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Abstract: The parametric excitation system consisting of a flexible beam and shuttle mass widely
exists in microelectromechanical systems (MEMS), which can exhibit rich nonlinear dynamic
behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and
bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback
controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial
differential governing equation is obtained with both the linear and cubic nonlinear parametric
excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed
for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency
and stability of the system. What is more, through a detailed mathematical analysis, the discriminant
of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the
branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through
global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the
system parameter space and maximum amplitude of monostable vibration are deduced. It is found
that the disappearance of the global bifurcation point means the emergence of monostable vibration.
Finally, detailed numerical results confirm the analytical prediction.

Keywords: MEMS actuators; bifurcations; multiple scales; parametric resonance; time-delay control;
monostable vibration

1. Introduction

Microelectromechanical systems (MEMS) have been widely applied in gyroscopes [1,2], filter [3–5]
and so on. Parametric resonance in MEMS was first proposed for amplification of harmonically-excited
oscillators [6], and since then parametric excitation has been investigated for increasing sensitivity in
scanning probe microscopy [7], mass sensing [8], and tuning [9,10]. With the existence of structure
nonlinearity and nonlinear electrostatic forces, they can exhibit rich static and dynamic behaviors [11],
such as nonlinear jump phenomena [12] and chaos [13]. Rhoads et al. [14] studied a single degree
of freedom parametric excitation equation with both the linear and cubic terms and provided a
complete description of the dynamic response. Welte et al. [15] studied parametric excitation in a
two degree of freedom MEMS. Design parameters were included in the model by lumping them into
non-dimensional parameters, thereby allowing for an easier understanding of their effects and the
interaction between the mechanical and electrical forces. A variety of nonlinear dynamic behaviors
exist in the nonlinear parametric excitation system. However, only a small part of the dynamic
behaviors are desired, which requires us to control the bifurcation behavior of the system.
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To control the dynamic behavior of the system, researchers proposed various parameter
optimization methods; for instance, choosing the correct geometry and appropriate voltage. However,
it is not enough to improve the performance of the system. To enhance the actuator performance,
tip tracking control [16], time-delayed feedback control [17], and pole placement control [18] were
introduced. Here, we mainly care about the performance of a time delay feedback controller. Generally,
the delayed signal can be displacement, velocity [19], and acceleration [20]. With a properly designed
time delay, a delayed feedback controller has been proven to stabilize systems, including atomic force
microscopes (AFM) [21] and magneto-elastic beam systems [22]. Shehrin et al. [23] proposed the
active control of effective stiffness, damping, and mass of MEMS by applying feedback forces that
are proportional to displacement, velocity, and acceleration of its proof mass. Mehta et al. [24] used
position feedback to control the effective stiffness of a micro-cantilever to improve the quality factor for
biological sensing applications. Morrison et al. [25] investigated the dynamic behaviors of a delayed
nonlinear Mathieu equation, and the method of averaging (valid for small ε) was used to obtain a
slow flow that was analyzed for stability and bifurcation. Alsaleem et al. [26] presented a study for the
stabilization of a MEMS resonator by using a delayed feedback controller. The controller showed a good
performance in rejecting disturbances. Warminski [27] analyzed vibrations of a parametrically-excited
MEMS device driven by external excitation and time delay inputs. Alsaleem et al. [28] investigated the
stability and integrity of parallel-plate MEMS resonators by using a delayed feedback controller.
The perturbation method plays an important role in the nonlinear dynamic analysis of MEMS
resonators [14]. Kaminski et al. [29,30] studied stochastic nonlinear dynamic behaviors of a MEMS
device using the generalized stochastic perturbation technique.

It can be concluded from the above analysis that nonlinear dynamic behaviors and parameter
optimization are both important in the design of parametric excitation MEMS and should be taken into
account [31–33]. Meanwhile, a time delay feedback controller is gradually applied to the design of the
MEMS. However, to the best of our knowledge, there are fewer quantitative studies about a general
analysis of parametric excitation comb systems with time delay feedback controllers. Additionally,
the parametric excitation system consisting of flexible beam and shuttle mass widely exists in MEMS.
Early studies mainly focus on a single degree of freedom, which cannot accurately describe the
nonlinear dynamic behaviors. In this paper, a new method is used to solve partial differential equations
and the detailed mathematical derivation is proposed to quantitatively make a complete description
of the transition mechanism of nonlinear jumping phenomena. It is noteworthy that we are mainly
concerned with the nonlinear dynamic behavior of MEMS actuator. Here, the influence of parasitic
capacitance is not considered.

The structure of this paper is as follows: in Section 2, the partial differential governing equation
with parametric excitation and time-delay feedback is obtained; in Section 3, we apply the method
of multiple scales directly to the partial differential equation to produce an approximate solution;
in Section 4, we analyze the stability and bifurcation near the origin and the discriminant of Hopf
bifurcation is theoretically derived; in Section 5, the global bifurcation and saddle note bifurcation
are studied. With a time delay feedback controller, monostable vibration is realized. In Section 6,
the numerical simulation is given; and Concluding remarks are given in Section 7.

2. Problem Formulation

Parametrically-excited MEMS was proposed for use in a number of sensing, actuating, resonator,
and filtering applications. A conceptual model of an electrostatic comb-finger actuator is shown in
Figure 1a, which has been investigated in many studies [5,14]. Such actuators consist of a shuttle
mass, namely the actuator’s backbone, connected to anchors via beam springs, and excited by a pair of
non-interdigitated electrostatic comb drives, which are powered by a voltage source. The actuator’s
motion is assumed to be described by the movement of the shuttle mass in one direction in the plane.
In this paper, multiple electrodes are introduced to optimize the dynamic behavior [34], as shown
in Figure 1b. Here, the electrostatic comb-finger actuator is driven by a sensing electrode, a driving



Micromachines 2016, 7, 177 3 of 17

electrode, and a controlling electrode. Morrison et al. [25] proved that time delay feedback force can
control stability and bifurcation in parametrically-excited nonlinear differential equations. In order to
improve the global dynamic behavior of the system, the time delay feedback is introduced as shown
in Figure 2, where τ is the time delay and G is the amplitude of the displacement feedback controller
with unit V/m.
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The electrostatic attractive force is derived from the very well-known equation:

F = −∂E
∂x

(1)

where E is the electric energy stored in the capacitor, i.e., E = CV2/2. Here, C represents capacitance.
The electrostatic force arising from the driving electrode can be modeled for small

displacements [14]:
Fdrive = (r1w + r3w3)V2(1 + cosΩt) (2)

where r1 and r3 are electrostatic coefficients, which can provide harmonic excitation to the device.
Here, w is displacement of shuttle mass and V is driving voltage.

Then, the electrostatic forces arising from the sensing electrode and controlling electrode can be
derived using Equation (1) as [12]:

Fsense =
ε0h
d

V2
dc (3)

Fcontrol = −
ε0h
d

(Vdc + Gw (t− τ))2 (4)

where d is the gap width, h is thickness of the microbeam and ε0 is the dielectric constant of the gap
medium. Here, we consider Vdc >> Gw(t − τ). Then Fcontrol = −ε0h

d (V2
dc + 2VdcGw(t − τ)) is obtained.
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The electrostatic comb-finger actuator can be described by two clamped-clamped beams and a
shuttle mass. An equivalent mechanical model is shown in Figure 3. In this paper, we consider a
clamped-clamped Euler microbeam actuated by a concentrated load and subject to a viscous damping
c per unit length. By using Hamilton’s principle, the equation of motion that governs the transverse
deflection w(x,t) is written as [35]:

ρA
..
w + EIwiv + c

.
w− (

EA
2L

∫ L

0
w′2dx)w′′ =

1
2
(−M

..
w− Fdrive − Fcontrol − Fsense)δ(x− 1

2
L) (5)

with the boundary conditions:

w(0,t) = w’(0,t) = w’(L,t) = w(L,t) (6)

where
.

w = ∂w/∂t and w′ = ∂w/∂x, x is the position along the plate length, A and I are the area and
moment of inertia of the microbeam, t is time, E is Young’s modulus, $ is the material density, L is the
microbeam length, b is the microbeam width, M is mass of shuttle, and δ represents impulse function.
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stationary element).

For convenience, we introduce the non-dimensional variables:

wn =
w
x0

, tn =
t√
ρAL4

EI

, xn =
x
L

where x0 is a characteristic length of the system. x0 = 2 µm is taken.
Substituting the non-dimensional variables into Equations (5) and (6), yields the following

non-dimensional equation of motion:

..
wn + wiv

n + cn
.

wn −
Ax2

0
2I (
∫ 1

0 w′n
2dxn)w

′′
n

= −[Mn
..
wn + (r1nwn + r3nwn

3)V2(1 + cosΩntn)− βnwn(tn − τn)]δ(xn − 1
2 )

(7)

with boundary conditions:

wn (0, tn) = w′n (0, tn) = w′n (1, tn) = wn (1, tn) = 0 (8)

where, cn = cL2/
√

EIρA, Mn = M/2ρAL, r1n = r1L3/2EI, r3n = r3L3x2
0/2EI, βn = 2βL3/EI,

β = ε0hVdcG/2d. Here, β represents the time delay feedback gain of the system.

3. Perturbation Analysis

In this section, the method of multiple scales [36] are directly used to investigate the response
of the MEMS actuator with small vibration amplitude around an equilibrium position. To indicate
the significance of each term in the equation of motion, ε is introduced as a small non-dimensional
bookkeeping parameter. Considering that the inertia force of the flexible beam is much smaller than
that of the shuttle mass,

..
wn = O(ε) is given. Then, scaling the damping, nonlinear electrostatic force,

periodic excitation, and time delay feedback force, we obtain:
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ε
..
wn + wiv

n + εcn
.

wn − εα(
∫ 1

0 w′n
2dxn)w

′′
n

= −δ(xn − 1
2 )[Mn

..
wn + r1nwnV2 + εr1nwnV2cosΩntn

+εr3nw3
nV2(1 + cosΩntn)− εβnwn(tn − τn)]

(9)

with the boundary conditions:

wn (0, tn) = w′n (0, tn) = w′n (1, tn) = wn (1, tn) = 0

where α = Ax2
0/2I.

In order to investigate the primary parametric resonance when the driving frequency is close to
two times of the natural frequency, a detuning parameter σ is introduced and defined by:

Ωn = 2ω + εσ (10)

whereω is the natural frequency of the system.
We seek the approximate solution of Equation (9) in the form:

wn = w0(xn,T0,T1) + εw1(xn,T0,T1) (11)

where T0 = t and T1 = εt.
Substituting Equations (11) and (10) into Equation (9) and equating coefficients of like powers

of ε0 and ε1, yield
ε0:

wiv
0 = −δ(xn −

1
2
)(Mn

∂2w0

∂T2
0

+ r1nw0V2) (12)

w0 (0, tn) = w′0 (0, tn) = w0 (1, tn) = w′0 (1, tn) = 0 (13)

ε1:
wiv

1 + ∂2w0
∂T2

0
+ cn

∂w0
∂T0
− α(

∫ 1
0 w′0

2dxn)w
′′
0

= −δ(xn − 1
2 )[2Mn

∂2w0
∂T0∂T1

+ Mn
∂2w1
∂T2

0
+ r1nw1V2 + r1nw0V2cosΩntn

+r3nw3
0V2(1 + cosΩntn)− βnw0(tn − τn)]

(14)

w1 (0, tn) = w′1w1 (1, tn) = w′1 (1, tn) = 0 (15)

Considering a single mode vibration, the general solution of Equation (12) can be written as:

w0 = ϕ0(xn)A(T1)eiωT0 + cc (16)

where cc indicates the complex conjugate of the preceding terms.
Substituting Equation (16) into Equations (12) and (13), yields:

w0 =

{
(−16xn

3 + 12xn
2)(A(T1)eiωT0 + cc) xn ∈ [0, 1/2]

(16xn
3 − 36xn

2 + 24xn − 4)(A(T1)eiωT0 + cc) xn ∈ (1/2, 1]
(17)

whereω can be defined by Equation (12). We obtainω =
√
(192 + r1nV2)/Mn.

The general solution of Equation (14) can be written as:

w1 = ϕ1(xn, T1)u1(T0) (18)

Substituting Equation (18) into Equation (14), multiplying by ϕ0, and integrating the outcome
from x = 0 to 1, we obtain [36,37]:
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(
..
u1 +ω

2u1)Mn

= −[i2ωMn
dw0
dT1

+ r1nw0V2cosΩntn + r3nw0
3V2(1 + cosΩntn)− βnw0(tn − τn)]

∣∣∣
xn=

1
2

+
∫ 1

0 [ω2w0 − cniωw0 + α(
1∫

0
w′0

2dxn)w′′ 0]ϕ0dxn

(19)

Substituting Equations (10) and (17) into Equation (19) and eliminating the secular term, we obtain:

− 13
35ω

2 A + 13
35 cniωA + 3A |A|2 α 576

25 + i2ωMn
dA
dT1

+ 3r3n A |A|2 V2 + 1
2 r1n AV2eiσT1

+ 3
2 r3n A |A|2 V2eiσT1 + 1

2 r3n A3V2e−iσT1 − βn Ae−iωτn = 0
(20)

where the overbar indicates the complex conjugate and |A| represents modulus of A.
At this point, it is convenient to express A in the polar form:

A(T1) =
1
2

a(T1)eiθ(T1) (21)

where a is the amplitude.
Substituting Equation (21) into Equation (20), and separating the imaginary and real parts, yields:

a′ =
1
8

a[−8ξ+ (2λ1 + a2λ3)sin2ψ− 4gsinωτn] (22)

ψ′ =
1
8
[3a2k3 + 4k1 − 4σ− 4gcosωτn + (2λ1 + 2a2λ3)cos2ψ] (23)

where ψ = θ − σ/2 is the phase of oscillator’s response, and several variables are defined as:

k3 = r3nV2

ωMn
+ 576

25ωMn
α, k1 = − 13ω

35Mn
, g = βn

ωMn
, λ3 = r3nV2

ωMn
, λ1 = r1nV2

ωMn
, ξ = 13cn

70Mn
.

The steady-state response can be obtained by imposing the condition a’ = ψ = 0. The first-order
approximate solution is obtained:

w0 =

{
(−16xn

3 + 12xn
2)acos(Ωt/2 +ψ) + O(ε) xn ∈ [0, 1/2]

(16xn
3 − 36xn

2 + 24xn − 4)acos(Ωt/2 +ψ) + O(ε) xn ∈ (1/2, 1]
(24)

4. Bifurcation Control near the Origin

For determining the steady states of this system, it turns out to be advantageous to introduce
the new unknown variables. We obtain an alternate form of the equation by transforming from polar
coordinates a and ψ to rectangular coordinates u and v, where:

u = cosψ, v = asinψ (25)

It is noted that u represents the displacement signal and v represents the velocity signal when
t = 0.

Substituting Equation (25) into Equations (22) and (23), results in the form:

u′ = (−ξ− g
2

sinωτn)u + (
λ1

4
− k1

2
+
σ

2
+

g
2

cosωτn)v−
3
8

k3u2v + (−3
8

k3 +
λ3

4
)v3 (26)

v′ = (
λ1

4
+

k1

2
− σ

2
− g

2
cosωτn)u + (−ξ− g

2
sinωτn)v +

3
8

k3uv2 + (
3
8

k3 +
λ3

4
)u3 (27)
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From the Equations (26) and (27), the Jacobian matrix is obtained:

J =
1
8

[
a11 a12

a21 a22

]
(28)

where:
a11 = −8ξ− 4gsinωτn

a12 = 2λ1 − 4k1 + 4σ+ 4gcosωτn

a21 = 2λ1 + 4k1 − 4σ− 4gcosωτn

a22 = −8ξ− 4gsinωτn

4.1. Stability of the Origin

The trace and determinant of the Jacobian matrix evaluated at an equilibrium point contain
the local stability information. From Equations (22) and (23), 8ξ+ 4gsinωτn represents the effective
damping of the system. When it is negative, all of the solutions are not stable. Here, 8ξ+ 4gsinωτn > 0
is considered. For stability of the origin, a critical point generically occurs when Det(J) = 0.
From Equation (28), the Jacobian matrix value of the origin is obtained:

Det(J) = (8ξ+ 4gsinωτn)
2 − (2λ1 − 4k1 + 4σ+ 4gcosωτn)(2λ1 + 4k1 − 4σ− 4gcosωτn)

= (8ξ+ 4gsinωτn)
2 − 4λ1

2 + (4k1 − 4σ− 4gcosωτn)
2 (29)

Through Equation (29), it is found that the stability of the origin varies with g and τn.
Here, according to the bifurcation behaviors of the origin, two different situations are divided.
Case one: when (8ξ+ 4gsinωτn)

2 − 4λ1
2 ≥ 0, the origin is always stable. Case two: when

(8ξ+ 4gsinωτn)
2 − 4λ1

2 < 0, there exists resonance in the system. When Det(J) = 0, the bifurcation
points can be obtained:

σ1 = k1 − gcosωτn −
1
4

√
4λ1

2 − (8ξ+ 4gsinωτn)
2 (30)

σ2 = k1 − gcosωτn +
1
4

√
4λ1

2 − (8ξ+ 4gsinωτn)
2 (31)

The origin is unstable from σ1 to σ2, which means resonance occurs. Then, the size of the unstable
region is obtained:

σ2 − σ1 =
1
2

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 (32)

From Equations (30)–(32), it is found that a negative feedback gain can increase the resonance
frequency and widens the resonance band when ωτn < π/2. However, the maximum of the resonance
band is λ1, which is decided by the linear electrostatic force.

In this paper, the model is improved from the traditional one. Part of the system parameters are
defined as stated in Table 1 [5].

Figure 4 shows the stability of origin in the case of V = 30 V. It is found that the positive
feedback gain can increase the resonance frequency whenωτn = π and decrease the frequency band
when ωτn = π/2. Through choosing the right time delay, we can control the resonance frequency
and frequency band individually. Figure 4c,d study the resonance frequency and frequency band
variance with β = 0.225 and β = 0.36. When feedback gain is more than the critical value λ1/2 − 2ξ,
the saddle-node bifurcation occurs as shown in Figure 4d. In practical engineering, we can choose the
right time delay and gain to meet the engineering demand.
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Table 1. Part of design parameters for a representative MEMS oscillator.

Parameter Value Units

Mass density $ 2300 Kg/m3

Young’s modulus E 150 GPa
Beam length L 320 µm
Beam width b 10 µm

Beam thickness h 2 µm
Coefficients r1 5.3 × 10−3 µN·µm−1·V−2

Coefficients r3 −1.5 × 10−3 µN·µm−3·V−2

Damping c 5.42 × 10−3 Ns·m−2

Mass M 5.95 × 10−10 kg
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4.2. Stability of the Untrivial Solution

Stability of the origin was studied in the previous section. Through Equations (26) and (27), it is
found that Hopf bifurcation will occur at σ1 and σ2, which can lead to an untrivial solution and change
the stability of the origin. Then, stability of the untrivial solution is investigated. The supercritical
Hopf bifurcation of σ1 and σ2 can lead to stable branches between two critical points. On the contrary,
subcritical Hopf bifurcation of σ1 and σ2 can lead to unstable branches. In this section, we study Hopf
bifurcation of critical points to determine the stability of periodic vibration. A series of calculations is
made in Appendix A, and the discriminants of Hopf bifurcation points are obtained:

∆1 = −3k3

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 + 4λ1λ3 −

λ3

2λ1
(8ξ+ 4gsinωτn)

2 (33)

∆2 = 3k3

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 + 4λ1λ3 −

λ3

2λ1
(8ξ+ 4gsinωτn)

2 (34)
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where ∆1 stands for the discriminant of σ1, and ∆2 stands for the discriminant of σ2.
The case ∆1 < 0 and ∆2 < 0 results in the supercritical Hopf bifurcation of σ1 and σ2. Likewise,

the case ∆1 > 0 and ∆2 > 0 results in the subcritical Hopf bifurcation of σ1 and σ2. However, due to
the nature of this equation of motion, two mixed cases also exist, namely, ∆1 > 0 and ∆2 < 0, or ∆1 < 0
and ∆2 > 0, which correspond to the two branches from the critical point bending toward each other.
When ∆1 = 0 or ∆2 = 0, the type of bifurcation cannot be captured without the inclusion of high-order
nonlinear terms, which is not considered here.

Figure 5 shows different types of bifurcation diagrams. The stability of solution can be obtained
by Equation (28), as mentioned in [14]. Meanwhile, the values of the discriminant are obtained:{

∆1(20) < 0
∆2(20) > 0

,

{
∆1(30) < 0
∆2(30) < 0

,

{
∆1(40) < 0
∆2(40) < 0

Among them, ∆1 < 0, supercritical Hopf bifurcation occurs at σ1. Similarly, with ∆2(20) > 0,
subcritical Hopf bifurcation occurs at σ2. With ∆2(30) < 0 and ∆2(40) < 0, supercritical Hopf bifurcation
occurs at σ2, which coincides with the numerical results of Equations (22) and (23). From V = 20 V to
V = 40 V, the resonance frequency increases. Additionally, feedback force can also change the resonance
frequency and transform the types of bifurcation points, as shown in Figure 5d. ∆2(20) < 0 is obtained
in the case of β = 0.354 andωτn = π/4. Subcritical Hopf bifurcation of the point σ2 is transformed to
supercritical Hopf bifurcation.
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Figure 5. Bifurcation diagram for V = 20, 30, and 40 V corresponding to (a–c) without feedback force
(d) shows the bifurcation diagram for V = 20 V in the case of β = 0.354 and ωτn = π/4. Solid lines
represent stable amplitude; dotted lines represent unstable amplitude.

Through Equations (33) and (34), we can obtain that supercritical Hopf bifurcation always occurs
at σ1 and σ2 when 9k2

3 − 4λ2
3 < 0. However, when 9k2

3 − 4λ2
3 > 0, subcritical Hopf bifurcation may

occur at σ1 in case of k3 < 0 and occur at σ2 in the case of k3 > 0. Meanwhile, when gsinωτn is
close to λ1/2− 2ξ, ∆1 and ∆2 are negative. Thus, with an appropriate feedback force, supercritical
Hopf bifurcation always occurs under any driving voltage. The detailed derivation process is seen in
Appendix B. Figure 6 shows time delay feedback control on Hopf bifurcation. As shown in Figure 6a,
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with a voltage value less than 64.96 V, the branch from σ1 is always stable. However, the branch
becomes unstable with the increase of the voltage. On the contrary, with the voltage value is greater
than 29.04 V, the branch from σ2 is always stable. However, the branch becomes unstable with the
decrease of the voltage, as shown in Figure 6b. With the introduction of the time-delay feedback force,
the unstable branches become stable. The curves shown in Figure 6 represent the minimum value of
gsinωτn to make the branches stable.
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5. Monostable Vibration

5.1. Global Bifurcation

The monostable vibration, which can eliminate jump phenomena between multiple stable
solutions and improve system stability, has been widely applied in engineering, such as resonators.
In Section 4, there is one or more periodic solutions under the single frequency. To obtain the parameter
space of the monostable vibration, global dynamics analysis is introduced. This is almost unaffected
by damping, since it is small, and zero damping is assumed to simplify the analysis.

First, we consider the case of V = 30 V without time-delay feedback force. The bifurcation diagram
of the no-damping system is shown in Figure 7. Here, four frequency points 0, 0.085, 1, and 2 are taken
to analyze the global dynamics. There exists one periodic solution at 0, 2 and two periodic solutions at
0.085, 1, as shown in Figure 7.Micromachines 2016, 7, 177  11 of 17 
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Representative phase planes corresponding to each of the frequency response points are delineated
in Figure 8. Figure 8a describes an unstable origin and a center, which corresponds to a in Figure 7.
Both Figures 8b and 8c depict unstable origins and two centers. It is worth noting that different
initial disturbance can lead to different movement tracks. The system easily arrives at b, e by velocity
disturbance. Likewise, the system easily arrives at c, d by displacement disturbance. When σ = 0.2,
the origin becomes a center, as shown in Figure 8d. From Figure 8b,c, the global bifurcation occurs at
the intersection, as shown in Figure 7. Meanwhile, the phenomena of multistability exist in the system.
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Figure 8. Representative phase planes corresponding to each of the frequency response regimes at
V = 30 V. a, b, c, d, e, and f correspond to those in Figure 7. (a) describes an unstable origin and a center
when σ = 0; (b) describes an unstable origin and two centers when σ = 0.085; (c) describes an unstable
origin and two centers when σ = 0.1; and (d) describes two centers when σ = 0.2.

The above analysis results are based on an undamped system, the existence of the damping brings
the center into focus and shifts each of their locations at the same time.

5.2. Saddle Node Bifurcation

Through Equation (22), when the amplitude is in a certain range, there is no periodic vibration,
as shown in Figure 5. The existence of periodic vibration requires:

− (4gsinωτ+ 8ξ) < (2λ1 + a2λ3) < 4gsinωτ+ 8ξ (35)

When equal, saddle node bifurcation occurs, as shown in Figure 9. From Equation (23),
the perturbation frequency of the node bifurcation point is obtained:

σ =
3
4

a2k3 + k1 − gcosωτ (36)
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where:
a2 =

4gsinωτn + 8ξ− 2λ1

λ3
(37)

or:
a2 =

−8ξ− 4gsinωτn − 2λ1

λ3
(38)

The branch from the bifurcation point σ is unstable, which can be proved by Equations (22) and (23).
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5.3. Monostable Parameter Vibration

Now, time-delay feedback force is introduced to eliminate the global bifurcation point and make
the system translate to a monostable one from a bistable one. When the saddle node bifurcation point
and global bifurcation point coincide, the bistable phenomenon disappears, and there is only one
stable periodic solution under the single frequency.

From Equation (23), we obtain:

σ =
1
4
[3a2k3 + 4k1 − 4gcosωτn + (2λ1 + 2a2λ3)cos2ψ] (39)

It is found that there is only one amplitude corresponding to one frequency when global
bifurcation occurs, which becomes true when 2λ1 + 2a2λ3 = 0. In other words,

√
−λ1/λ3 is

the maximum amplitude under monostable parameter vibration, which is only related to the
structure parameter.

When the saddle node bifurcation point and global bifurcation point coincide, the following
expression is obtained with Equations (36) and (39):

a2 =
4gsinωτn + 8ξ− 2λ1

λ3
=
−λ1

λ3
(40)

From Equation (40), it is noted that the maximum amplitude of the system is less than
√
−λ1/λ3

in the case of λ1/2− 2ξ > gsinωτn > λ1/4− 2ξ. Thus, there is only one periodic solution under this
parameter space.

Reasonable design of time-delay feedback in engineering practice can make the system reach
a monostable motion state, as shown in Figure 10. This shows the motion state of the system in the
different voltage and gain forωτn = π/2. Figure 11 shows the bifurcation diagram of the monostable
vibration with V = 40 V and β = 0.55.

From Equation (40), although delay feedback force can eliminate the global bifurcation point and
make the system translate to a monostable one from a bistable one, it cannot change the maximum
amplitude of vibration, which is only related to the structure parameters of the comb. Additionally,
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in the Section 4, when the voltage is too large or too small, the branches from σ1 and σ2 become
unstable. A large enough force feedback is introduced to make them stable and reduce the maximum
amplitude at the same time. In the Figure 12, the relationship between the maximum amplitude of
the monostable vibration and the voltage is given. It shows that the maximum amplitude is constant
when the voltage is greater than 28.96 V. On the contrary, the maximum amplitude decreases with the
decrease of voltage when the voltage is less than 28.96 V.
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6. Numerical Simulation

The above analysis is carried out based on the perturbation theory. This section gives the
numerical results of the partial differential equation obtained by the finite difference method and
long-time integration to verify the validity of the perturbation theory. Here, the foregoing analytical
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results based on the slow flow Equations (22) and (23) are compared with direct numerical integration.
The numerical integration is completed by using fourth-order Runge–Kutta method with fixedstep.
Figure 13 shows the frequency response curve. Here, we choose a small displacement disturbance
as the initial value. The numerical method has yielded results that are in good agreement with the
analytical solution, especially near the origin.
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7. Conclusions 

This article theoretically investigates the nonlinear jumping phenomena and bifurcation 
conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback 
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consisting of a flexible beam and shuttle mass. It is found that our model can improve the resonance 
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Figure 13. Frequency response curve (a) corresponding to V = 20 V and β = 0; (b) corresponding
to V = 30 V and β = 0; (c) corresponding to V = 40 V and β = 0; and (d) corresponding to V = 30 V,
ωτn = π/4 and β = 0.225. Solid lines represent the analytical method and dotted lines represent the
numerical method.

7. Conclusions

This article theoretically investigates the nonlinear jumping phenomena and bifurcation conditions
of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. A detailed
analysis method is proposed to deal with the parametric excitation system consisting of a flexible beam
and shuttle mass. It is found that our model can improve the resonance frequency and stability of the
system. Meanwhile, an appropriate time-delay feedback force can make the branch from the Hopf
bifurcation point stable under any driving voltage value.

Additionally, monostable vibration can eliminate dynamic bifurcation and improve system
stability, which is desired in many MEMS applications. Theoretical expressions about the system
parameter space and maximum amplitude of monostable vibration are deduced. It is found that the
disappearance of the global bifurcation point means the emergence of monostable vibration. A method
is proposed to translate the bistable state to a monostable state with time-delay feedback.

Finally, detailed numerical results confirm the analytical prediction. The analysis presented here
describes a complete picture of this behavior, and provides designers of these devices with useful
predictive tools.
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Appendix A

Through Equations (22) and (23), we obtain:

(2λ1 + a2λ3)sin2ψ = 8ξ+ 4gsinωτn (A1)

(2λ1 + 2a2λ3)cos2ψ = −3a2k3 − 4k1 + 4σ+ 4gcosωτn (A2)

Then, the square of Equation (A1) is added to the square of Equation (A2) and, ignoring the
high-order nonlinear term, we obtain:

[(2λ1 + a2λ3)sin2ψ]2 + [(2λ1 + 2a2λ3)cos2ψ]2

= 4λ2
1 + 4λ1λ3(sin2ψ)2a2 + 8λ1λ3(cos2ψ)2a2 (A3)

From Equations (A1) and (A2), we obtain:

2λ1sin2ψ = 8ξ+ 4gsinωτn − a2λ3sin2ψ (A4)

2λ1cos2ψ = −3a2k3 − 4k1 + 4σ+ 4gcosωτn − 2a2λ3cos2ψ (A5)

Substituting Equations (A4) and (A5) into Equation (A3), and ignoring the high-order nonlinear
term, yields:

f (σ, a) = 4λ2
1 − [(8ξ+ 4gsinωτn)

2 + (4σ+ 4gcosωτn − 4k1)
2]

+[2λ3sin2ψ(8ξ+ 4gsinωτn) + 2(4σ+ 4gcosωτn − 4k1)(2λ3cos2ψ+ 3k3)]a2 = 0
(A6)

Firstly, we consider the bifurcation point (σ,a) = (σ1,0) and obtain:

2λ1sin2ψ = 8ξ+ 4gsinωτn (A7)

2λ1cos2ψ = −
√

4λ1
2 − (8ξ+ 4gsinωτn)

2 (A8)

According to the condition of the Hopf bifrucation, substituting Equations (A7) and (A8) and
Equation (30) into Equation (A6) and we can obtain the discriminant:

∆1 = −3k3

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 + 4λ1λ3 −

λ3

2λ1
(8ξ+ 4gsinωτn)

2 (A9)

If ∆1 < 0, there exists stable periodic vibration in the system when σ > σ1, which results in the
supercritical Hopf bifurcation of σ1. On the contrary, if ∆1 > 0, there exists unstable periodic vibration
in the system when σ < σ1, which results in the subcritical Hopf bifurcation of σ1.

Likewise, we can obtain the discriminant of σ2:

∆2 = 3k3

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 + 4λ1λ3 −

λ3

2λ1
(8ξ+ 4gsinωτn)

2 (A10)
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Appendix B

In this article, we consider λ1 > 0 and λ3 < 0.
Firstly, Equation (33) can be written as a parabolic equation:

∆1 = −3k3

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 + 4λ1λ3 − λ3

2λ1
(8ξ+ 4gsinωτn)

2

= λ3
2λ1

[4λ2
1 − (8ξ+ 4gsinωτn)

2]− 3k3

√
4λ2

1 − (8ξ+ 4gsinωτn)
2 + 2λ1λ3

(B1)

When the discriminant of parabolic equation ∆ = 9k2
3−4λ2

3< 0, ∆1 < 0. Supercritical Hopf
bifurcation occurs.

Then, ∆ = 9k2
3−4λ2

3 > 0 and k3 <0 are considered. If equivalent damping 2ξ+ gsinωτn approaches
to zero, we obtain:

∆1 ≈ 4λ1λ3 − 6λ1k3 = 2λ1(2λ3 − 3k3) > 0

Subcritical Hopf bifurcation occurs.
When gsinωτn is close to λ1/2− 2ξ, ∆1 ≈ 2λ1λ3 < 0. Supercritical Hopf bifurcation occurs.
Likewise, ∆2 can be studied in this manner.
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