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Abstract: Surface free energy (SFE) plays an important role in microfluidic device operation.
Photosensitive glasses such as APEX offer numerous advantages over traditional glasses for
microfluidics, yet the SFE for APEX has not been previously reported. We calculate SFE with the
Owens/Wendt geometric method by using contact angles measured with the Sessile drop technique.
While the total SFE for APEX is found to be similar to traditional microstructurable glasses, the
polar component is lower, which is likely attributable to composition. The SFE was modified at
each stage of device fabrication, but the SFE of the stock and fully processed glass was found to be
approximately the same at a value of 51 mJ¨ m´2. APEX exhibited inconsistent wetting behavior
attributable to an inhomogeneous surface chemical composition. Means to produce more consistent
wetting of photosensitive glass for microfluidic applications are discussed.
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1. Introduction

The thermal, electrical, and chemical properties of photosenstive glass make it well suited for
radio frequency (RF) and integrated circuit (IC) packaging, optoelectronics, micro-optics, microfluidics,
and optofluidics. Perhaps the greatest commercial and research interest for photosensitive glass
technology is in micro- and optofluidics. Microfluidic systems are designed to transport, dispense,
combine, separate, detect, and/or characterize fluid samples. Integration of these processes into a
single micro-device when sample volumes are small is the primary advantage achieved through
miniaturization. In order to obtain and optimize control of fluids at the microscale, governing
forces such as electrostatics, van der Waals forces, and surface energy must be well understood.
In this effort the latter force parameter is studied by measuring contact angles of several test liquids
on photosensitive glass. Less is known about photosensitive, also termed photodefinable and
photostructurable, glasses despite offering many advantages over traditional microstructurable glasses
for microfluidics [1–4]. As a relatively new product, many features and processing aspects of APEX
have not been characterized. Surface energy is one such parameter that has yet to be studied. The
determination of surface energy of photosensitive glass has the greatest impact in microfluidics since
device operation is dependent on solid-liquid interactions.

Several terms are used to describe the surface energy of phase boundaries. The work required to
modify the size of an interface between adjacent phases is known as interfacial tension. If the adjacent
phases are liquid/gaseous or solid/gaseous, the interfacial tensions are referred to as surface tension
and surface free energy (SFE), respectively. The SFE of a substrate will determine the surface tension
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of a liquid on the surface. Surface tension in turn predicts wettability, dispersibility, and droplet size
and formation.

In microfluidics, SFE and surface tension have wide influence on device operation and design. As
systems scale down, the surface-to-bulk ratio of fluids becomes larger, and surface tension increasingly
dominates over other forces such as gravity or pressure. In microelectromechanical systems (MEMS),
surface tension is often a problem to be overcome [5,6], and while this remains true in microfluidics, it
can be a useful or even critical design feature [7]. For example, pumps and valves actuated by inflating
and deflating gas bubbles rely on surface tension for the formation, stability, and localization of
bubbles [8–10]. Fluid transport can be achieved via surface tension gradients generated by Marangoni,
continuous electrowetting, or passive capillary effects [11–13]. Applications utilizing surface tension
gradients range from the self-filling of microchannels to sample collection and microscale propulsion.
Furthermore, surface tension is factored into designs of pumps, traps, filters, and switches [11,14–17].
Surface tension–confined microfluidics relies on sharp differences and gradients to two-dimensionally
confine and manipulate fluids [16]. Capillarity, wetting, and adhesion are all dependent on surface
tension. These properties govern channel filling/filling rate, capillary rise height/rise time, and bubble
and droplet formation/size/motion [14,15]. All of these surface tension and SFE effects allow designers
of microfluidic experiments and devices to optimally control fluids in the micro-environment.

Additionally, surface wettability and roughness have a direct impact on flow velocity. Boundary
slip occurs more easily between fluids and hydrophobic surfaces due to decreased flow resistance
compared to hydrophilic surfaces [18,19]. Boundary slip not only results in higher average velocities
in hydrophobic microchannels, but as flow rate increases the gap between average flow velocity in
hydrophobic and hydrophilic microchannels also increases [20]. Roughness modifies flow velocity
depending on surface state. Increased roughness of hydrophobic surfaces inhibits boundary slip which
reduces flow velocity [21,22]. For hydrophilic surfaces, increased roughness decreases flow velocity,
but the effect is attributable to increased friction resistance [20].

For channel depths less than 100 µm, high quality microstructured surfaces are routinely
produced in traditional microfluidic glasses with wet etching or laser ablation [23–25]. A high
surface roughness for deeper channels occurs with laser ablation due to redepositon of ablated
glass [26,27]. Defects in the sacrificial mask layer, stresses in the mask or glass, and redeposition
of insoluble products increase surface roughness of wet-etched channels. While methods have
been developed to mitigate these sources of defects, the channel profiles that result are circular
or trapezoidal [23,28]. Microstructures are produced in photosensitive glass without the use of a
sacrificial mask layer, which eliminates many defects and simplifies the fabrication process. High
aspect ratios, and transparent and nearly rectangular profiles have been demonstrated in Foturan
and APEX photosensitive glasses [29–33]. These advantages allow micro-optical components to be
embedded directly into glass lab-on-a-chip devices.

In this study, five samples of APEX glass were prepared at different production stages of a
complete microfluidic device. By measuring the SFE at each step of device fabrication, the impact
individual steps have on the final SFE can be evaluated. To determine SFE, contact angles of distilled
(DI) water, formamide, ethylene glycol, and bromonaphthalene on all five samples were measured with
the Sessile drop technique. The Owens/Wendt geometric mean method was implemented to calculate
SFE from contact angle data [34]. Additionally, the surface roughness of each sample was measured
with a white light interferometer. Surface morphology indicates local compositional variance and is
thought to be the primary factor contributing to SFE disparities between the APEX samples. The SFE
of APEX is compared to two studies of soda-lime glass from the literature. Chemical composition is
the likely explanation for a more dispersive and less polar SFE for APEX compared to soda-lime glass.
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2. Experimental Procedure

2.1. Glass Processing

It is difficult to characterize the SFE of microfluidic channels directly. Therefore, large area
samples were prepared to produce a surface similar to a microchannel. A total of five 1.5 cm ˆ 3.0 cm
substrates were diced from a half-millimeter-thick wafer. The diced glass was then rubbed with
ethanol, thoroughly rinsed with ethanol, and dried under a stream of nitrogen. Each sample was
processed to a different fabrication stage in the production of a microfluidic device.

At the first stage a pattern is transferred from a photomask to the glass by exposure to a 7 joule
dose of 280–310 nm light. A latent image of the photomask pattern is revealed in the exposed samples
after a two-step baking procedure [32]. For the first bake step, the glass is sandwiched between
polished alumina substrates and heated from room temperature to 500 ˝C at a rate of 6 ˝C/min. The
temperature is held constant for 75 min before initiating the second step by ramping up the temperature
to 555 ˝C at a rate of 2 ˝C/min. The oven temperature is then kept at 555 ˝C for 80 min before ramping
down to room temperature at a rate of 2 ˝C/min. Baking completes a photothermal cycle to produce
metal colloids that nucleate to form a crystalline microphase revealing the pattern transferred through
ultraviolet (UV) illumination. After 1 h in 10% hydrofluoric acid (HF), the patterned glass is etched
completely through, while the remaining glass is reduced from a thickness of 500 µm to approximately
400 µm. For this preparation, samples were etched for 30 min.

To reduce the surface roughness produced by etching, a final anneal stage is implemented. The
anneal consists of a 6 ˝C/min ramp from room temperature to 535 ˝C, and 7 h dwell before ramping
back to room temperature at 2 ˝C/min. Table 1 summarizes the processing steps for each sample.
Sample 4 represents a surface that is most similar to a microfluidic channel or reactor wall. Since
patterned regions are completely removed after etching, no sample was exposed to UV light. Annealing
bonds the base, microchannel, and via layers to produce a microfluidic device. Channels of a desired
depth are formed by over etching.

Table 1. Processing steps for APEX glass samples.

Sample 1 2 3 4 5

UV - - - - -
Bake - - x x x
HF - x x x -

Anneal - - - x x

2.2. Contact Angle Measurement

After fabrication and between-contact-angle measurements, glass surfaces were prepared by
rubbing with ethanol and shed resistant cleanroom wipes to remove any residue that could not be
removed by rinsing. The glass was then thoroughly rinsed in DI water, immersed in 5% nitric acid
for 15 min, and dried under a stream of nitrogen. Cleaning procedures vary, but a final step before
measuring contact angles on glass substrates is often to outgas the substrates to remove physisorbed
water [35,36]. Outgassing at over 100 ˝C for several hours reduces the contact angle of water on glass
from 30˝ to 40˝ to approximately zero [37–39]. The SFE for glass with physisorbed water will have
a higher polar component than glass with the surface water removed. For microfluidic applications
outside of a lab, heating a device to a high temperature for several hours before use is impractical.
For this reason, outgassing of the APEX samples was not performed. Thus, the SFE reported here is a
practical working value for uncoated glass as opposed to the true native SFE.

A Ramé-Hart model 290 F4 series automated goniometer (Ramé-Hart Instrument Co., Succasunna,
NJ, USA) was used to obtain contact angle measurements. Samples were placed under a stainless steel
needle with 0.14 mm inner diameter. Droplets measuring 4 µL were dispensed onto glass samples by
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the touch off method. The goniometer apparatus includes a camera and light source to capture droplet
images, and DROPimage software (Ramé-Hart Instrument Co.) for automatic calculation of contact
angles. Prior to APEX measurements, contact angles of DI water on a Teflon standard were evaluated
to ensure proper goniometer operation. Measurements were carried out at room temperature without
controlling for humidity.

The selected test liquids were DI water, ethylene glycol, formamide, and bromonaphthalene. The
dispersive and polar components of these test liquids are provided in Table 2 and are used for the
geometric calculation of SFE. A total of six droplets for each test liquid were dispensed onto each APEX
sample. Drops were dispensed only after the previous drop was measured. Droplets were allowed to
equilibrate for several seconds before measurements were taken. The mean contact angle of each drop
was measured 6 times in rapid succession and averaged to produce a single data point. This procedure
was repeated twice; therefore, a total of 18 droplets for each test liquid provided 72 data points on each
APEX substrate. Glassware used to handle the test liquids was cleaned with detergent, thoroughly
rinsed with DI water, and dried on a hotplate.

Table 2. Dispersive and polar surface energy components (mN¨ m´1) for selected test liquids from
the literature.

Test Liquid Polar Dispersive

Distilled Water [40] 50.3 22.5
Ethylene Glycol [41] 16.0 32.8

Formamide [41] 23.5 34.4
Bromonaphthalene [42] 0.0 44.4

2.3. Surface Roughness Measurement

Surface roughness measurements were obtained with a Wyko NT 1100 white light interferometer
(Veeco, Tucson, AZ, USA). Before measuring, glass samples were cleaned with the same procedure
as described for contact angle measurements. High magnification vertical scanning interferometry
(VSI) with a 20ˆ objective and 2ˆ field of view was implemented for each measurement. Six randomly
selected scans of 146 µm ˆ 111 µm were imaged onto a 736 ˆ 480 pixel charge-coupled device (CCD)
for each sample. The developed interfacial area (Sdr) was obtained for each scan with tilt correction
but no additional data manipulation. Sdr is the percentage of the additional surface area of a textured
surface to that of an ideal flat plane of the same size. The use of Sdr has been shown to predict
wetting modified by roughness better than other measures of surface roughness, such as the average
or root-mean-squared parameters [43,44].

3. Results and Discussion

3.1. Contact Angle and Surface Roughness

Contact angle measurements of the four test liquids from Table 2 on APEX glass samples from
Table 1 are provided in Figure 1. The difference in contact angle for each test liquid on a particular
sample and the difference in wetting for the same test liquid across samples can be understood
by considering SFE. The surface energy of liquids and solids is comprised of polar (dipole, Lewis
acid-base, etc.) and dispersive (Lifshitz-van der Waals) contributions. Wetting behavior depends on
both polar and dispersive components of the liquid and solid; however, the polar interactions are
more dominant in predicting contact angles for high energy surfaces such as glass [45,46]. Contact
angles exhibited by ethylene glycol and formamide are similar, as expected based on their comparable
polar and dispersive components. As a purely dispersive liquid, bromonaphthalene shows the least
variation across samples. Water with a high polar component exhibits the greatest variation.
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Figure 1. Contact angles on APEX glass samples. Each data point represents the average
value of measurements from 18 droplets. Measurement error ranged from ˘0.07˝ to ˘1.70˝ and
averaged ˘0.37˝.

When comparing any two samples from Figure 1, a consistent increase or decrease in average
contact angle for all test liquids is observed, indicating that the surfaces are dissimilar. It was previously
shown that the surface roughness is modified after each processing step [32]. Change in wetting
behavior due to surface roughness is well established, so it was thought that the difference in wetting
would be consistent with roughness variation between samples. However, as will be shown, the
modification to wetting is likely due to surface composition disparities, while surface roughness is a
minor contribution.

The range in contact angle values across all samples and liquids in Figure 1 is ˘10˝–15˝. Before
considering the influence of surface roughness, contamination and surface state were identified as
possible sources for this large variance and were investigated.

Chemical contamination of the substrates or solutes in the test liquids can affect wetting; however,
these effects, if present, would be consistent across measurements, leading to both an increase in and a
broadening of observed angles [47]. To determine if contamination was the primary factor giving rise
to contact angle variance, the samples were rinsed in ethanol after cleaning to coat the substrates with
organic residues. This led to an increase in average contact angle for each sample but no change in the
relative range of measurements.

In a second test, the samples were heated to 125 ˝C for 24 h after cleaning to evaporate physisorbed
water and contaminants that may have been left after cleaning. This led to a decrease in average
contact angle but no change in variance. Therefore, cleanliness is unlikely to be the main contributor to
measurement deviations, since the average observed angle could be increased without broadening the
data range when contaminants were added. Likewise, the average contact angle could be lowered
without narrowing the relative range of measurements after evaporating surface water and potential
contaminants. If the sample preparation were inadequate and contamination was the dominate factor
in average contact angle range, it is unlikely that the range would be unaffected by substantial changes
to the cleaning procedure.

Ruling out cleanliness for the large range in contact angles, our attention turned to substrate
surface state. An inhomogeneous distribution of glass components is revealed after baking and
becomes more distinct after etching. Sufficient heating allows the various constituents to migrate and
cluster, forming visible striations as in Figure 2. These striations exhibit distinct surface morphologies
that differ substantially from transparent regions as indicated in Figure 3. A wide range of surface
textures can result, and several possible morphologies are described in [2]. The striation morphologies
vary across individual samples, and more variations exist than are presented in Figure 3. All
commercially available photosensitive glasses exhibit similar striation patterns.
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Figure 2. Visible striations in unpatterned four inch diameter wafer after bake and etch processes.

Figure 3. Variation in morphologies of surface striations from (a) sample 3, (b) sample 4, and
(c) sample 5; and (d) surface morphology of transparent region from sample 4.

We postulated that morphological variance indicates surface composition inhomogeneity over
the entire substrate, which gives rise to the observed contact angle range across all samples and test
liquids. To mitigate surface state variation, the substrates were silanized in a nitrogen environment
for 15 min with a 15 mg¨ mL´1 solution of chlorotrimethylsilane (CTMS) mixed in acetonitrile. The
silane coating increased the average contact angle of DI water and reduced the range from ˘10˝–15˝

to ˘2˝–4˝. This is strong evidence that the wetting of APEX glass is highly dependent on local surface
composition at all processing stages.

Uniform roughness is assumed in mathematical models developed to predict modifications to
wetting as a function of surface roughness. The diverse surface textures of Figure 3 indicate surface
roughness disparities across individual substrates. However, as reported in Table 3, the surface
roughness range on individual samples is low, allowing uniform surface roughness to be assumed for
modeling. Future work may validate this assumption through simultaneous measurement of surface
roughness and contact angles evaluated at different locations on the same sample.
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Table 3. Surface roughness values of APEX samples from Table 1.

Sample Sdr Range

1 0.29 ˘0.06
2 0.26 ˘0.04
3 2.22 ˘0.71
4 0.39 ˘0.10
5 0.36 ˘0.08

The influence of surface roughness on wetting is modeled with the Wenzel, Cassie-Baxter, or
hybrid theories. The Cassie-Baxter model was not evaluated as it is typically applied to hydrophobic
or rough surfaces. Hybrid models were not considered as they are more complex but offer no better
predictability than the Wenzel model when surface roughness is low [43,44]. The Sdr values in Table 3
were used to predict contact angles for each surface based on the Wenzel theory [43,48]. The measured
and predicted contact angle results for DI water on each sample are provided in Figure 4. The trend in
measured contact angle values does not match well with the Wenzel model, indicating that roughness
alone cannot explain the observed contact angles across samples. Moreover, if surface roughness
was the primary factor for wetting differences between samples then the measured contact angles for
samples 1 and 2 should be more similar, as they are for samples 4 and 5. The surface roughness, range,
and texture observed for samples 1 and 2 are similar to each other and are more similar in appearance
to Figure 3d than Figure 3a–c. This is further evidence for non-uniform surface composition as the
primary factor driving the discrepancy in both the average and range of contact angle values between
samples. The increase in roughness for sample 3 is due to HF etching [32] and is discussed in further
detail in Section 3.2.

Figure 4. Measured and predicted contact angles of DI water based on Sdr.

3.2. Surface Free Energy

The total SFE of APEX was found to be similar to other glasses in the literature. Figure 5
compares unprocessed APEX (sample 1) to two studies of the SFE for Iso LAB and Normax microscope
slides [39,49]. Both microscope slide brands are soda-lime glasses and likely have similar composition,
uniformity, and surface roughness. The difference in SFE between the two is attributable to how SFE
was determined in each study. Understanding the discrepancy between the two results provides
insight into the SFE we report for APEX.

For all three glasses the Owens/Wendt geometric mean method was implemented to calculate
SFE. The Iso LAB slides were immersed in water, and contact angles of air bubbles produced at the
glass-water interface were measured. The Normax slides were heated to remove physisorbed water,
and contact angles were obtained with the Sessile drop technique. The total SFE of the soda-lime
glasses is similar as indicated in Figure 5, but the ratio of SFE components is not. Assuming similar
surface roughness and composition, the difference in SFE components can be reasonably attributed
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to the reduction of physisorbed water for the Normax slides. Likewise, a similar total SFE but lower
dispersive component for APEX is expected for substrates that are heated. Thus, a lower total SFE and
higher dispersive component for APEX compared to the soda-lime glasses is a result of contributions
of physisorbed water and differences in oxide additives listed in Table 4.

Figure 5. Surface free energy (SFE) of unprocessed APEX glass (sample 1) compared to soda-lime glass
microscope slides.

Table 4. The wt % of glasses compared in Figure 5. Limits and typical values of soda-lime
wt % from [50] and APEX wt % converted from at % in [33]. Soda-lime may contain traces of SO3, Se,
Co3O4, Cr2O3 and MnO2 [50].

Component Soda-Lime (Limits) Soda-Lime (Typical) APEX

SiO2 58.22–84.15 73.26 58.50
Na2O 9.3–15.19 13.81 1.78
CaO 6.55–12.83 8.78 0
MgO 0–3.95 3.86 0
Al2O3 0–3.33 0.14 16.64
K2O 0–2.31 0.03 4.96

Fe2O3 0–1.57 0.11 0
TiO2 0–1.04 0.01 0

Li2O and B2O3 0 0 16.16
ZnO 0 0 1.28

Ag2O 0 0 0.20
Sb2O3 0 0 0.25
Ce2O3 0 0 0.22

The SFE for each APEX sample was calculated and is presented in Figure 6. The ratio of the polar
and dispersive contribution to the total SFE is similar between samples, but the total varies slightly.
This difference can be explained by surface composition inhomogeneity as follows. Each additive
in the glass will modify the HF etch rate of the silica in the immediate locality to a different degree.
If the distribution of constituents within the glass is uneven, then some areas will etch faster than
others, giving rise to an increase in surface composition disparity. This is evidenced by the difference
in contact angles on samples 1 and 2 despite similar surface roughness. Subsequent etching, as was
done for sample 3, further increases surface composition inhomogeneity. Post-pattern baking and
annealing initiates migration and agglomeration of similar species within the glass. Samples 1, 4, and 5
have similar wetting behavior and nearly identical SFEs, which indicates that annealing increases
homogeneity by reflow and redistribution of surface components. The total SFEs for samples 1 and 4
are 50.5 and 50.9 mJ¨ m´2 with errors of ˘0.18 and ˘0.23 mJ¨ m´2, respectively. Thus, the SFE and
wetting behavior of APEX glass is altered at each fabrication stage, but with regard to wetting the
initial and final surface is essentially unmodified by the microfabrication procedure.
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Figure 6. SFE components with error bars of APEX glass samples.

4. Conclusions

Evaluation of surface roughness and cleanliness leave chemical composition as the most likely
explanation for the difference in the relative polar and dispersive contributions to the total SFE of APEX
compared to soda-lime glass. X-ray photoelectron spectroscopy (XPS) can verify surface composition
inhomogeneity, but XPS analysis is beyond the scope of this work. Simultaneous topography and
tensiometer or goniometer analysis can provide a better estimate for the influence of roughness on
wetting due to the varied morphology across samples. Still, we have shown that surface roughness
resulting from microfabrication has little impact on the wetting of APEX glass compared to the
influence of composition inhomogeneity.

The initial surface composition of the stock APEX is likely non-uniform, as evidenced by the
significant reduction in contact angle range after application of a silane coating. Compositional
inhomogeneity results in a large range in wetting behavior. Of the processing steps, etching of baked
glass has the greatest impact on modification to SFE and wetting. When baked, oxide additives
form nanoclusters which etch at different rates. Subsequent HF exposure produces a surface with
increased roughness, texture, and compositional variance. Annealing returns the surface to a similar
state as the stock glass and reduces roughness from preceding microfabrication steps. Adjustments to
the fabrication procedure can result in changes to the final overall surface characteristics. However,
predictability in local characteristics can only be achieved if the oxide distribution of the stock glass is
more uniform.

Surface uniformity is required to achieve precise control in microfluidic applications that rely on
SFE for functionality and performance. For photosensitive glass, improvements to the formulation
and melting process are needed to achieve a more homogeneous surface. Until such improvements are
implemented, a coating to mitigate surface chemical inhomogeneity is recommended for microfluidic
applications due to the wide range in wetting behavior on uncoated substrates. One of the advantages
of glass for microfluidics is the chemical resistance of glass to a broad range of chemistries. Coating
reagents such as CTMS provide a chemically uniform surface while preserving the inertness of the
glass. Alternative coating options may be found in [51].
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