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Abstract: Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged
during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic
electromechanical coupling factor (dynamic EMCF) for cantilever based piezoelectric actuators
and provides for the first time explicit expressions for calculation of dynamic EMCF based on
arrangement of passive and active layers, layer geometry, and active and passive materials selection.
Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple
layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate
deflection and charge to force and voltage. A mode shape formulation is used for the cantilever
dynamics that allows the generalized mass to be the actual mass at the first resonant frequency,
removing the need for numerical integration in the design process. Results are presented in the form
of physical insight from the model structure and also numerical evaluations of the model to provide
trends in dynamic EMCF with actuator design parameters. For given material properties of the active
and passive layers and given system overall damping ratio, the triple layer bimorph topology is
the best in terms of theoretically achievable dynamic EMCE, followed by the dual layer bimorph.
For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration
is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio
of thicknesses for the passive and active layers is the primary geometric design variable. Choice of
passive layer stiffness (Young’s modulus) relative to the stiffness of the material in the active layer
is an important materials related design choice. For unimorph configurations, it is beneficial to use
the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the
passive material should have a low stiffness. In all cases, increasing the transverse electromechanical
coupling coefficient of the active material improves the dynamic EMCEF.

Keywords: piezoelectricc MEMS; actuators; electromechanical coupling; dynamics; resonance;
actuation efficiency

1. Introduction

Piezoelectric bending actuators are an important class of micro electro-mechanical systems
(MEMS) that find wide use in applications involving relatively large displacements in millimeter
scale applications. Example dynamic applications include flapping wing propulsion [1-7], cooling
fans [8-10], vibration control [11,12], and energy harvesters [13,14]. Dynamic operation at resonance
with light damping significantly increases the achievable displacement of the actuator compared to the
achievable static displacement for the same magnitude of electrical input. Whilst piezoelectric bending
actuators are geometrically simple, the solution of the dynamic design problem is non-trivial, and, in
recent years, there has been significant interest in providing theoretical, numerical and experimental
contributions to dynamic characterization of these devices [13-19].
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A summary of the commonly used configurations of piezoelectric bending actuators is shown
in Figure 1. It is assumed that actuators are made up of homogenous layers of active (piezoelectric)
material or passive (elastic) material. The simplest viable configuration is comprised of one active
layer and one passive layer and is referred to as a unimorph [20], Figure 1a. For configurations with
two active layers, the general arrangement is one in which the two active layers are separated by an
inner passive layer [21], Figure 1c. For the purposes of the present work, we will refer to this as a triple
layer bimorph. In the limit when the thickness of the inner passive layer is reduced to zero, we reach
the configuration shown in Figure 1b, which we will refer to as a double layer bimorph. Note that for
both types of bimorphs shown, the active layers may be connected in series or parallel depending on
the poling direction of the piezoelectric material.

(a) (b)
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Figure 1. Piezoelectric bending actuators; illustration of the main configurations of practical interest.
(a) Unimorph; (b) Double layer bimorph; (c) Triple layer bimorph. Sign of hatching direction illustrates
sign of poling for piezo material.

One of the goals of actuator electromechanical design is to identify materials and configurations
that maximize mechanical output for a given input electrical input, that is, the actuator is
electromechanically efficient. Actuator electromechanical efficiency is usually measured using the
electromechanical coupling factor (EMCF) denoted by k?, and the maximum energy transmission
coefficient denoted by Amax [20,22,23]. The EMCF is defined as the ratio of stored mechanical energy to
the input electrical energy to the actuator, whilst the energy transmission coefficient is defined as the
ratio of the output mechanical energy to the input electric energy [20,22,23]. The maximum energy
transmission coefficient is a direct and single function of the EMCF [20]; thus, best configurations with
respect to EMCF are also best with respect to the maximum energy transmission coefficient, and it is
therefore sufficient to consider optimum actuator configurations based only on optimization of EMCF.

The static electromechanical coupling factor and the maximum energy transmission coefficient of
unimorphs and double layer bimorphs have been assessed by Wang et al. [20] using static actuation
constituent equations. It was shown that for double layer bimorphs, these measures are only a function
of the piezoelectric material transverse coupling coefficient, k31, whereas for unimorphs, they are also
a function of the Young’s modulus ratio and the thickness ratio of the actuator layers [20]. In a later
contribution, the static actuation constitutive equations were derived for the triple layer bimorph
configuration [21]; however its electromechanical coupling factor was not assessed. Maurini et al. [24]
provided an extended Euler-Bernoulli beam model that considers the influence of 3D stresses and
strains. The obtained coefficients of the static constituent equations for bimorph configurations
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were assessed against available standard models, and the achieved modeling improvement was
demonstrated through comparisons with results from finite element simulations. The work [24]
considered simply supported beams without analyzing other boundary conditions (e.g., cantilevers),
and the electromechanical coupling factor was not addressed. The dynamic electromechanical coupling
of unimorphs has been assessed by Chung et al. [4] based on the product of resonant frequency
and vibration amplitude. The electromechanical coupling factor of unimorph actuators in dynamic
operations has also been comprehensively assessed by the present authors [19]. It was found that the
variation of dynamic EMCF with design variables is similar for both static and dynamic operation;
however, for light damping, the dynamic EMCF will be an order of magnitude greater than for
static operation.

The aim of the present work is to provide a comprehensive assessment of the electromechanical
coupling characteristics of bimorph actuators in dynamic operation. Analytical expressions for double
and triple layer bimorph actuators are derived in an explicit fashion allowing assessment of their
dynamic actuation efficiency in a design context. The main contribution of this work is significantly
improved understanding of the effect of configuration, material properties and operating conditions on
the dynamic performance of bimorph actuators. The following section will provide a comprehensive
theoretical model for the electromechanical coupling evaluation in dynamic operations. This will be
followed by an analysis of the results from the theoretical model.

2. Dynamic Electromechanical Coupling Model

Following from references [20,22,23], a general expression for the electromechanical coupling
factor (EMCF) can be written down as:

2 D3, (1)

~ Du(I)Dx(l) g

where the D elements of the above expression are the symmetric matrix elements representing the set
of constitutive equations of the actuator:
Fei(wt)
i(wt) 2)
Ve

S(Lt) |

QL t)
where 6, F, Q and V are the deflection, force, charge and voltage, respectively; [ is the actuator tip
position, t is time, and w is the operation frequency. For details of the dynamic admittance matrix, see

Dy (1) D1a(l)
Dy (I) Daa(l)

reference [19]. For the present work, the expression for the terms in the dynamic admittance matrix are
re-written in a generic form that is independent of the configuration of the actuator as follows:
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where n indicates the nth vibration mode. Note that Equations (3)—(5) are derived based on the
assumption of a uniform composite Euler-Bernoulli beam with very thin, perfectly conductive
electrodes covering the entire top and bottom surfaces of the piezo layer [13,19]. Application of
Euler—Bernoulli beam theory to composite beams is typically assumed to be valid for beams with
length to thickness (aspect) ratios above 30 [25]. This is typically the case for many practical



Micromachines 2016, 7, 12 40f 10

actuator/harvester applications [13,14,16-19]. For geometrical configurations where 1D beam theory
becomes inappropriate, a higher level model should be used, for example, see [26].

Table 1 provides the configuration parameters for Equations (3)—(5) that will be used throughout
the current derivation. These include: the neutral axis position, , the rigidity, YI, the mass per unit
length, pA, the voltage loading parameter, «,, and the active layers’ thickness defining the electric
field, hg (i.e., E = V/hg). In the above expressions, d3; is the piezoelectric constant (piezoelectric
material property), k3; is the piezoelectric material transverse electromechanical coupling coefficient
(piezoelectric material property), b is the actuator width,  is the thickness, Y is the Young's modulus, p
is the material density and the subscripts e and p denote the elastic and piezoelectric layers respectively.
Note that the unimorph expressions are the most complex due to its non-symmetric configuration.
In addition, note that there is some analytical redundancy in that the expressions for the double layer
bimorph case can be obtained either by substituting h, = hy, Y. = Y}, and p, = p; in the unimorph
expressions or by substituting /i, = 0, Ye = 0 and p, = 0 in the triple layer bimorph expressions.

Table 1. Configuration parameters for different actuators.

Parameter Unimorph [13,19] Double Layer Bimorph Triple Layer Bimorph [14]
Ye 2 2
- (Y—p) hg + 2hehy + Iy, h
Y Y, hy hy + 5
2 <<l> he + hp>
YP
o 1
Y, 3hey(yh; he)+ + Y, <§> +
e 3 3
YI g Bhp(§ — he) X 2bYyhy 23—b (hp + k)
Y, [ @G+ 3 Y, 2
n I
P €
pA b(pehe + pphp) b(2p,hp) b(pehe +20,1p)
ds1Ypb dzYpb dz1Yyb
*p mTp (hp + 2he —29) SlTphp MTP (hp + he)
hg hy 2h, 2hy

The parameters that control the vibration response in Equations (3)—(5) are the damping ratio, Cy,
and the frequency ratio, r, = w/w,, where w, is the natural frequency given by [27]:

2
wn = B [ ©)

where (3, denotes the wave number. Note that the natural frequency for light damping is approximately
the damped resonant frequency.
Finally, the term I, is given by:

I, = JX%(x)dx 7)
0
where X, is the mode shape function for fixed-free boundary conditions. For the current work, we
define X, using [27]:

Xn(x) = (cosh(B,x) —cos(B,x)) — vu (sinh(B,x) — sin(f,x)) ®)

here inh(B,,1) — sin(,
si nl) —sin(p,
Un = cosh(B,,1) + cos(B,1) ©)
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We choose this definition of the mode shape function over other variants in the literature because
of the characteristic:
L =1 (10)

and thus the so-called “generalized mass” [28] becomes the actual actuator mass at the first resonant
frequency:
pAl = pAl = massact (11)

This choice is of significance since it removes the need for numerical integration within the
actuator design process and hence simple explicit analytical expressions can be obtained. Note also
that the mode shape expression given by Equation (8) has the following useful characteristics:

X1(1) = 2and X'1(I) = 2B1v1 (12)
where 18751
B == ;i and v1 = 0.7341 (13)

We now return back to the dynamic matrix elements provided in Equations (3)—(5). For most
piezoelectric MEMS applications, the fundamental vibration mode r,, = r; is of most interest as it
delivers the maximum displacement gain for a given level of damping. We thus drop the summations
in Equations (3)-(5). Making use of the mode shape properties given in Equations (12) and (13),
Equations (3)—(5) reduce to:

1 1

Dui(l) =4 "

mass,ct w%\/(l — r%)Z +(2011)?

2.753 X !
Dip(l) = Do (l) = — ( 2 p ;
12(1) 21(1) ( 7 ) massact wz\/(1 _r2)2 +2un)? "

2 2 171)
2 52
Dxp(l) = <2-7l53> P 12 i (k1 - 1) Ypd%l}lTb (16
mass,ct w%\/(l —1)" + (24i11)? 31 E

Using the above expressions, a general expression for the dynamic EMCF at the first resonant
frequency (i.e., r; = 1) can be obtained as:

D2,(1) B
K2 — 12 - 17
Du()Dn(l) B+ C 17
where ) )
X
B (2.753) 5 i 1 a8)
I massact wy (2¢1)
1 Ib
C=|>5—1)Y,d3— (19)
(kgl ) hg

Note that the configuration expressions for the double layer and triple layer bimorphs presented
in Table 1 are for the piezoelectric elements in series. For a parallel configuration, Dj;(I) will
remain the same; however, D12(l)|parallel = 2 D12(1)|seriess and DZZ(l)lparallel =4 Dp(I)|series [14,21].
Therefore, using the EMCF expression Equation (1), it can be seen that the parallel EMCF remains the
same as the series as required by fundamental physical considerations.

Now, in order to provide explicit expressions for the dynamic EMCEF for the different bimorph
configurations, the configuration expressions in Table 1 are substituted in Equations (17)—(19).
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Further to some mathematical manipulation, the following expression is obtained for the dynamic
EMCEF of the double layer bimorph:

0.46
1

31

K2 =

(20)

Thus, the dynamic EMCEF of a double layer bimorph is function of the PZT material transverse
electromechanical coupling coefficient, k31, and the operation damping ratio, {;, only. Note that k> — 1
if either k33 — 1 or (3 — 0 as required by fundamental physical considerations. In addition, it is
directly inferred that there is no specific optimum values for k3; and ¢; that would allow a maximum
k2 value; that is, the higher the k3; value, the higher the dynamic EMCEF, and the lower the ; value,
the higher the dynamic EMCF.

An explicit analytical expression for the dynamic EMCF is also obtained for the triple layer
bimorph making use of its configuration properties in Table 1 in conjunction with Equations (17)—(19).
With some mathematical effort, it can be shown that the dynamic EMCF for this configuration is
given by:

0.46 (4R*> + 4R +1)

K = (21)
1
0.46 (4R2 +4R+1) + (kz — 1) (247) (NR3 +3R?+3R+1)
31
where L v
_ e — ¢
R = oh, and N Y, (22)

Note that for verification, Equation (21) returns to the double layer bimorph expression
(Equation (20)) for the case R =0, as required. Again, the higher the k3; value the higher the dynamic
EMCE and the lower the (; value the higher the dynamic EMCEF; however, the k2 value now depends
on the layers’ thickness ratio, R, and the Young’s modulus ratio of the layers, N. Inspection of Equation
(21) shows that the lower N values lead to higher k? values; that is, an elastic material with lower
Young’s modulus is favorable from a coupling point of view.

An expression for the optimum thickness ratio, Ropt, can be derived using Equation (21).
By differentiation with respect to R and equating the resultant expression to zero, the following
condition is obtained:

4NR*+8NR3® +3NR*>-2R—-1=0 (23)

There are four roots for the above equation; however, the only valid solution for the above

equation that would allow a meaningful explicit expression for Ropt is:

1 1
Ropt = g A~ 3 (24)

where
1

1 1\ 101 1)\3
A‘(\/(m‘g) _64+4N_8) @5

Thus, the optimal thickness ratio of elastic to active layer thickness exists for triple layer bimorphs,
and this optimum value depends only on the ratio of material stiffness for the layers.
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3. Results and Discussion

In this section, a demonstration of the insights from the derived model for the dynamic
electromechanical coupling factor is presented for double and triple layer bimorphs. Note that,
in all cases, the coupling factor is evaluated at the first resonant frequency.

3.1. Young's Modulus Ratio and Thickness Ratio Effects

We consider here a triple layer bimorph with the material properties consistent with typical values
for commercially available piezoelectric materials (Y, = 63 GPa and k3; = 0.38) [19]. Furthermore, we
assume a damping ratio of 0.005 consistent with typical operational practice for piezoelectric MEMS
applications [18,19]. Inspection of the results in Figure 2a confirms that, for triple layer bimorphs, there
exists an optimum thickness ratio that maximizes the dynamic EMCEF for given active and passive
layer properties. Given that for zero thickness ratio (R = 0), the triple layer bimorph configuration
becomes equivalent to the double layer bimorph, it can be seen that the triple layer configuration
can achieve globally better dynamic EMCF values than the double layer configuration for a given
set of material properties. Note also that the maximum achievable dynamic EMCF value for triple
layer bimorphs increases with decreasing stiffness of the passive layer. For unimorphs, the behavior is
the opposite: peak values of dynamic EMCEF are increased by increasing the stiffness of the passive
layer [19]. These behaviors are most evident when the damping ratio is high. The optimum layer
thickness ratio, Ropt, as a function of the stiffness ratio, N, is shown in Figure 2b. Remember that the
value of Ropt is independent of both ¢; and k3;. For given piezoelectric material stiffness, increasing
elastic layer stiffness (increasing N) means that the R value for peak dynamic EMCEF reduces, i.e., the
thickness of the elastic layer must be reduced.

@) 0.95 y - . . . ®) s
0.9t ] 0.4
5 .03
Q a Y-
0.85} 5
& <02}
0.8 0.1
07— o5 1 15 2 25 3 | 2 — 3 4
R=h,/(2h,) , thickness ratio N=Y,/7Y,, stiffness ratio

Figure 2. (a) triple layer bimorph dynamic EMCF as function of (passive/active) layer thickness ratio
for different stiffness ratios. The damping ratio is 0.005. The active layer has a typical k3; = 0.38. For a
piezoelectric material stiffness of 63 GPa, N = 3.1 represents steel (blue), N = 1.75 represents brass
(black), and N = 1.03 represents aluminum (red); (b) dynamic operation optimum thickness ratio
variation with the Young’s modulus ratio for triple layer bimorphs.

3.2. Damping Ratio and k3 Effects

The effect of the damping ratio on dynamic EMCEF for the double and triple layer bimorphs is
shown in Figures 3a and 4a, respectively. It can be confirmed for both cases that the dynamic EMCF
values increase as the damping ratio decreases. In Figure 3a, the dynamic EMCF of an optimum
thickness unimorph actuator with the same active material properties and an elastic layer made of steel
is shown for reference. Given that unimorph peak values of dynamic EMCF are increased by increasing
the stiffness of the passive layer [19], steel is used because it represents a practical higher end for the
elastic material stiffness. Thus, this unimorph can be argued to demonstrate the highest practical
dynamic performance. For the current demonstration at a damping ratio of 0.035, the dynamic EMCF
for the double layer bimorph is 9% higher than that of the unimorph. This confirms that double layer
bimorphs are capable of achieving better dynamic EMCF values compared to unimorphs. Varying the
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piezoelectric layer transverse electromechanical coupling coefficient, k31, has a similar effect as to that
of damping ratio on the dynamic EMCE, Figures 3b and 4b. A higher k3; (or a lower ;) will shift the
dynamic EMCF curve up without affecting the value of Ropt.

@ | ®
= double layer bimorph _k31 =03
0.8 = unimorph " 0.8 k=04
B 0.6 & 0.6f s .
&= 0.6f 1 &0. —ky, = 0.5]
k;,=0.38 31

204 1 o !
0.2¢ 1 0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

¢, damping ratio ¢, damping ratio

Figure 3. Double layer bimorph dynamic EMCE. (a) effect of damping ratio; k3; = 0.38. The EMCF
of an optimum thickness unimorph with steel passive layer is shown for reference. Practically, this
unimorph configuration can achieve the best EMCF values; thus, the superiority of double layer
bimorphs against unimorphs is demonstrated; (b) effect of the PZT layer transverse electromechanical
coupling coefficient for double layer bimorphs.

(a) i ' ' ' _ _ (b) i
£=0.005
08 TS ] T 5057
606' 31 90, . | 606' ) :0.4.
ky=0.3
0.2+ . 0.2t
$=0.5
0 05 1 15 2 25 3 0 05 1 5 2 25 3
R=h,/(2h,) , thickness ratio R=h,/(2h,) , thickness ratio

Figure 4. Triple layer bimorph dynamic EMCF as function of (passive/active) layer thickness ratio for
a passive layer with a stiffness ratio of 1.75. (a) effect of damping ratio; k3; = 0.38; (b) effect of the PZT
layer transverse electromechanical coupling coefficient; ¢; = 0.02.

4. Conclusions

A novel analytical method for evaluation of the dynamic EMCF for cantilever bimorph
piezoelectric actuators has been successfully developed in explicit form. This has been achieved
through use of physical and mathematical insight to extend existing theoretical work. The model
has been carefully parameterized to allow effective comparison of the main actuator multilayer
topologies of engineering interest from unimorph to triple layer bimorph using a single set of equations.
Several nsights are obtained from the conducted analysis based on numerical evaluation of the model.
For given material properties, it is shown that triple layer bimorphs can achieve higher dynamic EMCF
values from simple double layer bimorphs. The benefit, however, depends on the damping ratio of
the application. Having chosen an actuator topology, the subsequent step is selection of the actuator
materials. For triple layer bimorphs, the passive material should have a low stiffness; however, for
unimorphs, the highest stiffness possible passive material is recommended. For all actuator topologies,
increasing the transverse electromechanical coupling coefficient of the active material improves the
dynamic EMCEF. As for the actuator geometry, configurations with a passive layer have an optimal
thickness ratio which gives the best dynamic EMCEF. This optimal thickness ratio is a function only
of the Young’s modulus ratio of the elastic and active layers of the actuator. Increasing the elastic
layer material Young’s modulus leads to an optimal thickness ratio corresponding to a thinner elastic
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layer. Finally, from an operation point of view, decreasing the damping ratio will directly increase the
dynamic EMCF of the actuator.
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