafer
(containing a circular trench and through silicon vias (TSVs)) to a base wafer hosting a set of aluminum
nitride piezoelectric micromachined ultrasonic transducers (AlN-PMUTs). The AlN-PMUTs are used
as the acoustic transmitter as well as the receivers. The trench on the cap wafer defines the circular
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air duct to guide the acoustic waves. We selected PMUTs over capacitive micromachined ultrasonic
transducers (CMUTs) due to the fact that the former does not need exceedingly high voltage bias
(usually hundreds of volts for CMUT) or ultrafine microstructures to achieve sufficient transducer
sensitivity, which effectively reduces circuit and fabrication complexity and cost [21–23].
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Figure 2. (a) Top-view schematic of the acoustic gyro (not in scale). In this specific case, three aluminum
nitride piezoelectric micromachined ultrasonic transducers (AlN-PMUTs) are fabricated on the base
wafer, one as a transmitter and two as receivers. The two receivers are placed symmetrically around
the vertical axis. The circular trench on the cap wafer, once bonded to the base wafer, forms an enclosed
air duct and bridges the three PMUTs; (b) Cross-sectional view across the center of the transmitter as
marked by the dashed line in (a). The inset shows cross-section view of PMUT.

Before assigning specific dimensions to each component, the operating frequency f 0 needs to be
determined first. It is related to several factors. According to Equation (1), higher frequency yields
higher sensitivity of phase shift to rotational speed. However, it may also lead to larger acoustic
attenuation, making the ultrasound waves hard to be detected at the receivers. In addition, one
needs to consider the relationship between the wavelength (λ = v/f 0) and the PMUTs’ diameter
(d) as well. First, d needs to be smaller than λ to avoid near-field irregular pressure pattern [24].
Second, λ is proportional to the square of d as a result of flexural-mode resonance. Therefore, d
needs to be greater than a lower limit to satisfy both requirements. This imposes an upper limit to
f 0. Taking into account all the requirements and limitations, we finally set the operating frequency
f 0 to be approximately 1.6 MHz. The diameter of PMUT should not be too small as compared to the
wavelength for efficient transmission [25,26], or greater than the wavelength resulting in irregular
near-field pressure pattern [24]. An ideal choice for the diameter of PMUTs in this work is 100 µm [25].

Given the target frequency (f 0 = 1.6 MHz) and PMUT diameter, we are now able to determine
the stack thickness of the PMUTs (f 0 scales linearly with the film thickness and 1/d2 [25]) based on
the given material. However, the layer thickness will impact other performance parameters such as
electromechanical coupling coefficient, transmitting sensitivity (Pa/V) or receiving sensitivity (V/Pa).
In this work, each PMUT on the base wafer consists of 4 functional layers suspended on an air cavity,
which are the top electrode (TE, made of Mo), piezoelectric layer (PZ, made of AlN), bottom electrode
(BE, made of Mo), and the seed layer (SL, made of AlN) from top to bottom. A big advantage of AlN is
that its relatively low dielectric constant minimizes device capacitance, thereby producing a higher
voltage between the top and bottom surfaces when operated as an ultrasonic receiver. The BE and
SL layers serve as a passive layer to induce a vertical stress gradient across the whole stack, which
forces the suspended membrane to deflect vertically when a transverse stress originates in the PZ layer
(due to the piezoelectric coefficient e31,f). Different BE and SL thicknesses (with respect to the PZ layer)
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result in different transmitting and receiving sensitivities of the PMUTs. In our case, the net efficiency
of the entire ultrasound generating, propagating, and receiving processes can be written as:

S =
voutput

vinput
=

Ptx

vinput
·

voutput

Prx
· Prx

Ptx
= GT · GR · Gch (4)

where vinput and voutput are the voltages applied to and detected at the transmitter and the receiver(s),
respectively. Ptx and Prx are the magnitude of the pressure wave right above the two PMUTs. The three
parameters GT, GR and Gch characterize the transmitting sensitivity (in Pa/V), receiving sensitivity
(in V/Pa) and the acoustic transmission attenuation, respectively. Previous studies [27–30] have
observed non-monotonic dependence of GT and GR on the thickness of the passive layer. Qualitatively
speaking, a thicker passive layer facilitates flexural bending of the entire membrane, but decreases the
overall electromechanical coupling coefficient k2

eff at the same time [31–33].
We have setup a finite element model to quantitatively determine the optimum thickness.

Figure 3a plots the surface pressure (in Pa) of the PMUT under a 1 Vpp driving voltage at resonant
frequency as a function of PZ/BE thickness ratio. Peak position of each curve indicates the optimum
thickness ratio for maximum GT. Figure 3b evaluates the receiving sensitivity for different PZ/BE
stacks and plots the electrical potential developed under a constant pressure difference across the
PMUT (100 Pa). The peaks correspond to maximum GR values. Thickness of the SL is fixed at 50 nm in
both figures. In Figure 3c,d, we repeat the same analysis with fixed BE thickness (100 nm) and varying
PZ/SL ratios. According to the simulation results, multiply of the two coefficients (GT·GR) reaches its
maximum at 500 (PZ)/500 (BE)/50 (SL) nm with the desired resonant frequency (1.6 MHz). This stack
setting is used in our final design to optimize the net efficiency (S) of the transmitter-receiver pair.
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Figure 3. (a) Surface pressure under 1 Vpp driving voltage at the resonant frequency; (b) Electrical
potential under 100 Pa as a function of piezoelectric layer/bottom electrode (PZ/BE) thickness ratio,
with the seed layer (SL) thickness fixed at 50 nm; (c,d) The surface pressure and the electrical potential
under various PZ/SL thickness ratios when the BE thickness is fixed at 100 nm.
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It is worth noting that the top electrode (TE) of the PMUT has a smaller diameter compared to the
rest layers in order to optimize the electromechanical coupling coefficient. We set the TE diameter as
70 µm, 70% of the PMUT diameter based upon the design rules discussed in previous reports [20,34,35].

We then use the following rules to set the geometric dimensions of the circular air duct.
The channel width (w) should be shorter than the acoustic wavelength λ to avoid large sidelobes, and
large enough to enclose individual PMUTs inside the channel (w > d). The perimeter of the circular
duct (πD, D being the diameter) should be integer times of λ/2 to facilitate standing-wave formation.
In addition, internal height (h) of the air duct needs to be sufficiently shorter than λ to minimize energy
dissipation at boundaries. Based on these considerations, we set w = 130 µm, D = 5 mm, and h = 20 µm
in our final design.

Acoustic-piezoelectric frequency domain simulations are then carried out to verify the
functionality of all components. In the model, we apply a continuous driving voltage of Vinput = 10 V
across the transmitter PMUT (at f 0 = 1.6 MHz) and visualize the formation and detection of the
acoustic waves. Figure 4a plots the distribution of the air pressure field, confirming the generation of
a standing ultrasonic wave along the circular duct when the air duct is stationary. The inset zooms
into the regions near the transmitter and the receivers to display finer features. Figure 4b examines the
detection of the ultrasound when the air duct is stationary. It allows us to calculate the surface potential
(Voutput) on the receiver PMUTs, which is around 65 mV in this specific setting. This corresponds
to a net efficiency (S) of ~0.06 according to the definition in Equation (4). The simulation result
demonstrates good detectability of the ultrasonic waves by the receivers, and proves good feasibility
of our structural design.
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of the transmitter and receivers. Color bar: Displacement (nm).

In addition to the above design, we have incorporated other design variations on the mask to
maximize wafer usage. They include three kinds of ducts as circular, spiral and square. The circular
ducts are designed within eight variants using different duct width, different PMUT diameter and
quantities on duct. Two spiral ducts are presented by varying duct width and PMUTs diameter to
improve device performance by maximizing path length. Each spiral shape includes four spiral
structures which can eliminate cross sensitivity and the common–mode output errors by differential
operation. The square ducts with different widths and PMUT diameters are used to evaluate possible
dependence on the shape of the acoustic path. Figure 5 shows a section of the mask layout. The entire
mask set contains 9 layers including all the PMUT, air duct, and TSV structures.
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Figure 5. Mask layout with circular, spiral and square shaped air ducts. (a) Mask Layout; (b) Circular
Duct and (c) Spiral Duct.

2.3. Fabrication

Figure 6 summarizes the entire process flow. The fabrication involves three major stages. The first
stage deals with the fabrication of PMUTs on the base wafer (Figure 6a–f). Specifically, it starts with
a sacrificial release pit formed by dry etching (Figure 6a) and CVD deposition of phosphosilicate glass
(PSG) followed by chemical mechanical planarization (CMP) (Figure 6b). A 50 nm AlN seed layer
and 500 nm Mo BE) are then deposited by sputtering at elevated temperature. The AlN seed layer
provides a high-quality <110> crystalline foundation for the BE, PZ, and TE layers built on its top.
It also electrically insulates the metal electrodes from the underlying Si substrate. The BE layer is then
patterned by dry etch (Figure 6c). This is followed by deposition of 500 nm AlN and 150 nm Mo to form
the PZ and TE layers, which are then patterned (through wet and dry etch to define the contours and
expose metal pads and release holes (Figure 6d)). We use E-beam evaporation and lift-off to deposit Cr
(0.2 µm)/Au (1 µm) pads in selected areas as the interface layer for wafer bonding (Figure 6e). In the
final step, HF solution is used to remove the sacrificial layer and suspend the film (Figure 6f).
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Figure 6. Base wafer flow: (a) Silicon etching; (b) SiO2 deposition and chemical mechanical
planarization (CMP); (c) BE deposition and pattern; (d) AlN/TE deposition and pattern; (e) Au
deposition and pattern; (f) sacrificial layer release; Cap wafer flow: (g) trench etch and pattern; (h) vias
etch (i) 0.2 µm Cr/1 µm Au deposition and pattern; Bonding part: (j) Au-Au bonding; (k) CMP,
electroplate, and Au deposition.
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Figure 6g–i depicts the process flow on the cap wafer. We first use dry etch to create a circular
trench with side walls (Figure 6g), then make high-aspect-ratio holes through deep RIE (reactive ion
etch) at the locations of TSVs (through silicon vias) (Figure 6h). The edges and inner walls of these
holes are then covered with Cr (0.2 µm)/Au (1 µm) that works as the wafer bonding adhesive and the
electrical interconnects between the base and the cap wafer (Figure 6i).

In the third stage, we flip over the cap wafer and bond it against the base wafer (Figure 6j).
The bonding creates an enclosed air duct bridging all PMUTs on the same ring. Au-Au adhesion
provides good bonding strength and establishes electrical connects between the two wafers at the
same time. It is important to note that the bonding chamber is filled with N2 and maintained at an
inner pressure of 1 atm throughout the process. The cap wafer also protects the PMUTs from damages
by back-end processes including wafer dicing and plastic molding (when needed). The whole wafer
is then thinned to 500 µm by mechanical grinding to expose the pre-defined TSVs. The vias are then
filled with Cu by electroplating. This is followed by deposition and patterning of metal pads (Ti/Au)
on the top surface to complete the entire flow (Figure 6k).

The flow has proven to be a highly stable process and yields good uniformity and consistency.
Figure 7a shows the microscope images of whole base wafer, circular device structure and individual
PMUTs on it. Figure 7b–e are the scanning electron microscope (SEM) images taken from perspective
angles to present close-up views of different structures.
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Figure 7. (a) Microscope images of whole wafer, circular device structure and individual PMUTs;
(b) scanning electron microscope (SEM) image of a device with partially peeled-off cap; (c) close-up
view of a TSV; (d) cross-sectional view of a PMUT; and (e) close-up view of a bonding interface.

3. Results

We first evaluate the transmitting performance of the PMUTs. The surface displacement as
a function of the driving frequency is measured in the air by a Laser Dropper Vibrometer (LDV,
OFV 512 and OFV 2700, Polytec, Inc., Waldbronn, Germany) as shown in Figure 8. The PMUTs are
excited with a 1 V sinusoidal signal. The measured resonant frequency is 1.616 MHz, very close to
the designed value of 1.6 MHz. The maximum displacement at the resonant frequency is 221 nm.
The measurements on four PMUTs (Figure 8a) at different locations indicate good frequency uniformity
across the wafer. This ensures good frequency matching between the acoustic transmitter and receiver
and maximizes the net efficiency S. The surface deflection (df ) is related to the local air pressure by

P = (2π f d f )ρ0c0 Ae (5)

where ρ0 is the density of air, c0 is the sound velocity, and Ae = 1/3 is a correction factor accounting for
the deviation from an ideal piston model [36,37]. The transmitting sensitivity GT is then calculated to be
~330 Pa/V, slightly lower compared to the simulation result in Figure 3a, presumably due to geometrical
mismatches and additional loss mechanisms through air damping, anchors and boundaries.
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Figure 8. (a) Frequency dependence of surface displacements of four 100 µm PMUTs. The resonance
frequencies are narrowly distributed with a very small variation of ~0.7%; (b) Impedance measurement
of a single 100 um PMUT with a very high coupling coefficient of k2

t = 3.64%.

Impedance measurements of the PMUTs (100 µm in diameter) have been carried out using an
impedance analyzer, the Agilent4294A (Agilent Technologies, Inc., Palo Alto, CA, USA, Figure 8b).
The result shows good agreement on the resonant frequency with the LDV measurement. In addition,
the impedance analysis provides both the resonance (f r) and anti-resonance (f a) frequencies, and
allows us to calculate the electromechanical coupling coefficient k2

eff according to [23,38]

k2
eff

1 − k2
eff

=
f 2
a − f 2

r
f 2
r

(6)

Given f r = 1.606 MHz and f a = 1.636 MHz from the data in Figure 8b, k2
eff is calculated to be 3.64%.

This value is significantly higher than typical numbers in previous reports on AlN-based PMUTs
(0.056% in [23] and 0.387% in [39]). High material and process quality are likely acceptable for the
improvement, as is using the mass production PVD tool for the film deposition. In addition, the device
design also plays a role in this variance. The BE (Mo) layer serves as the passive layer with a high
Young’s modulus. This increases the stiffness of the passive layer, thus raising the electromechanical
coupling coefficient [40,41]. Moreover, the low parasitic capacitance in this PMUT contributes to the
higher coupling factor as well.

Next, we measure the receiving sensitivity by setting up two PMUTs facing each other. The two
devices are wire-bonded to separate PCB boards, which are mounted on translational stages to
continuously adjust the separation. The left PMUT is driven by a continuous sine wave (10 Vpp) with
a frequency swept from 1.3 to 2 MHz. The right is used as a receiver to pick up the ultrasound signal
and feed it through a lock-in amplifier. Outputs of the amplifier, with both the amplitude and phase
signals, are shown in Figure 9a. The distance between the two PMUTs is 1.36 mm. The maximum
amplitude is about 52.5 µV at the resonant frequency of 1.617 MHz. The signal diminishes when we
place thin sheets of dielectric materials (e.g., paper or glass) in front of the receiver, which confirms that
the signal originates from the ultrasonic waves rather than the electromagnetic couplings. Furthermore,
when we replace the dielectric sheets with a grounded metal mesh to block possible electromagnetic
interference, the resonance signal persists. In Figure 9b, we record the receiver signals at different
distances. The decay with increasing distance is in good agreement with acoustic attenuation in air.
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4. Conclusions 

In this paper, we present the design, fabrication and preliminary testing results of a new MEMS 
gyro. It measures angular velocity by comparing the phase difference between two acoustic waves. 
The device promises a similar performance to fiber-optic gyros with significant downsizing by four 
to five orders of magnitude. We have proven the concept by systematic FEM simulations, and 
successfully completed the fabrication and preliminary evaluation of the structural design. Further 
tests are ongoing to provide more comprehensive results and understanding of the design and 
sensing mechanism. 
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Figure 9. (a) Readout of the receiver at 1.36 mm from the transmitter; (b) Receiver signals taken at
different distances from the source.

4. Conclusions

In this paper, we present the design, fabrication and preliminary testing results of a new MEMS
gyro. It measures angular velocity by comparing the phase difference between two acoustic waves.
The device promises a similar performance to fiber-optic gyros with significant downsizing by four to
five orders of magnitude. We have proven the concept by systematic FEM simulations, and successfully
completed the fabrication and preliminary evaluation of the structural design. Further tests are ongoing
to provide more comprehensive results and understanding of the design and sensing mechanism.
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