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Abstract: The convergence of Micro Electro Mechanical Systems (MEMS) and optics was, at the end
of the last century, a fertile ground for a new breed of technological and scientific achievements.
The weightlessness of light has been identified very early as a key advantage for micro-actuator
application, giving rise to optical free-space MEMS devices. In parallel to these developments, the
past 20 years saw the emergence of a less pursued approach relying on guided optical wave, where,
pushed by the similarities in fabrication process, researchers explored the possibilities offered by
merging integrated optics and MEMS technology. The interest of using guided waves is well known
(absence of diffraction, tight light confinement, small size, compatibility with fiber optics) but it was
less clear how they could be harnessed with MEMS technology. Actually, it is possible to use MEMS
actuators for modifying waveguide properties (length, direction, index of refraction) or for coupling
light between waveguide, enabling many new devices for optical telecommunication, astronomy or
sensing. With the recent expansion to nanophotonics and optomechanics, it seems that this field still
holds a lot of promises.
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1. Introduction

The birth of integrated optics, and more exactly the start of the technology enabling optical
waveguide fabrication, may be traced back to the fine team of researchers at Bell’s Lab at the end
of the 60s. In fact, the seminal work appeared in a special issue of the Bell System Technical Journal in
1969 [1], and proposed technologies and theories for fabricating and modeling waveguides, opening
the path to what is now known as integrated optics.

It is rather eye opening to realize that the start of the MEMS technology, which enables
fabrication of mechanical elements and actuators with microelectronics-like microfabrication
techniques, dates back to the same era. In 1965 a team of researchers at Westinghouse research
labs developed the resonant-gate transistor [2] that showed a remarkable integration of mechanical
resonator with a field-effect transistor. Still, from this early work, the MEMS technology had to wait
for the late 1980s to bloom, and actually the term MEMS itself was only coined in 1989 by Professor
Howe at a notorious MEMS conference [3].

It was only a matter of time before these two technologies would converge and at the beginning
of the 1990s, several research groups in Asia [4,5], Europe [6,7] and America [8] proposed to use
MEMS actuator with waveguide for a large range of different devices, from simpler sensors to optical
telecommunication switches. Researchers have over the years explored different paths for building
those devices where a MEMS actuator is able to modify the propagation of the light in a waveguide.
Currently we can identify four simple principles schematically depicted in Figure 1. One of the first
principle explored [5] (Figure 1a) was based on changing the coupling between fixed waveguides
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using a MEMS actuated mirror and, for example, could be used for optical switch fabrication. In this
review, we will only consider the devices based on co-integration of waveguide and MEMS and will
not discuss the other interesting devices based on optical fiber integration with MEMS actuator [9,10].
Similarly, directly changing the direction of a waveguide (Figure 1b) is a powerful method to channel
the light between different waveguides. Then, it is possible to change the propagation of the wave
in the waveguide, either by interacting with the optical field outside the waveguide (Figure 1c) or by
directly modifying the refractive index of the material by inducing longitudinal strain (Figure 1d).

(a)

(b)

(c)

(d)

coupler

direction strain

evanescent

Figure 1. Principles of modification of light propagation in waveguides by mechanical actuation (a)
coupling of fixed waveguide (b) redirection of waveguide (c) index of refraction change by interaction
with evanescent field (d) change of waveguide geometry (strain).

The question may arise, why in the first place would we want to use mechanical
actuation whereas integrated optics has its own way of modifying light propagation in
waveguides. Electro-optic, acousto-optic, and thermo-optic effects or the injection of free-carrier in
semi-conductors are all very efficient principles for changing the index of refraction of materials,
hence opening fabrication of high-speed or complex optical circuit for telecommunication or sensing.
If they are fast—much faster than MEMS actuator—these principles, rooted in material properties,
have very little magnitude (change of index of refraction in the 10−3 range) and in classical devices
needs relatively long distance (cm) to obtain useful effects. Although photonic crystals devices using
slow light [11] may be very small, a need for a compact integrated optics technology remains. It can
definitely be achieved with MEMS actuators as the effect of moving optical elements is stronger than
material effects. Moreover, the ability to act on the waveguide itself, changing its direction or length,
opens-up new possibilities by allowing action principles previously impossible, potentially providing
a new paradigm for photonics.

From the early days, an important issue of this new technology remains the co-integration of
optical waveguide and MEMS actuator [12]. Simple sensing devices, where the actuation energy
actually comes from the environment (vibration, pressure, acceleration, etc.), were from the beginning
fully integrated [4] but it proved more difficult when the was actuator powered internally. In fact,
among the first devices developed most used crude integration [5,7,8] and only the group of Voges at
TU Dortmund in Germany [6] proposed a complete co-integration process. However, in our view, the
co-integration is an important enabling technology that would allow building of array of devices (e.g.,
switch or sensor array), facilitate batch fabrication, limiting assembly and ultimately lower the cost.

Actually we will start our review of this particular class of optical MEMS [13] by exploring
the different co-integration strategies that have been proposed since the emergence of the
MEMS/waveguide technology. Then, we will describe the most important devices that have been
based on this technology classified by the operating principles shown in Figure 1.

2. Fabrication Processes for Co-integration of Optical Waveguides and MEMS

2.1. Waveguide Technology

Guiding optical wave over long distance is commonly based on total internal reflection (TIR)
where light in a high index material bounces on the interfaces with lower index materials. Figure 2
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shows schematically the propagation of rays along a waveguide, with the corresponding wavefront.
Basically, for avoiding destructive interference (between rays 1 and 3) that would spoil the optical
wave, the accumulated phase shift from the reflection at both interfaces and the propagation across
the waveguide needs to be a multiple of 2π, that is: 2Φ + φ1−2 + φ2−3 = 2kπ. Verifying this
condition means that only a limited set of angles θ is possible, each of them corresponding to a
mode of propagation of the waveguide with a specific velocity and optical field distribution. In
this respect waveguides may be split between single-mode and multimode, depending whether
they support a single or multiple modes at the wavelength of interest. In general for sensing or
telecommunication applications single-mode waveguides are preferred because they exhibit low
dispersion, while multimode waveguides are used for illumination applications. The simplest
method for controlling the number of modes supported by a certain waveguide is to decrease
its dimension, with smaller waveguide supporting less and less propagation modes. Figure 2
cross-section shows the fundamental electromagnetic propagation mode in the waveguide that can
be derived from a wave analysis of the mode. Such analysis will also allow to take into consideration
the light polarization that would basically show two types of mode in rectangular waveguide, the TE
mode (with electrical field parallel to the substrate) and the TM modes (with magnetic field parallel
to the substrate). The complete mode picture is actually more complex [14], but it will be sufficient
for the discussion in this review.

Side view Cross-section

Optical field

Evanescent field

Core

Lower cladding

Optical ray

Wavefront

1-2

2-3

Upper cladding (air)

Φ

1

2

3

Figure 2. Side and cross-section view of light propagation in a waveguide (the cross-section view
shows superimposed the optical field).

By looking at the fundamental mode we notice that the optical field extends outside the core
of the waveguide as an evanescent tails that decays exponentially. Basically, this tails extend deeper
into the cladding medium if the relative difference of index of refraction (or index contrast) is low.
If the optical field tail extends in air, it will allow interaction with another structure, modifying the
propagation of the light, which correspond to the operation principle (c) in Figure 1. Increasing the
evanescent field may be obtained by designing a waveguide close to the mode cut-off wavelength.

Moreover, this evanescent tail shows that the optical field “sees” the interface between the
materials, and all the unevenness that may be present there due to the fabrication process. It has
been shown that the higher the index contrast is, the more loss would be induced by scattering on the
interface asperities [14]. The fabrication process of optical fiber (pulling of fiber and thick cladding) is
very different from the techniques used for integrated optics, which are derived from techniques used
in microelectronics (photolithography, etching of thin-films/cladding). Then the scattering effect due
to the interfaces roughness is much larger than in optical fiber and the typical propagation loss goes
from 1 dB/km to 1 dB/cm. However we should realize that the compactness of most integrated
optics devices (length in the order of cm or less) makes the loss figure of the waveguide much less
important than for optical fiber, and even high-loss technologies remain useful.

The significance of the refractive index contrast makes it an interesting yardstick to evaluate
a certain waveguide technology and we list in Table 1 the main features of two typical waveguide
technologies with high and low refractive index contrast. It should be noted that waveguide may have
different contrast along the vertical and the in-plane directions, and in such a case, more complete
analysis is required, although the general guidelines given in the table still hold.
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Table 1. Features of index guiding waveguides with high or low refractive index contrast (λ refers to
the wavelength of the guided light).

Properties High refractive index contrast Low refractive index contrast
Radius of curvature short large
Propagation loss high low
Mode field small large
Coupling with optical fiber bad good
Evanescent field in air large small
Waveguide width λ and sub-λ several λ

If the vertical refractive index contrast is usually obtained by the deposition of thin-films of
different index of refraction, the in-plane refractive index contrast that defines the channel waveguide
is obtained by patterning of the stacked layers. The most common architectures are shown in Figure 3,
where the darker materials have higher index of refraction.

Ridge Rib Inverted rib Strip-loadedBuried ridge DiffusedBuried rib

Figure 3. Cross-section of different types of waveguide based on TIR superimposed with their
fundamental mode optical field (darker material have a higher index of refraction).

The rib and inverted rib waveguides do not employ materials of different index for lateral
confinement and largely rely on a change in effective index arising from the structure, resulting in
high simplicity in fabrication only surpassed by the ridge waveguide. The edge roughness of the
etched structures induces scattering loss and the rib waveguide is worse in this aspect while most
designs try to keep the mode profile buried below the surface and its deleterious scattering effect.

For keeping single-mode operation, the width of the patterned channel should be small and
depends heavily on the index of refraction of the material and on the index contrast. Actually these
two factors directly contribute to the phase shift during the wave zigzag (see Figure 2), the index
affecting the phase accumulated while traveling (Φ) and the contrast governing the phase shift at the
interface (φi−j). For example if the index of refraction of the material is high (e.g., for Si n = 3.5) and
the contrast large (e.g., Si/Air) single-mode ridge waveguide at λ = 1.5 µm will require a core with
width in the order of 300 nm. In the other hand for a low-index-low-contrast waveguide, as found
in an optical fiber, the core could be in the order of 9µm. The rib, the inverted rib, the strip-loaded
or the diffused channels may yield a small in-plane index contrast, helping to relax the patterning
dimension constraint.

Besides optical wave transmission using TIR there are other means for guiding light. Actually,
as propagation loss in the 1 dB/cm range or even larger is acceptable if the device waveguide is
short enough, even intrinsically lossy guiding principles may be implemented. The simplest is to
use a hollow core and use fully reflective walls that will also create a pseudo-TIR. This principle
has been used with success for microwave and also for integrated optics, either with metallic mirror
walls, photonic crystal (PhC) arrangement [11] (generally showing in-plane only photonic crystal
guiding while classical TIR is used in the vertical direction) or multilayer reflective dielectric coating
(ARROW waveguide [15]). The ARROW waveguide is actually based on a core with a lower index
(e.g., SiO2) surrounded by high index multilayer reflective coating (e.g., Si3N4/SiO2). Finally yet
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another possibility is to use plasmon resonance in metal strip, but in that case the device has to be
very short (a few µm) because the loss becomes very large.

We have compiled in Table 2 the different waveguide technologies used in the literature with the
working principle of the devices. The vast diversity of technologies used is a clear indicator that there
is not a single Swiss’ knife waveguide process that would work in all cases. Moreover, if the device
operation principle and the integration issue are important factors of choice, it is clear that another
contributor lies in the prior existence of a process in the lab/company.

Table 2. Comparison of waveguide technology from literature (materials of the lower
cladding/core/upper cladding, channel structure from Figure 3, principle from Figure 1).

Materials Channel Principle References

Air/Si/Air
ridge

evanescent [16–29]
coupler [30]

direction [31]
PhC evanescent [32]
slot evanescent [33]

GaAs/AlGaAs ridge direction [34]
glass/doped glass/Air diffused evanescent [8]

InP/InGaAsP ridge direction [35,36]
evanescent [37–42]

metal/Air/metal (hollow) reflection evanescent [43]
polymer/Air ridge coupler [44–47]

polymer/polymer ridge direction [48]
buried ridge coupler [49]

SiO2/glass/Air rib strain [4]
SiO2/Au plasmon evanescent [50]
SiO2/Al2O3/SiO2 ridge direction [51]
SiO2/BK7/SiO2 strip-loaded strain [52]
SiO2/PS/Air inverted rib strain [53]
SiO2/PSG/Air rib evanescent [54]

SiO2/PSG/SiO2
buried rib direction [55–62]

coupler [63–65]
buried ridge coupler [28]

SiO2/Si/Air rib coupler [26,27]

SiO2/SiON/Air

rib evanescent [66–69]
rib strain [70]

rib ARROW strain [71]
ridge evanescent [72–75]

SiO2/SiON/SiO2

buried ridge coupler [76]
strip loaded strain [77–79]

rib evanescent [80]
inverse rib direction [6]
buried rib direction [81]

SiO2/TiO2/Air planar evanescent [7,82–84]

Quite naturally we see that devices based on evanescent interaction use air as upper cladding,
creating large refractive index contrast in the vertical direction. We also notice that channel patterning
is often done using low refractive index contrast structure (rib, diffused), helping somewhat decrease
the constraint on dimension so that standard contact UV photolithography (critical width above
≈ 1.5 µm) may still be used. A notable exception to this rule is the Air/Si/Air platform with ridge
waveguide, a high refractive index contrast technology, requiring ebeam or DUV lithography for
patterning the sub-µm channel and advanced etching techniques for reducing sidewall roughness
(e.g., Fast Atom Beam [19]) to keep the propagation loss below 1 dB/cm. Actually the main drawback
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of this technology—when the patterning issue is solved—is the poor coupling performance with
optical fiber, but this can also be controlled with short taper structures (about 200 µm long) that
decrease optical fiber coupling loss below 1 dB [85,86].

The main low refractive index contrast technology is based on phosphorus doped glass (PSG)
and has been used by different teams for producing devices based on coupling or direction change
exhibiting very low propagation (0.1 dB/cm) or fiber coupling loss (<0.5 dB). However, because of
the relatively large dimension of the waveguide, this technology is unsuitable for devices based on
evanescent or strain principles. A few groups have tried to push the co-integration further, by using
active materials like InP or AsGa. In this case it is possible to envision devices where next to the
passive waveguide and the MEMS actuator we build active optoelectronic sources and detectors—but
the trade-offs could be too hard to master.

2.2. MEMS Actuator and Waveguide Co-integration

Since the onset of MEMS technology the issue of integration with other technologies has been a
field of intense research. The integration of electronic circuits with MEMS structure for building smart
sensors has spurred a lot of efforts, eventually resulting in monolithic integration with the iMEMS c©
process at Analog Devices [87]. At the same time an equally successful strategy has been to follow
an hybrid integration approach with electronics and MEMS chips in the same package, using either
flip-chip or side by side chips in a more classical System in Package (SiP) approach.

The co-integration of MEMS actuator and waveguide has followed the same path, with
demonstrated monolithic, stacked and hybrid approaches.

The advantages of monolithic integration are well known (reduced size, reduced parasitic, direct
path to array fabrication) but it carries its share of drawback and tradeoff because the technology
caters both for waveguide and MEMS actuator. For avoiding a substantial increase in the number
of process steps and a correlated decrease in fabrication yield, it is possible to use the same material
for the waveguide and the actuator. In this case, the tradeoff is particularly severe, as the material
must satisfy simultaneously optical requirements (optical index, layer thickness) and mechanical
requirements (stiffness, mechanical stresses).

In the example in Figure 4, the InGaAsP layers serves as structural and optical layer while
the In0.53Ga0.47As layer serves as sacrificial layer as it may be easily dissolved with a mixture of
HF and hydrogen peroxide, without affecting the phosphorus-containing layers. We note that the
narrow structures etched in the waveguide layer stack becomes free while the broad structures remain
anchored to the substrate, allowing to obtain the desired moveable and fixed structure. The process
looks deceivingly simple, however it shows the kind of tradeoff required in monolithic integration:
the InGaAsP layers are doped to make them conductive and allow powering the electrostatic actuator,
but, if the doping is too high, they will start absorbing light through free carrier absorption, and the
optical loss in the waveguide will increase dramatically.

In0.99Ga0.01As0.01P0.99

In0.53Ga0.47AsInP

In0.96Ga0.04As0.08P0.92

Figure 4. Example of monolithic integration process based on InGaAsP ridge waveguide and actuator
(adapted from [36,39]).

A simpler path to monolithic integration is offered by stacked integration. This strategy requires
less material tradeoff by stacking multiple layers with some layers geared toward actuator fabrication
and others toward waveguide fabrication—but in that case the fabrication process becomes much
more involved and presumably more costly. Other issues with stacked integration may impact the
device operation and fabrication: for example, stacking will normally place the actuator and the
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waveguide in different planes, making their interaction more challenging, and the process will require
a planarization step if the topography of the patterned lower layer is not to deform the top layer.

We present in Figure 5 a typical stacked integration where an electrostatic actuator is placed
over a pair of ridge waveguide in Si3N4 in order to interact with the evanescent optical field and
spoil the coupling between the waveguides. In the stacked integration, we see that we may use
different materials for the actuator and the waveguide. Still these materials need to be compatible
(patterning the upper material should not destroy the lower material), and will often require a buffer
sacrificial layer (here polysilicon deposited and patterned in the third and fourth steps respectively)
that separates the waveguide from the actuator and is normally dissolved in the last process step. We
note here that no planarization steps of the buffer layer has been introduced (after the third step), and
it is obvious that the bumps and valleys of the patterned waveguide layer change the topography of
the Al layer placed on top.

Si3N4SiO2Si Al

Figure 5. Example of stacked integration process based on a SiON ridge waveguide and a metal
actuator (adapted from [75]).

The hybrid approach relies on fabricating MEMS actuator and waveguide separately. Its main
advantage is the possibility to use the best technologies both for the waveguide and for the MEMS
actuator without compromise before they are assembled together. At the difference of electronics
co-integration, most hybrid waveguide/actuator co-integration strategies are based on wafer level
assembly—with appropriate bonding technology—and avoid device level assembly (e.g., flip-chip or
SiP). The main difficulty of hybrid integration rests in the bonding step. Actually, besides presenting
the difficulty of developing a reliable bonding technique, hybrid integration becomes complicated if
precise alignment is required between the two wafers.

We show in Figure 6 a typical example of an hybrid fabrication process. The waveguide is a
buried ridge type made of 3 layers of polymer with a patterned core on a glass substrate. We note
here that the last step, that would define the lateral cladding after the gold mask deposition, is left for
after the assembly, so that the waveguide layer is continuous and much simpler to manipulate and
assemble with the actuator wafer. This second wafer is fabricated using typical SOI process [9], and
we notice that the last step before the assembly is the release of the silicon structure. This step is more
commonly found after the assembly as the unreleased structure is stiffer facilitating the relatively
harsh assembly process. However in the work presented in Figure 6 the assembly step uses capillary
force, making this order of process steps appropriate.

polymerSiO2Si AuphotoresistMEMS actuator process

Waveguide process

Assembly

Figure 6. Example of hybrid integration process based on polymer buried waveguide and silicon
actuator processes (adapted from [49]).

We attempted to show an exhaustive panorama of the strategies adopted in the literature for
MEMS actuator fabrication and co-integration in Table 3. From the actuation principle point of
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view, we see an overwhelming majority of actuators based on electrostatics, either using comb-drive
actuators or gap-closing actuators [88]. Only a few other principles are applied like thermal or
magnetic actuators. Somewhat surprisingly, the table reveals that monolithic co-integration is favored
over hybrid co-integration, although we see that the stacked integration is often preferred to a true
monolithic process where the same layer is used for actuator and waveguide.

Table 3. Comparison of actuator technology and co-integration from literature (materials of the
actuator, principle of operation of the actuator, co-integration type).

Materials Principle Co-integration References
Au gap-closing monolithic [50]

fluid thermal hybrid [63,64]
electrostatic hybrid [65]

GaAs/AlGaAs comb-drive monolithic [34]
glass (sensing) hybrid [7,82]

InGaAsP
gap-closing monolithic [35,36,39]

light monolithic [40]
(sensing) monolithic [41]

InP gap-closing monolithic [37]

metal gap-closing hybrid [5,54]
stacked [72,74,75]

Ni/Fe magnetic hybrid [55,56]
polymer/metal gap-closing monolithic [8]
poly-Si gap-closing hybrid [28]

Si
gap-closing hybrid [67–69,73,89]

monolithic [20,21]

(sensing) monolithic [30]
stacked [4,52,53,70,71,77–79]

SiON
gap-closing hybrid [66,83]

monolithic [57,58,61,62]

(sensing) hybrid [84]
monolithic [6,51,59,60,81]

SOI
comb-drive

hybrid [49]
monolithic [19,22,24–27,31,32,48]

stacked [76]
gap-closing monolithic [16,17,23,29,43]

(sensing) monolithic [33]

If the recent widespread use of the SOI process, yielding ridge channel with Air/Si/Air structure,
shows the sign of a convergence toward a universal platform with many strengths, the large range
of processes that have been developed over the years clearly shows that there is no simple answer
to waveguide and MEMS co-integration. A proper choice of the right platform will have to be
based on consideration about the device operation: overall loss in the device (i.e., coupling and
propagation loss), strength of the evanescent field in air, type of actuator, monolithic/stacked/hybrid
integration, compactness...

3. Devices Based on Coupling Between Fixed Waveguides

3.1. Design Consideration

A direct integration of bulk optical circuits results quite naturally in the use of fixed waveguide
that are coupled by an external element, the coupler (Figure 1a). From the literature we see a large
diversity of movable couplers, be a simple mirror, a fluid, a network of waveguide or a Bragg reflector.
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Those devices have to face a particular challenge as, paradoxically for a waveguide based device,
they include propagation in free space. This strongly influences the loss of the device as it now faces
two new sources of optical loss: beam spread due to diffraction in open space and Fresnel reflection
at each interfaces.

Diffraction effect will steadily enlarge the beam propagating in free space and ultimately lower
the coupling with the receiving waveguide. A complete analysis will require to know the exact mode
profile of the waveguide but some insight may be gained by looking at the expression from Gaussian
beam coupling, although approximating the waveguide mode field by a Gaussian is only somewhat
valid for low refractive index contrast waveguide. Assuming an elliptical Gaussian mode, the power
fraction γ coupled from one waveguide into another waveguide after propagation of a distance s is
given by:

γ(s) =
1√

1 + λ2s2/4π2w4
0x

1√
1 + λ2s2/4π2w4

0y

(1)

where w0x and w0y are the beam width in the X- and Y-direction, respectively, and λ is the wavelength
of light in vacuum. Typical loss figure for some popular waveguide structures is shown in Figure 7
showing in general that the coupling element need to be relatively short for keeping diffraction loss
below 1 dB. The coupling efficiency is also affected by other effects like the tilt or the offset of the
waveguides that will lower even more rapidly the coupled wave [90].
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Figure 7. (Left) Diffraction loss (λ = 1550 nm) between two butt-coupled fixed waveguides of
different technologies (SiO2/PSG/SiO2 [65], InP/InGaAsP [36], SiO2/Si/Air [27]), as a function of the
separation distance s. (Right) Reflection (Fresnel) loss at an interface between a material of refractive
index n and air.

Moreover when the light has to cross the interface between the waveguide and air, it is affected
by Fresnel reflection, that will in turn lower the transmitted light fraction T:

T = 1− R = 1−
(

n1 − n2

n1 + n2

)2

where n1 is the refractive index of the core and n2 = 1 the refractive index of air. As can be seen
in Figure 7, when the core material is SiO2 (n ≈ 1.5) we find a reflection of about 4% (0.17 dB
loss/interface), but with Si (n ≈ 3.4) it reaches almost 30% (1.5 dB/interface) and will require
to be decreased by using special coating or interference for obtaining useful devices [36]. As
such, it makes sense that most devices based on external coupler are based on the SiO2/PSG/SiO2

waveguide technology.

3.2. Principle Application

Historically, the first device using this technology was simply based on a metallic mirror that
could be inserted at 45◦ between two perpendicular waveguides (Figure 8). In this case we obtain a
2 × 2 optical switch, with a “through state” where the light goes straight in the waveguide and the
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“cross state” where the inserted mirror diverts the light to the other waveguide [5]. We have also
represented in the figure the influence of the gap between the two waveguides on the optical loss. We
observe that if we use low refractive index contrast waveguides (e.g., Si02/PSG/SiO2), the mode size
becomes relatively large and the diffraction loss is kept very low. For high index contrast waveguide
the figure is much worse and in that case the gap has to be kept very small for avoiding excessive
loss - and of course Fresnel loss will also become higher. The diffraction loss is not the only loss that
will affect this kind of mirror switch, as the roughness of the mirror has to be kept well below the
wavelength (a rule of thumb is to keep Ra < λ/20 to keep loss at a few %) for avoiding scattering at
the reflection. Accordingly, some investigators [89] have focused on producing good vertical mirrors
using deep RIE silicon etching or high aspect ratio polymer patterning (i.e., SU8 [91]). The author have
measured a roughness of Ra = 21 nm on the silicon mirrors etched in an optimized Bosch process, well
below the rule for operation at 1550 nm (λ/20 ≈ 75 nm), resulting in scattering loss of about 2.5% at
an incident angle of 45◦.

mirror

Through state Cross state

mirror

Through state Cross state

2×2 Switch 1×2 Switch

Figure 8. Principle of 1 × 2 and 2 × 2 optical switch [5,89] using a sliding flat mirror as coupler
between fixed waveguides.

This switch may also be operated as a 1 × 2 switch when the light is reflected only on the front
of the mirror. This is a more reliable configuration as the 2 × 2 version requires a very thin two
sides mirror. Actually the thickness of the mirror will slightly offset the light beam upon reflection,
increasing the loss of the switch [5]. In this case to avoid this issue it seems possible to use a
transparent material for the mirror [89] and coat the thin-film reflecting layer on a single side. In
any case, the interest of a 2 × 2 switch over a 1 × 2 switch becomes evident when the switches are
combined to form n × n switch matrix, the former allowing for certain matrix architectures to divide
the number of switch cells by a factor of 2.

More recently, another co-integrated architecture has been proposed where the mirror is rotating
for providing an 1 × n optical switch (Figure 9). Interestingly in this device [76] the length of
free-space propagation (and the associated diffraction loss) is kept to a minimum by using a planar
waveguide that will show diffraction in the in-plane direction only. This spread is then compensated
by focusing the light with a curved mirror instead of a flat mirror. The complexity of the integration
is mitigated by using a stacked approach and building all the optical elements (including the curved
mirror) with the optical layers. Still, the stringent requirements for the rotation axis require a complex
design based on hinges, that will need more refinement before a fully functional device is produced.

For deflecting the beam in the previous devices, we require a rather large stroke for the actuator,
making it hard for the speed of these system to increase significantly. It is actually possible to
take benefits of interference phenomenon for drastically reducing the actuator stroke to a fraction
of the wavelength.

A group at Bell’s lab has proposed to use phase control in a folded Mach-Zehnder interferometer
(MZI) for switching (Figure 10). The mirrors placed at the output of the two waveguides allow for
controlling the length of each arm of the MZI. When the arm length are the same, the light that
comes into the device at the top port will leave from the bottom port (and reciprocally). If one of
the mirror is moved, it creates a phase difference δφ between the two arms and the output light will
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split continuously between the top and bottom port as sin2(δφ/2) and cos2(δφ/2) respectively. The
circulators on the left allows for separating the incoming and outgoing light, effectively giving 2 input
and 2 output ports in this folded configuration. A phase shift δφ = π/2 enables switching of the light
between the two output ports, and since the light is folded at the mirror it is sufficient to move the
mirror by λ/4. In this design this was obtained by applying 45 V on the comb-drive actuator and
the switching speed reaches 150 µs that is about an order of magnitude faster than the other mirror
based switches. The ability to adjust both mirror positions improves tremendously the manufacturing
tolerance for reaching the initial state at δφ = 0 + 2kπ.

Si3N4SiO2Si

input waveguide

output waveguides

rotating actuator

center of rotation

curved mirror

planar waveguide

channel waveguides

}

Figure 9. Sketch of a 1 × 5 optical switch [76] using a rotating mirror.

SiO2Si

ground electrode

3dB coupler mirror 1 electrode

mirror 2 electrode

mirror 1

mirror 2

input 1

output 1

input 2

output 2

folded Mach-Zehnder interferometer

}
comb-drive actuator

Figure 10. Sketch of a 2 × 2 optical switch based on a tunable folded Mach-Zehnder interferometer
[26,27].

As the device is fabricated with monolithic co-integration, the waveguide and the actuator is also
made of silicon on a SOI process. For reducing the Fresnel loss, the waveguide termination facing the
mirror is antireflection (AR) coated at a 45◦ angle using a shadow mask, but the complete device still
exhibits large loss (>10 dB). The possibility offered by integration of an integrated optics circuit and
an array of mirror for controlling the phase of the reflected light, has been used by the same team
for proposing a wavelength switch with 16 channels [28]. The device uses a similar principle as the
Mach-Zehnder switch, except that an integrated planar circuit first splits spatially the 16 wavelength
using an arrayed waveguide grating before the light is sent to the mirror. Three orders of diffraction
of the grating are collected for improving the extinction ratio with an arrayed waveguide lens placed
between the grating and the mirrors. The device is based on hybrid co-integration with low loss
waveguide in SiO2/PSG/SiO2 for the complex planar lightwave circuit and an array of out-of-plane
polysilicon mirrors built with surface micromachining.

The application of mirrors does not stop here as a team at EPFL has demonstrated an original
architecture resting on a flipping mirror co-integrated with a hollow waveguide [43]. The group
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proposed a Y-branch hollow waveguide, with the mirror flipping on the side at the branch akin to an
“optical switchpoint”. The difficulty arises from the technology of the hollow waveguide requiring a
complex process for coating the inside of the waveguide on its four sides. The best results obtained
used a gold coating exhibiting propagation loss in the order of 1.8 dB/cm. If the device suffered from
a low contrast between the two operating states, it had a very high speed, as the switching could be
obtained in 10 µs that is 100 times faster than with most MEMS based optical switches.

Reflection is a powerful method for changing light direction, but it does not need to use an
external mirror. It is in fact possible to use the total internal reflection appearing at a slanted
waveguide/air interface and then to spoil this reflection by introducing an index matching fluid.
As shown in Figure 11, when the index matching fluid is present at the interface, the light stops
reflecting and goes straight. The built optical switches have relied on several principles for ensuring
the motion of the fluid in and out of the slit. The first devices were based on thermally driven
droplets (thermocapillarity effect [63] or vaporization [64]) using integrated heaters close to the slit,
but one of their main drawback was that the heat would significantly change the fluid refractive index
requiring special packaging scheme for mitigating this issue. The later device shown here [65], used
an electrostatically driven membrane to push the fluid in and out of the slit, avoiding the problem of
the thermal actuation.

This principle may easily lead to integration in large matrix, and up to 32 × 32 matrix [64] have
been produced. However we notice that the overall loss was heavily dependent on the path (i.e., the
number of reflection), ranging between 2.6 dB and 6.9 dB in this later device.

PSGSiO2Si

index matching fluid

slit

membrane

waveguide

Through state Cross state

Figure 11. 1 × 2 optical switch based on spoiling the total internal reflection with a fluid. (Insets)
Cut-out view showing the electrostatic membrane actuator in the Through and Cross states (adapted
from [65]).

Channeling the light between the fixed waveguides may be obtained not only by using mirrors
but also by using a network of waveguides, in a manner similar to what was done in old manual
switchboards. A 2 × 2 optical switch has been proposed where two networks of waveguide enables
switch between the through and the cross state [49]. As we can see in Figure 12, a comb-drive actuated
platform may place one of the two short stretch of waveguides configured as “cross coupler” and
“through coupler” in front of the input and output waveguides, obtaining the two desired states of
the switch. This device tries to remedy several problems identified with previous designs. Firstly,
although it works with electrostatic actuator it is actually bi-stable, being able to maintain the cross
and through state without power. This ability is conferred after fabrication by applying a high voltage
to the comb-drive actuator to engage a mechanical lock and store energy in the latch spring. Then,
applying a lower voltage either to the left or the right actuator will enable switching between the two
stable states of the device. Additionally it was noticed that the diffraction loss may strongly affect this
device as it has two sections of free-space propagation on both sides of the moveable platform. This
foreseeable problem was circumvented by using an arched motion of the butt-coupled waveguide as
they come into contact with the fixed waveguide, effectively reducing the gap to 0 (Figure 12-inset
right). To facilitate this complicated motion the authors choose a compliant waveguide technology
based on polymer waveguide with low stiffness (Figure 6) and designed a new type of hinge, dubbed
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the “fork hinge” [92], which yields large rotation angle in a buckling-resistant design compatible
with the latching mechanism (Figure 12-inset left). The fabrication of the device was based on hybrid
co-integration of a polymer waveguide wafer (supporting optical fiber alignment patterns) with the
actuator wafer etched in SOI using the single step “etch & release” process [93]. The device showed
a switching speed of about 0.5 ms and the optical loss were around 2.5 dB including rather high
propagation loss of 2.88 dB/cm that were attributed to problems in the material processing.

two-ways comb-drive actuator

fiber guide

latching lock

fork hinge

latching spring

moveable 
platform

gap control

waveguide anchor

1 mm

"cross" coupler

"through" coupler

Figure 12. View of a 2 × 2 optical switch [49] using a network of waveguide on a moveable platform
for coupling input and output. (Inset Left) Detail of the forked-hinge motion. (Inset Right) Arched
motion responsible for the gap reduction mechanism.

A simplified version of this device was used to form an optical signal amplitude modulator or
an ON/OFF switch. The device uses one single input and output waveguides coupled by a short
section of straight waveguide placed on a mobile platform [31]. When the comb-drive actuator is
powered the coupler waveguide on the platform approaches the end of the two fixed waveguides
and progressively channels the light from the input to the output. The authors have also tried to
reduce the gap between the waveguides in the ON state by using 45◦ inclined waveguide ends that
enables “contact” between the translating and the fixed waveguides ends, but they haven’t made any
effort to reduce the Fresnel loss. The monolithic co-integration on SOI wafer is based on Air/Si/Air
ridge waveguides 500 nm wide and 260 nm thick. This choice gives a very compact device with small
actuator stroke resulting in a relatively high modulation bandwidth of about 100 kHz. The achieved
extinction ratio between ON and OFF states is about 15 dB while the loss of the device in the ON state
is about 6 dB (that is 3 dB per coupling corresponding essentially to the Fresnel loss), excluding the
fiber coupling loss that will be relatively high because of the small mode size in this high refractive
index contrast waveguide.

We notice that all the devices we have described so far were used for building optical
telecommunication components, but there are other applications of co-integrated waveguide and
MEMS actuator that may be developed and in particular for sensing. In a sensor, the actuator
energy is not coming from the device (in general, a form of electricity) but from the external
measurand. Accordingly, actuator will be powered by acceleration, pressure, stress... for measuring
these physical quantities.

For example, the measurand could change the transmission of a coupler placed between 2
butt-coupled waveguides. In one embodiment of this principle [30] the authors placed between the
two waveguides a Fabry-Perot (FP) cavity (that is, two mirrors facing each other) with one mirror



Micromachines 2016, 7, 18 14 of 33

fixed and the other suspended. Acceleration imposed on the device will move the suspended DBR
mirror, changing the FP-cavity length and shifting the transmission peak of the FP. Tracking the FP
transmission peak will directly inform on the acceleration a, as the wavelength shift ∆λ is simply
related to the suspended mirror resonant frequency ωn and the order of interference in the FP cavity
m: ∆λ = −2a/mω2

n. The complete device could be co-integrated on a SOI wafer with a single etch
as the mirror consisted of a distributed Bragg reflector with a series of 3 alternating air/Si slabs. The
prototype sketched in Figure 13 had a cavity length of 27 µm resulting in an order m = 52 and a
sensitivity of about 90 nm/g. The range of the accelerometer is limited by the free spectral range
(FSR) of the FP (the transmission peak repeats itself every FSR) which is 0.26 g for this particular
cavity, understanding that a shorter cavity will show a larger range and sensitivity. A similar device
has also been fabricated on an InP/InGaAsP platform [40].

optical fiber

Fabry-Perrot cavity DBR mirrors

GlassSi

tapered waveguide

suspension spring

proof mass

Figure 13. Acceleration sensor using Fabry-Perrot interferometer with a suspended DBR mirror
coupled to tapered waveguides monolithically integrated on silicon [30].

Finally, the capability of detection of light has also been explored in the so called Integrated
Optical Metrology [44–47], where a network of waveguide is used to measure the position,
deformation, rotation speed, etc., of microstructures to get mostly positional feedback and enable
closed loop control of MEMS. The hybrid principle of co-integration based on polymer waveguide has
not seen a complete demonstration, but it is an interesting approach that may be useful in the future.

4. Devices Based on Modification of Waveguide Direction

4.1. Design Consideration

The possibility to change the direction of a waveguide (Figure 1b) is a very appealing mean of
changing light propagation. The waveguide is then considered as a beam that is bent by applying a
force with a MEMS actuator.

For describing this structure mechanically, the waveguide is seen as a cantilever with a force
applied at a distance L from its anchor, that has a stiffness k given by

k =
E
4

hw3

L3

where E is the elasticity modulus of the cantilever material, h its thickness, w the width of the
waveguide (in the direction of bending). For example an SiO2/SiON (E ≈ 70 GPa) cantilevered
waveguide 2 mm long, 15 µm wide and 25 µm thick [62] will have a stiffness of k = 0.18 N/m,
requiring a force of about F = kδx = 2 µN for moving its tip by δx ≈ 11 µm.
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On the optical side, in addition to the Fresnel loss appearing at the exit facet of the waveguide, the
bending may introduce additional losses due to the leaking field at the bent interface with increased
reflection angle. The average radius of curvature R̄ (R is decreasing linearly from 2R̄ at the anchor to
0 at the tip) in the cantilever is given by

R̄ =
FL

6Ehw3 = 3
F

kL2

and the attenuation coefficient is varying rapidly with the radius of curvature [94] as

α = C1e−C2R̄

where C1, C2 are large constants depending on the straight waveguide geometry and the light
wavelength. Then the attenuation A in dB in the bent waveguide may be estimated by
A = 10 log e−αL = −4.3αL and will thus degrade very rapidly with smaller R̄. Still, for low refractive
index contrast an average bending radius R̄ above a few mm will create limited loss, whereas in
high refractive index contrast, the radius may be below 100 µm and still yield acceptable loss figure.
Actually for the silicon nanowire waveguides [85], the bending radius may be as small as 2 µm and
still maintain loss below 0.5 dB.

We note also that if the light from the bent waveguide has to be coupled in another (fixed)
waveguide, the device will also be affected by diffraction loss issue (Figure 8-right) as the light has
to propagate in free space in the gap between the two waveguides and also by offset loss if the two
waveguide ends are not perfectly aligned. The loss due to the waveguide tilt at the tip (tip slope
is given by θ = FL2/2EI = 1.5δx/L) is normally very small compared to the other loss as for
example θ = 0.2◦ for the 2 mm long cantilever above and θ = 2.3◦ for a 250 µm long cantilever
with 10 µm deflection.

Accordingly, neglecting the tilt and Fresnel loss and using a Gaussian field approximation, the
power coupling efficiency for a longitudinal separation s and a lateral offset δx is given by [81]:

γ(δx, s) =
1√

1 + λ2s2/4π2w4
0x

1√
1 + λ2s2/4π2w4

0y

e
− δx2/w2

ox
1+λ2s2/4π2w4

0x

This figure may rapidly reach several dB if the waveguide index contrast is high and the mode
correspondingly small as we may see in Figure 14.
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Figure 14. Coupling loss between two butt-coupled waveguides of different technologies
(SiO2/PSG/SiO2 [65], InP/InGaAsP [36], SiO2/Si/Air [27]) as a function of lateral offset δx for two
different gaps s = 0 µm and s = 5 µm.
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4.2. Principle Application

One of the first idea that emerged from a team at LETI was to couple the bending waveguide with
a pair of fixed waveguides and propose a 1 × 2 optical switch [57,58], as sketched in Figure 15-left.
The application of a voltage V1 (respectively, V2) will move the cantilevered waveguide toward the
output waveguide 1 (respectively, output waveguide 2) effectively channeling the input signal toward
the desired output. The device is obtained by monolithic integration needing a trade-off between
the actuator and the waveguide functions. In this early version of the device the electrodes placed
on the waveguide sides form a gap-closing actuator but they were replaced by large comb-drives
in later version [62]. This change allowed to separately optimize the geometry of the cantilevered
waveguide and the actuator force. We note in this device the presence of “compensation beams” that
were required to keep the cantilevered waveguide in the same plane than the two output waveguides.
In fact, the stack of SiO2 layers in the waveguide (see inset in the Figure) is inevitably plagued by a
stress gradient resulting in upward or downward bending, that is minimized by the presence of
the compensation beams. The SiO2/PSG technology used for the waveguide has good fabrication
tolerance as we may gather from the curves in Figure 15-right: even with an offset of 2 µm and a
separation of 5 µm the loss remains below 1 dB. Accordingly, the switch shows nice characteristics
with insertion loss in the order of 1.5 dB, and a behavior almost insensitive to the wavelength in a
very wide range of wavelength (1150–1650 nm). This last figure is a major asset for switches that are
not based on interference as it is usually the case in integrated optics technology, where bandwidth
of 50nm are already considered wide. The speed of the switch is in the order of 1 ms, and even faster
when there is no index matching fluid used in the gap between the waveguide (using the switch
without gel increase the optical loss to 2.5dB). Multiple version of the switch have been produced by
fully using the co-integration opportunity and cascading multiple 1 × 2 units, providing devices in
1 × 4 and 1 × 8 configuration [61,62].

Compensation beam

Optical fiber

Input

Output 1

Output 2

Cantilever

V2

V1

A

A'

PSGSiO2Si Al

Figure 15. Example of 1 × 2 optical switch using control of direction of a cantilevered waveguide
adapted from [62] (inset: cut-out view along A–A’).

This principle has seen many different versions trying to improve on some of this basic features.
A team at Hitachi proposed to use the cantilevered waveguide with an hybridized magnetic

actuator for providing a dual 1 × 2 optical switch [55,56]. Using a combination of ferromagnetic
sheet on the movable head and of permanent magnet and electromagnet on the stator they obtained a
bi-stable actuator, able to maintain any of the two working positions without power consumption.
The current flows in the electromagnet only when the switch has to flip from one output to
the other. The insertion loss were high above 3 dB, presumably because the bi-stable nature of
the actuator prevented continuous waveguide positioning that would have enabled to tune the
waveguide coupling.

The original switch design used low refractive index contrast waveguide technology for
ensuring low propagation loss and a good coupling with optical fiber, however this implied that the
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width and thickness of the waveguide had to be relatively large and consequently the cantilevered
waveguide stiff. This characteristic results in a relatively large size of the switch for obtaining a
softer cantilever (about 2 mm long) and/or integrate strong actuator. For reducing the waveguide
dimension a simple path is to opt for a high refractive index contrast waveguide.

A research group at Sandia lab has proposed a 1 × 2 switch with monolithic co-integration
using AsGa rib waveguide technology. They obtained a lower actuation voltage (down to 3.3 V
for the 700 µm long cantilevered waveguide) and much smaller footprint (less than 500 µm long
device for the shorter cantilever with actuation voltage below 12 V) [34]. Additionally, the stiffer
structures showed a fast switching time below 50 µs that could still be improved by using excitation
with overshoot.

The same team also proposed a cantilevered waveguide 1 × 2 switch based on an interesting
stacked co-integration with SOI actuator and polymer waveguide placed on a Si cantilever resulting
in a device with characteristics similar to the original device from LETI [48].

The possibility to integrate source or detector and use a high refractive index contrast waveguide
technology attracted attention toward non-silicon technology. A group at the University of Maryland
developed devices on the active indium phosphide (InP) technology, proposing a monolithic
co-integration process for an 1 × 2 switch based on the same principle [35,36]. The propagation
loss were a bit high at 2.2 dB/cm in the ridge cantilevered waveguide [38] but the compactness of the
device ended with a total loss of 3.2 dB (excluding fiber coupling loss) and an actuation voltage of
less than 7 V.

Active devices like switches were not the only devices proposed using waveguide direction
change. When the actuator in Figure 15 is not powered, the suspended beam will be subject to
acceleration and shift, changing the coupling behavior with a butt-coupled fixed waveguide as shown
in Figure 14. The sensitivity to acceleration may be improved by increasing the weight attached to
the cantilever, as the resulting force acting on it is given by F = ma where m is the mass of weight.
The relative simplicity of the device (as integrating an actuator isn’t needed) made it one of the first
application of the co-integration technology, with mostly monolithic devices developed in SiO2/SiON
technology [6,51,59,60].

A slightly different approach used the beam as a resonator with eventually a measurand affecting
its resonant frequency [81]. The resonator is put in vibration using a thermal actuator that took benefit
of the bi-metal effect existing in the stack of layer used for the cantilever. By flowing AC current
through a patterned metallic electrodes atop the cantilever, it could be excited up to 300 kHz. The
vibration of the cantilever are measured by recording the coupling loss between the vibrating and
the fixed waveguides. The author used a series of 8 cantilevers with varying resonant frequency
that were integrated on the chip with a 1 × 8 fan-out waveguide network for their interrogation.
Another possible use of this architecture could be in developing a frequency analyzer for sound,
where the sound waves could put in vibration the series of cantilever with staged resonant frequency.
Recent developments adapted this technique to the Si/Air nano-waveguide on SOI substrate for mass
sensing [95]. Interestingly the need for good control of residual stress to obtain straight suspended
waveguides was solved with Ar-plasma bombardment of the waveguide surface, a technique that
could be applied more broadly for avoiding the use of tethering structures [62].

5. Devices Based on Interaction with the Waveguide Evanescent Field

5.1. Design Consideration

The possibility to interact with the evanescent field of a propagating mode has, from an early
period [96], been recognized as a powerful mean for switching light. Actually, there are two main
ways to use this principle (Figure 16): either a slab of material is simply brought inside the evanescent
field resulting in a modification of the effective refractive index of the waveguide mode, or, another
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waveguide is brought into the evanescent field opening the possibility to have an exchange of energy
between the two waveguides.

(a) (b)d d

L L

Figure 16. Evanescent interaction over a length L with a gap d between (a) a dielectric slab and
a waveguide, changing the effective index of refraction of the mode (b) two waveguides, allowing
exchange of energy.

In the first case (Figure 16a), a slab of material is dipped into the evanescent optical field using
the MEMS actuator. If the material is close enough from the surface of the waveguide, the effect may
be described by considering an effective index of refraction N seen by the mode of the waveguide.
N = n + ik is complex, representing with the real part n the light velocity change and with the
imaginary part k the light absorption, and depends on the slab material and on the distance between
the slab and the surface of the waveguide. The magnitude of the index modulation decreases
exponentially with the gap distance d, approximately as exp(−2d/∆z) where ∆z = (λ/2π)(n2− n2

air)

is the light penetration depth with nair the index of refraction of air [66]. In practice the maximum
distance d where a significant effect still occurs is below λ/10, that is, generally below 100 nm,
meaning that the actuator controlling this effect could have a short range—but requires high stability
because of the high sensitivity (exponential variation) of the modulation effect with d.

If the slab is not absorbing at the wavelength of interest it induces a change of the real part of
the effective index of refraction ∆n and we get phase modulation. This change over a zone of length
L induces a modification in the phase of the mode field by an amount:

∆φ = 2π
L
λ

∆n

This phase shift may be in turn transformed into intensity modulation by using an
interferometric scheme.

If the slab is made of a material absorbing light at the wavelength of interest, the change will
affect the imaginary part of the index of refraction ∆k and light is absorbed giving direct intensity
modulation. For a zone of length L the attenuation of the mode field is given by:

T = e4π L
λ ∆k

We note that in both cases we have different index changes for the TE and TM polarizations.
In the second application of this operating principle (Figure 16b), the two waveguides brought

in close vicinity may both propagate light. In that case, in addition to the refractive index change seen
previously, if the right condition are met, we observe coupling and exchange of energy between the
two waveguides.

For understanding this evanescent coupling we may, in a first approximation, describe it with
the coupled-mode theory in the weak coupling regime [73,97]. In this configuration a set of coupled
equations relates the slowly varying amplitude, a(z) and b(z), of the two coupled modes propagating
in the structure. Solving these equations for two waveguides separated by a low index gap and with
relevant boundary conditions gives the irradiance of the two modes, Ia and Ib, with the propagation
distance z as:
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Ia(z) = a(z)a∗(z) = Ia(0)
[
cos2

(√
κ2 + δ2z

)
+

δ2

κ2 + δ2 sin2
(√

κ2 + δ2z
)]

Ib(z) = b(z)b∗(z) = Ia(0)
κ2

κ2 + δ2 sin2
(√

κ2 + δ2z
)

(2)

where κ is the coupling coefficient and 2δ = βb − βa the difference between the phase constants of the
two modes (β = 2πn/λ). The equations reveal the existence of a periodic exchange of signal between
the two waveguides when they have the same propagation constant (δ = 0). The coupling period is
twice the coupling length, LC, which is given by

LC =
π

2
√

κ2 + δ2
(3)

These relations are governed by the coupling coefficient, κ, which is proportional to the overlap
between the two modes excited in the waveguides:

κ ∝
∫∫

core

u(x, y) u(x + g + h, y) dx dy (4)

where u(x, y) is the lateral profile of the mode, g the gap width, and h the thickness of the waveguide
core. As we may see in Figure 17 if there is no phase constant difference (δ = 0) the coupling is ideal,
and 100% of energy is exchanged after the length LC. However even a modest difference in phase
constant (δ = 0.04 or about 1% change in effective index with λ ≈ 1500 nm and n ≈ 1.5) will spoil
the coupling, which may be restored if we increase the coupling coefficient κ, here by a factor of 5,
by bringing the two waveguides closer. We must note that the model is no more valid when the two
modes are strongly coupled but the general behavior remains similar. The wavelength dependence
of the evanescent coupler is one of its major drawback for broadband application even if some design
may mitigate somewhat this issue.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

M
o

d
e 

ir
ra

d
ia

n
ce

 [
a.

 u
.]

Propagation distance [µm]

LC

 = 0, κ = 0.02

δ = 0.04, κ = 0.02

δ = 0.04, κ = 0.1

Figure 17. Coupling of energy between two propagation modes as a function of the coupling
coefficient κ and the difference in propagation constant δ. In the three different cases (δ = 0 and
κ = 0, blue lines; δ = 0.04 and κ = 0.02, red lines; δ = 0.04 and κ = 0.1, green lines), the dashed line
represents the irradiance of mode a and the full line the irradiance of mode b with an irradiance at
origin given by Ia(0) = 1 and Ib(0) = 0.

The previous equations are essentially valid for both TE and TM polarization. However there
is a difference in the coupling coefficient for the two polarizations that will translate in significant
coupling length difference and in general we place a polarizer in front of the evanescent coupler.
In order to obtain short coupling length, we have to achieve the largest possible ratio between the
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power flowing outside the core, which may excite the mode in the other waveguide, and the total
transported power. Of course decreasing the gap will work but at constant gap width there are ways
to keep the coupling distance short. The evanescent field decreases much slower in high index fluid
than in air (lower index contrast) and a simple way to increase this ratio is to fill the gap between the
two waveguides with a matching index fluid. Another way is to use specially designed waveguides,
mostly presenting high refractive index contrast and sub-wavelength size, like the silicon nanowire
waveguide [16], that intrinsically possess the ability to carry an important part of the power in the
evanescent part of their fundamental propagation mode.

5.2. Principle Application

In the original proposal by Lukosz et al. based on effective index change, they made use of a
very simple polarimetric interferometer, that is, they used the difference in effective index change for
the two polarizations (Figure 18). The fabrication of the device was then very simple because they
did not pattern a channel waveguide but instead used a slab waveguide. A rotating half-wave plate
and a quarter-wave plate was used to transform the linearly polarized laser light for exciting the
fundamental TE and TM mode with controlled amplitude and obtain the best fringe contrast. Then,
the dielectric slab motion caused effective index changes for the two fundamental TE and TM modes,
resulting in an overall phase shift between the two modes given by ∆φTE/TM = 2πL/λ(∆NTE −
∆NTM). Using a polarizer oriented at 45◦ at the waveguide output, the TE and the TM modes interfere
and the resulting intensity change is directly linked to ∆φTE/TM and thus to ∆d.

λ/4 plate lens lens polarizer actuator

SiO2Si TiO2

dielectric slab

λ/2 plate

Figure 18. Schematic of operation of a displacement sensor using evanescent principle and a
polarimetric interferometer [7] in a SiO2/TiO2 slab waveguide.

The authors called this use of the evanescent principle the “nanomechanical effect” as a ∆d
of only 0.9 nm around an average gap of d = 35 nm was enough to induce a phase shift of π

(a complete period of the interferometer response) for an interaction length of L = 1.2 mm at
the wavelength of 632 nm. The actuator was build by hybrid integration of a Si/SiO2 structure,
simply assembled by benefiting from reversible adhesive force appearing between the two dielectric
layers. By applying voltage between the Si backbone of the actuator and the Si substrate below the
waveguide the cantilevered slab could be brought in contact with the waveguide for modulating its
effective refractive index. This basic idea was also used to build a microphone where the actuation
was provided by the acoustical vibrations on a mylar sheet or a silicon membrane coupled to the
dielectric slab [7,82–84].

The same group further developed this principle by building more complex circuits using
rib channel waveguides. The 2D waveguide allowed more compact integration and they used
Mach-Zehnder interferometer for building intensity modulator or combined them with multi-mode
interference coupler for producing 2 × 2 optical switch [66].

Another team at Georgia Tech proposed the same type of devices relying on interaction with
dielectric slab, but managed to build devices using stacked co-integration with polymer [8]. The
movable polymer slab was built on a suspended polymer platforms electrostatically actuated and
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having protrusions below the surface for better contact with the waveguide. The process used
multi-layer electroplated metal sacrificial layer.

Instead of using phase modulation, several groups proposed to use a slab coated with an
absorptive metal [67–69,73]. Using this structure one team directly obtained an intensity modulator
with about 35 dB contrast [68] with L = 2 mm long interaction. In both teams, the fabrication
was based on hybrid assembly of two preprocessed silicon wafers, using SiON channel waveguide
process. An older proposal by a team at TI made direct use of a metal membrane derived from the
DMD projector chip for building this type of ON/OFF optical switch [54,72], but no demonstrator
seem to have been built and the focus remained on the metal membrane development.

More recently, a similar device has been monolithically integrated on InP producing both phase
and intensity modulators [41], with a projected use for co-integration with source and detector.

The evanescent principle has also been used for building optical switches, where the incoming
signal is switched between two different outputs. The large number of devices operating on this
principle follow one of two approaches: either a waveguide pair is fabricated in the coupled state and
the actuator is used for spoiling the evanescent coupling or the waveguides are normally uncoupled
and the actuator is used for inducing evanescent coupling.

The original proposal at TI [54,72] used the first scheme and was supposed to use an absorptive
metal membrane for spoiling the coupling condition, as shown in Figure 19. In this device the two
coupled waveguides could be used for building 1 × 2 and 2 × 2 optical switches, however the tight
tolerance for obtaining good coupler in passive material made this approach relatively challenging.

input

Si3N4SiO2Si Al

L

d

output 1

input

output 2

L

d

Figure 19. Schematic of operation of an optical switch based on spoiled evanescent coupling. (Left) In
the initial state the light goes from input to output 1. (Right) The metal film spoils the coupling
condition and the light goes straight and exits through output 2.

More recently, instead of a metallic film, a group used the motion of a dielectric in vicinity
of one of the waveguide to change its effective index of refraction and again disrupt the coupling.
Interestingly they used an in-plane configuration on a silicon platform, with a comb-drive actuator.
At the difference of gap-closing actuators, the use of the comb-drive allowed for precise control of
the coupling [23]. The device had a speed of 14 µs and presented a modest maximum extinction of
7 dB, presumably because the fabrication process (edge roughness) did not allow to decrease the gap
below 150 nm.

A similar approach has been used with microring coupled waveguides, providing wavelength
selective switch. The idea to use a ring resonator for obtaining a wavelength coupler or drop filter
is as old as integrated optics [94] and in such device the microring is resonating at a particular
wavelength that enables to couple the signal from the input waveguide to the ring and then to the
output waveguide. The recent co-integration with an actuator adds the ability to tune this coupling
in interesting manners.

The simplest technique consists in spoiling the coupling by making the resonant ring lossy. As
can be seen in Figure 20, it is sufficient to bring into the evanescent field of the ring a broadband light
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absorbing material (here a metal layer in aluminum) to lower the quality factor of the ring resonator
and avoid any coupling out of the input waveguide. In this way we get a switchable drop filter, able
to get at will one channel from a multichannel signal, depending on the ring resonant wavelength
(changing with radius and index of refraction). We note that the channel at λ2 may even be coupled at
the add input and it will be re-injected in the multichannel signal to the main output. The fabrication
process is based on stacked integration with high index ridge waveguides as shown in Figure 5 and
requires nano-lithography for precisely defining the ring close to the waveguides [74,75].

λ1, λ2, λ3 ...
λ2

λ1, λ3 ...

λ1, λ2, λ3 ...

λ1, λ2, λ3 ...

ring resonator at λ2

lossy medium

drop 
output

add
input

main input

main output

Si3N4SiO2Si Al

Figure 20. Schematic of operation of an add/drop wavelength switch based on waveguides coupled
through a resonant ring [75]. (Left) The resonant ring channels the signal at wavelength λ2 to the drop
output. (Right) A lossy medium perturbs the evanescent field spoiling the ring resonance and λ2 goes
to the main output.

In a second technique, the coupling is induced by the actuator, by narrowing the gap between
the normally uncoupled elements, effectively increasing the coupling coefficient κ. This configuration
has the advantage that if a continuous control of the gap is available, a precise control of κ will allow
placing the operation point anywhere from 0% to 100% transfer of energy.

Early devices exploiting this principle were built by hybrid assembly of two silicon chips using
Si3N4 waveguides [73]. The high contrast waveguide gave a significant evanescent field for obtaining
short coupling, and helped reduce the device size. As shown in Figure 21, one of the two waveguides
is fixed on the lower chip and the other waveguide on the top chip is placed on a suspended
bridge with a rigid central platform that would allow better contact between the two waveguides.
Planar electrodes on both side of the two waveguide form a gap-closing actuator that is used for
bringing the waveguides into contact, unfortunately without providing a proportional actuation.
The measurements done with the device were not conclusive, presumably because of this particular
drawback of the vertical actuation scheme.

A similar optical switch was proposed on InP/InGaAsP [39] but using an in-plane configuration,
using electrostatic actuation to attract the two waveguides in a gap closing configuration. Because of
the small gap (2 µm), the speed of such MEMS switch was rather high and reached 10 µs, and was
even faster during voltage release. It was noted that the evanescent field did not extend as far as the
original 2 µm gap and an optimized geometry with smaller gap should reach a speed of a few µs.
Other development also occurred on high-index contrast silicon platform [22]. These devices tried
to circumvent the issue linked with the gap closing actuator and used in-plane actuator based on
comb-drive, which allows proportional actuation. Moreover, in this case it is possible to fabricate the
waveguides further apart with a larger gap d to relax the fabrication constraint and then, by biasing
the actuator at a fixed voltage, to narrow the gap until the coupling just disappears, insuring optimal
actuator course and speed.

To avoid the snapping effect linked with the gap closing actuator, a group at the University of
Southampton has recently proposed to use electrostatic repulsive force instead of attractive force. By
polarizing the two waveguide at the same potential (with respect to a ground plane), the waveguide
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will repel each other continuously with increased voltage [37]. This behavior force to define a narrow
gap between the two waveguides at fabrication, where the coupling will be maximum. The authors
simulations show that the device could also be used as an efficient optical buffer delay by tuning
phase and group velocity [98].

actuator

Si stiffener

bottom waveguide bottom electrodes

bending arm

top wafer back

bottom wafer

10
0µ

m

100µm

Figure 21. Principle of operation of 2× 2 optical switch using evanescent coupling between a bending
and a fixed waveguide [73] (insets: view of the back of the top waveguide supporting structure and
view of the bottom electrode and waveguide).

The integration capabilities offered by the SOI platform with sub-wavelength waveguides allow
ambitious realization as proposed in different groups across the world. Probably the largest structure
based on this technology so far is the optical switch matrix proposed by UCLA [29]. The device is
based on an optical switch with evanescent coupling, but they proposed an original actuation scheme
based on a bending actuator. As we see in Figure 22 the matrix is composed of identical elements
allowing coupling between series of input and output waveguides. The team built matrix with 50
inputs and 50 outputs that measured less than 8 mm× 8 mm, smaller than the best open-space switch
matrix produced so-far [13]. In the through state, the cell is powered-off and the coupler waveguide is
kept far from the bus waveguide because of the bend in the silicon cantilever supporting the coupler
waveguide. The bend is induced by the gradient of stress between the sputtered metal film and the
silicon thin-film of the SOI wafer. As the electrostatic actuator is powered, the coupler waveguide
is attracted toward the substrate and reach best coupling position, allowing the signal to be coupled
from the input bus waveguide to the coupler waveguide on one side and from the coupler waveguide
to the output bus waveguide on the other side. The loss of one unit in the through state is about
0.04 dB, and it is much larger in the cross-state with 2.47 dB. However, as can be seen in the figure,
whatever the number of inputs and outputs there is only one switch in the cross-state, which is an
advantage of this matrix architecture over matrix built from cascaded 2 × 2 optical switches [73]. The
switching voltage was 14 V with a speed around 3.8 µs and an extinction ratio of about 26 dB between
the through and cross states. The useful bandwidth of the evanescent coupler was estimated at 13 nm,
limiting the use of this device in broadband application.

The prolific group at Tohoku University has also proposed very interesting devices where they
are starting to integrate multiple optical functions together on the same device. The possibility
to provide tunable wavelength filter is important for multiple integrated optics applications, and
the group proposed a simple approach based on the continuous control of the optical path length
in a microring resonator while providing at the same time a possibility to turn off this feature
altogether [25]. The basic structure is relatively simple but nicely demonstrates the technological
mastery attained on this platform. In Figure 23, the system works between input and output as a
simple drop wavelength filter, suppressing the wavelength at the microring resonance with a quality
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factor of about 4500. The right comb-drive actuator may continuously change the length of the ring,
directly modifying the resonant wavelength of the microring. In this device a motion of 1 µm of the
actuator resulted in a shift of 10 nm around the wavelength of 1500 nm, providing an interesting
tunable drop filter. The team thought that during the tuning of the resonator the system would
continuously scan all the intermediate wavelengths, and they added a feature to fully uncouple the
microring from the main waveguide. In fact, the left actuator may move the main waveguide by
more than 1 µm, effectively uncoupling the microring. By using this actuator first, it becomes simple
to jump from one wavelength to another without scanning through the intermediate wavelength. The
device was built using the high index contrast Si platform with nanowire waveguide resulting in a
very compact system with dimensions of only 150 µm × 80 µm.

AlSi

input 1

input 2

input 3

output 2

output 1

output 3

cross state

through state

SiO2

bus waveguide

coupler waveguide 

bus waveguidesilicon cantilever

0 V

stress layer

coupler waveguide

V

coupler waveguide bus waveguide

Figure 22. Principle of operation of 3 × 3 non-blocking optical switch matrix using movable
evanescent coupler on a bending actuator (adapted from [29]) (inset top: cross-section of the switch
cell in the through state showing the bending due to the stressed metal layer) (inset bottom:
cross-section of the switch cell in the cross state after applying a voltage V).
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comb-drive actuator

spring/polarization

input

output

coupler switch actuator ring tuner actuator

tunable microring

evanescent coupler switch

evanescent coupler

Figure 23. Schematic of a tunable microring resonator with ON/OFF coupling capability (adapted
from [25]).
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The same structure for tuning optical path length, but without the closed ring, has also been
used for a simple delay tuner, providing a maximum phase shift of 3π with 31 V [24].

Coupling to a microdisk using variation of the gap between the waveguides for tuning has
also been used for wavelength selective switches [16]. In the early version shown in Figure 24,
the actuation is in-plane and the process requires only one active layer and few lithography steps.
This simplicity of operation unfortunately make strong coupling harder to achieve, giving a modest
quality factor of 7700 and an extinction coefficient of 9 dB at the resonant wavelength λ. The same
team rapidly proposed an out-of-plane actuation scheme that gave much better results. In that case
the microdisk and the waveguides are not in the same plane and the coupling happens between the
top and bottom surfaces, increasing the coupling area and decreasing the surface roughness. The
electrostatic actuator used recessed electrodes for providing proportional actuation in a relatively
long range, and for almost continuously tuning the device. In addition to offer wavelength selective
switch behavior, the device presented tunable dispersion and delay [17]. Actually, by varying the
gap spacing between the waveguide and the disk this microresonator can dynamically operate in
either under-, critical or over-coupling regime resulting in variation of group delay from 27 ps to
65 ps, and group velocity dispersion from 185 ps/nm to 1200 ps/nm. The waveguide transmittance
is suppressed by 30 dB in critical coupling, and the quality factor of the microdisk is measured to be
as high as 105.

microdisk resonator

input

through output

SiO2Si Al

bendable waveguide
1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6

Gap d [µm]

T
ra

n
sm

it
ta

n
ce

 T

drop output

d

through output

drop output

λ

Figure 24. (Left) Schematic of operation of a silicon microdisk resonator wavelength switch.
(Right) Theoretical response of the drop filter as a function of the gap at λ, the resonant wavelength
of the microdisk.

This type of device presenting wavelength selectivity relies on the quality factor of the
resonator [99] and besides microdisks, Si microrings with sub µm waveguide width [19] and
microtoroidal resonators have also been tried as they may possess even lower loss [20,21]. The
results demonstrated so far tend to give the advantage to the microdisk architecture, but more work
is occurring on this architecture that may modify this evaluation in the future.

The sensitivity of the resonator is not only useful for optical telecommunication but also for high
resolution sensing. In an interesting evolution of the microring resonator a team at Yale has used the
technique to measure the nano-displacement due to the optical force in the ring itself. The team used
a slot waveguide, that is a waveguide composed of two sub-wavelength high-index beams with a
sub-wavelength gap in between. In practice the waveguides were etched in a 220 nm thick silicon
layer, with two beams of width 350 nm and an air gap of 80 nm. This waveguide caries most of
the optical power in the air gap between the two beams, and creates a strong optical gradient that
creates optical forces pulling the beams toward each others. The beams are released along a 2 µm
short section of the ring where they are able to vibrate and modify the resonant wavelength of the
ring. The ring had a quality factor of more than 60,000 allowing to reach a displacement sensitivity of
0.45 fm/

√
Hz.
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For ultimate compactness, instead of using the previous micro-ring/disk/toroidal resonators,
one may use photonic crystal. A team at Tohoku University proposed to build a wavelength drop
filter (notch filter) by coupling a waveguide to a resonant cavity composed of a few missing elements
in the photonic crystal lattice (Figure 25). The complete device is built on the device layer of a SOI
wafer with an integrated comb-drive actuator [32]. When the gap d is small enough and coupling
between the waveguide and the cavity occurs, the cavity emits light perpendicular to the device
plane, decreasing the transmitted intensity accordingly. They showed that best performance was
obtained when the gap was below 200 nm, resulting in a drop efficiency of 18 dB at a wavelength of
1.5724 µm, the resonant wavelength of the cavity. The filter presented a bandwidth of 0.9 nm, close
to the designed value of 0.75 nm.

Si

photonic crystal

photonic crystal cavity

gap d

comb-drive actuator

spring/polarization

input

output

Figure 25. Schematic of a drop wavelength filter coupling a photonic crystal resonant cavity with a
photonic waveguide.

6. Devices Based on Change of the Waveguide Strain

6.1. Design Consideration

Waveguide strain created by an actuator (for an active device, internally powered or, for a sensor,
powered by the energy of the measurand) will have two effects: inducing stress in the waveguide
and changing its length. The induced stress in the waveguide is converted to refractive index change
through the elasto-optic effect effectively changing the phase of the propagating mode [4]. Similarly,
the change in propagation distance (length increase) will also change the light phase [79]. The relative
influence of both effects may generally be controlled by using specific materials and by precisely
positioning the waveguide on bending mechanical element. For example, if we consider a waveguide
passing on membrane we find different cases, depending on the position of the waveguide in the
middle or on the side of the membrane.

It has been shown that the deflection of a membrane with length a, width b and thickness t� a, b
is maximized when a/b = 2. By placing the waveguide in the center of such membrane and for a
deflection of h� a, the change in optical phase is maximal and is given by [79]:

∆φ =
2π

λ

Nπ2

4
h2

a
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In the other hand the elasto-optic effect is maximized at the position of maximum stress, that is on the
side of the membrane, and is given more generally by [4]:

∆φ =
2πνε0

4

∫ a

0

∫ ∫
E∗i ∆niEi dx dy dz

where Ei is the relevant optical field for the TE or TM modes, and ∆ni the change in refractive index
due to the stress in the material (we have ∆ni = − 1

2 n3 pijSj using pij the elasto-optic tensor and Sj the
stress vector component). It is interesting to note that the elasto-optic index change may be positive
or negative depending on the position of the waveguide on the membrane. Precisely designing this
type of devices is somewhat tricky if the elasto-optic effect is dominating the behavior because, if the
photoelastic coefficients of many bulk optical materials are well known, those of thin films are not as
their structural and compositional properties depend on the deposition methods [78].

By using very small deflection it is relatively simple to obtain devices with dominant
elasto-optic effect [4], but proper use of material and geometry has also been used for building
devices where the geometrical effect was dominant [79]. Finally, in practical devices, the induced
phase change is generally converted to intensity modulation using some sort of two-waves
interferometric arrangement.

6.2. Principle Application

The first application of this principle used a Mach-Zehnder arrangement to convert the phase
change in intensity variation. The device, shown in Figure 26 placed the SiO2/glass waveguide on
the side of a diaphragm etched from the backside with EDP and an electrochemical etch-stop. The
diaphragm thickness was about 7 µm, with 5 µm of silicon EPI layer and the rest for the SiO2 and
glass layers for the waveguide. The second arm of the interferometer was placed on the unetched
silicon substrate and is used as a reference signal [4]. The half-wave pressure, where the phase shift
is π, was obtained with a pressure of 0.8 atm (80 kPa) resulting in an extinction of 10 dB.

straight/bridge Mach-Zehnder ring

SiONSiO2Si Si3N4

membrane

KOH etched pit

Figure 26. Schematic of strain based optical micromachined pressure sensors using strip loaded lateral
confinement with (left) a straight waveguide [51], (center) a Mach-Zehnder interferometer [4] and
(right) a ring resonator [70].

Another team improved on this original device by first integrating a photodiode in the silicon
substrate and, by working at the He-Ne laser wavelength of 0.632 µm, to directly measure the light
at the Mach-Zehnder output [77]. Then, taking benefit of the change of opposite signs in refractive
index if the waveguides are properly placed on the membrane, they improved the pressure sensor
sensitivity [78]. In practice, by placing one arm on the membrane center and the second arm on its
side, they obtained half-wave pressure as low as 2.7 kPa, with, it is true, a smaller membrane thickness
t = 5 µm. Moreover, they confirmed the higher sensitivity obtained for the TM modes, and showed
that layers under compressive stress have better performance (particularly under longitudinal stress),
giving an advantage to the PECVD layers over the LPCVD layers for building the waveguide. A team
at University of Waterloo used ARROW waveguide instead of the rib waveguides generally used by
others, and observed similar behaviors, including a doubling in sensitivity when one waveguide was
placed on the edge and one at the center in a push-pull configuration [71].
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Another similar pressure sensor has been proposed but based on an original interferometric
scheme using an imbalanced Mach-Zehnder interferometer. In their design the measurand (here the
pressure) is not encoded in the intensity at the output of the interferometer, but in the delay between
coherent wave packet obtained with a broadband source with a coherence length of only 30 µm. A
fixed delay is imposed at design by using a Mach-Zehnder with arm length difference longer than this
value, preventing the emergence of interference at the interferometer output. The pressure is slightly
changing the delay value, which can then be retrieved by using either an optical spectrum analyzer
or another interferometer with the same fixed delay between its two arms as demodulator [79].
Interestingly in their device the photoelastic effect could be almost completely neglected and only
the geometric effect appears. This may probably be traced to their use of layers in tensile stress for
building the waveguides, reducing the effect of photoelasticity [77].

As with evanescent interaction with a dielectric slab, the simplest approach for using effective
refractive index change consists in using the difference existing between the TE and the TM modes
in a single waveguide and use a polarimetric interferometer. This scheme (Figure 26-left) has been
used recently for exploring scaling rules for pressure sensors [53]. The same group that pioneered
the technology, showed that by maintaining the ratios a/b and a3/t2, the pressure sensitivity could
be kept constant. They also demonstrated the use of such structure as acceleration sensor by adding
a proof mass in the center of the membrane back [52]. They experimentally studied the effect of
the membrane thickness and of the waveguide position on the acceleration sensitivity, obtaining
about 93 mrad/g for a membrane size 10 mm × 10 mm × 50 µm with a central proof-mass
5 mm × 5 mm × 300 µm micromachined in silicon with PolyStyrene/SiO2 inverted rib waveguides
atop the membrane. An earlier work [51] on straight waveguide placed atop micromachined bridge
may be based on the same principle but the author are not clear enough and appears to base the
observed effect on bending induced loss.

Other type of phase sensing mechanism can also be employed for taking benefit of this principle.
For example, instead of looking at intensity modulation with a Mach-Zehnder or a polarimetric
interferometer, we have already seen that delay modulation can be used, but also frequency
modulation. In fact, the frequency shift of a resonator is considered as one of the best method for
measurement, as frequency may be easily measured with precision well below 109. Early work on
this principle was performed by coupling a ring resonator to a straight waveguide (Figure 26-right)
and detecting the shift in resonant wavelength when the effective refractive index is changed by
the pressure on the diaphragm under the ring [70]. The detection is obtained by sweeping the
laser diode current that result in a regular sweep in wavelength. After calibration the current shift
between the start and the point of minimum transmissivity may be directly linked to a particular
phase shift in the ring. This interrogation method provides a high degree of immunity to changes
in coupling losses in the optical circuit (connector, lot-to-lot optical absorption variation, etc.). They
obtained again a much higher sensitivity with TM mode than with TE mode, giving a half-wave
pressure of about 320 kPa for TM mode, and 23 times higher with the TE mode. The device was
unfortunately found to be highly sensitive to temperature with a half-wave temperature of less
than 1 ◦C preventing high precision measurement. Still, the temperature was affecting TE and TM
modes equivalently opening the possibility to discriminate between the two effects without requiring
complex temperature stabilization.

7. Conclusions

From the beginning, integrated optics and MEMS technology were poised to converge, but it
took years before this chance started to materialize at the dawn of the 1990s. Since then, many groups
have explored multiple technologies, multiple scheme of co-integration and multiple applications
from optical telecommunications to ultimate sensing.

Still if the available literature on the field of optical MEMS is large and if multiple products
(display array, micro-spectrometer, optical scanners, optical fiber switches...) have already emerged
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on the market, it is much less true for devices based on waveguide and MEMS actuators
co-integration. The complexity of bringing such components to market is real, principally because
of the complex fabrication and packaging while the cost issue is exacerbated by the large chip
dimensions imposed by most waveguide technologies.

However the high refractive index contrast silicon platform [85] based on nanowire waveguide
possess the qualities to be a solid candidate for new and commercial development based on
waveguide and actuator co-integration: the high contrast provides compact devices, the coupling loss
with optical fiber using taper is reasonably low, the evanescent field is strong, the silicon layer is easily
transformed in an efficient actuator and it has demonstrated very promising integration capabilities.
For industry, it is not clear that there is room for other technologies, because, as microelectronics has
proved, the emergence of a “standard” compact technology is key in pushing devices out of the labs.

For the longer perspective and for researchers the opportunities do not stop here, and
new directions are still emerging for example toward co-integration of actuators with plasmonic
waveguide [50,100], resulting in switch and modulators with extreme compactness of the order
0.5 µm × 2 µm !

To paraphrase a famous paper [101], we could say, that in waveguide and MEMS actuator
co-integration there is still plenty of room at the bottom !
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