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Abstract: Piezoelectric actuation is widely used for the active vibration control of smart 
structural systems, and corresponding research has largely focused on linear electromechanical 
devices. This paper investigates the design and analysis of a novel piezoelectric actuator 
that uses a piezoelectric cantilever beam with a loading spring to produce displacement 
outputs. This device has a special nonlinear property relating to converting between kinetic 
energy and potential energy, and it can be used to increase the output displacement at  
a lower voltage. The system is analytically modeled with Lagrangian functional and  
Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally 
realized to demonstrate its enhanced capabilities. The model is validated using an experimental 
device with several pretensions of the loading spring, therein representing three interesting 
cases: a linear system, a low natural frequency system with a pre-buckled beam, and a 
system with a buckled beam. The motivating hypothesis for the current work is that 
nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric 
actuator’s displacement output. The most practical configuration seems to be the pre-buckled 
case, in which the proposed system has a low natural frequency, a high tip displacement, 
and a stable balanced position. 
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1. Introduction 

Piezoelectric actuation has received substantial attention due to its large force output and fast 
response. In recent years, great efforts have been made to develop piezoelectric actuators with large 
displacement outputs [1–3]. Piezoelectric stack [4,5], multilayer [6], bimorph [7], moonie [8],  
cymbal [9], and drum piezoelectric actuators [10,11] have been reported [3,12,13]. Although stack and 
multilayer piezoelectric actuators provide good performance in terms of displacements and forces, 
their large size and high cost are not suitable for most applications. The moonie, cymbal, and drum 
piezoelectric actuators can obtain large displacements, but they require a high driving voltage. 
Bimorph piezoelectric cantilevers have greater applicability because of their greater displacement ability 
and simple structure [11,14–16]. However, their output forces are inversely proportional to the output 
displacement, and further improvement of the displacement has been limited. Hence, an efficient 
method that can improve the output performance is still needed [17,18]. 

Nonlinear structures have also been designed as transducers in recent years [19–23]. The nonlinear 
response has been shown to exceed the power output and bandwidth of the equivalent linear system. 
When the standard used for the selection of the transducer is the output amplitude, these nonlinear 
transducers are better generators. For example, magnetoelastic structures [23–25] and vertical cantilever 
beams with tip masses [26–28] were specifically designed to exhibit a nonlinear response and are used 
to facilitate piezoelectric energy harvesting. Many of these systems demonstrate the advantages of 
Duffing oscillators and obtain increased bandwidth [20,21,29]. 

This paper describes the design and analysis of a preloaded piezoelectric actuator with a  
double-well potential. This actuator has a loading spring mounted between two tips of the bimorph 
piezoelectric cantilever beam. Its theoretical and experimental investigations are presented. The goal is 
to demonstrate that it is possible to amplify the top displacements of a preloaded cantilever beam 
system using a carefully chosen preload spring. A mathematical model is derived from energy 
principles and numerically simulated across a range of excitation voltages and frequencies. A  
lumped-parameter nonlinear equations to shown to successfully describe the large displacement 
response of the preloaded piezoelectric actuator. The displacement response and pretension of the 
loading spring are compared theoretically, and the substantial advantage of the former is demonstrated. 

2. Preloaded Piezoelectric Actuators 

For a nonlinear piezoelectric actuator, preloaded piezoelectric cantilever beams are considered with 
a loading spring. Figure 1 illustrates the nonlinear piezoelectric actuator that was modeled, numerically 
investigated and experimentally tested. The novel device uses a bimorph piezoelectric and two loading 
springs; the bimorph is clamped at one end to act as a cantilever beam, and the loading spring is 
mounted between the two tips of the bimorph. Piezoelectric laminates are layered along the beam 
above and below the electrically neutral substrate material (copper patch), and this structure is 
commonly referred to as a bimorph [30]. The system is a driven bi-stable oscillator. The pretension 
forces can be varied according to the stiffness and pretensions of the loading spring, where the stiffness 
ks and pretensions determine the degree of nonlinearity. At a critical pretension, the elastic restoring 
force of the beam is overcome by the spring tension, and the cantilever beam is deflected into one of 
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two potential wells. When the pretension is close to the critical value of bifurcation, the effect of the 
tip displacement of the beam is enhanced. 

 

Figure 1. Schematic diagram of a preloaded piezoelectric actuator. 

The actuator was driven by a voltage applied to the electrodes of the piezoelectric slice. For this 
investigation, a deterministic driven voltage of the form v(t) = V0cos(ωvt + φv) was considered, where 
the driving amplitude V0 and frequency were allowed to vary. The electric field across the thickness of 
the laminate generates a stress along the piezoelectric components, which bends the beam, and the 
inertia of the cantilever counteracts the bending force. For the sake of completeness, we fully derive a 
set of ordinary differential equations for the nonlinear system in the next section. 

3. Mathematical Model of Preloaded Piezoelectric Actuators 

Figure 2 shows the preloaded piezoelectric cantilever beam with length L mounted to the basement 
with fixed support. The following derivation will use energy methods to develop the governing 
equations of a bimorph piezoelectric cantilever beam with a loaded spring as an actuator. The  
energy-based modeling approach for beams has been demonstrated by several studies to be suitable for 
piezoelectric transducers [31–34]. 

 

Figure 2. Detailed view of the geometry of the analytical actuator model. 

In the following analysis, the beam is assumed to have uniform inertial and stiffness properties. 
Two PZT laminates are assumed to be perfectly bonded to either side of the copper patch, and the 
beam is continuous across the thickness. The first torsional resonance frequency of the beam is much 
higher than the excitation frequency. Hence, the torsional modes of the beam are neglected, the 
vibration is purely planar, and the system is studied in the x − y coordinate reference frame. The 
thickness of the beam is small compared with the length so that the effects of the shear deformation 
and rotational inertia of the beam can be neglected [27]. The tip displacements of the beam are far 
smaller than the length, the displacements along the x direction are neglected, and the spatiotemporal 
transverse deflection w(x,t) is used to build the energy function [24,32]. 

Consider the beam in Figure 2. The kinetic energy within each part is distributed along the length L 
of the beam for the substrate as: 
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where the overdot indicates a time derivative; L is the length of the electrically active material, which is the 
same as the base material; ρ is the density; and A is the cross-sectional area. In this paper, the subscripts p, s, 
and b represent the piezoelectric material, the substrate, and the loaded spring, respectively. 

For the inactive substrate, the stored energy is the elastic potential energy of the substrate copper 
piece expression: 

1
2 s

T
s s s sV

U S T dV= ∫   

where T = cS is the mechanical stress, c is the modulus of elasticity c = E, E is Young’s modulus, S is 
the mechanical strain, and the superscript T indicates the transpose of the vector. In this paper, we 
presume that the transverse large orbit oscillations in the double-well potential are sufficiently small to 
maintain the validity of the Euler–Bernoulli theory. This allows the strain in the beam to be written as 
the product of the distance from the neutral axis and the second derivative of displacement with respect 
to the position along the beam. Once the strain is defined in this manner, the following equation can  
be used: 

( , , ) ( , )S x z t zw x t′′= −
 

(3) 

where the prime notation ()" is shorthand for ∂2/∂x2. Then, the potential energy in the coordinate 
reference frame is: 
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where 3 / 12s sI bh=  is the inertia of the copper slice. 

The bending enthalpy for electrically active layers can be written as: 
1 1
2 2p p

T T
p p p p p p pV V

U S T dV E D dV= −∫ ∫
 

(5) 

where E and D denote the electric field and displacement, respectively. The piezoelectric laminates 
maintain an elastic potential, but the applied strain also generates an electric field across the layers 
because of the piezoelectric effect. In widely used IEEE standard notation, their electromechanical 
behavior is governed by the following constitutive laws relating the generated electric field to the 
mechanical stress within a layer [35]: 

ε
p pp
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(6) 

where ε is the dielectric constant and the superscript e is the piezoelectric coupling coefficient, which 
relates the stress to the applied electric field. The specification of these relationships will allow 
electromechanical interactions to be included in the model. Inserting Equation (6) into Equation (5) gives: 
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where three parts are included in the elastic potential. Up,1 is independent of the electric field Ez, and 
the subscript z denotes the direction along the thickness. Up,2 couples the electric field with the stress 
and energy at the position corresponding to Up,3: 

,1 ,2 ,3p p p pU U U U= + +   

where the potential energy Up,s consists of the strain energy resulting from the bending of the 
piezoelectric patch and is: 
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where 2 2(4 6 3 ) /12p p p p s sI bh h h h h= + +  is the inertia of the piezoelectric slice. 

The work performed by the piezoelectric patches in moving or extracting the electrical charge is [27]: 
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Similar to a capacitor, 

, ( ) ( ) /p z pE t v t h=
 

(8) 

where hp is the laminate thickness. The piezoelectric coupling coefficient can be written as shown in 
Equation (9) in terms of the more commonly specified coupling coefficient dij as: 

31 ,
E
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where E
xx pc E=  and the subscripts i and j of dij refer to the direction of the applied field and the 

polarity, respectively. Then, Equation (7) can be written as: 
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The potential application of a piezoelectric cantilever beam as a capacitor is: 

2
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where /s
p zz P pC b L hε=  is the capacitance through one layer. 

The potential energy of each piezoelectric slice is: 
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When the beam is bent, its axis forms a curve, and the distances between its two tips and the 
potential energy of the loaded spring change. The changing tendency of the loaded spring is in contrast 
to the potential energy of the beam. The potential energy of the loading spring is: 

( )21 ( )
2b b bU k l t= ∆   
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where kb is the stiffness of the loaded spring and Δlb(t) represents the distance changes in the  
loading spring. 

,0 ,( )b b b ml t l l∆ = ∆ − ∆
 

(13) 

where the initial elongation of the loaded spring is Δlb,0 = L − lb,0 and lb,0 is the free length of the 
loaded spring. When the elongation of the loaded spring (Δlb,m) changes as described, we assume that 
the length of the beam, s(t), is equal to the initial length of the loaded spring, 
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l
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The initial length is the length of the loaded spring before the beam is bent. In addition, the distance 
between the two tips of the beam, lb(t), is equal to the instantaneous length of the loaded spring, 

2 2( ) ( , )bl t L w L t= + . 

The Lagrangian functional for the electromechanical beam is thus the difference between the kinetic 
energy and potential energy: 

( , , ) 2 2 2 2s p b s p bw w w T T T U U U′ ′′ = + + − − −L
 

(14) 

where Tb is the kinetic energy of the loaded spring. Because the mass of the loading spring is assumed 
to be negligible compared to the beam mass, Tb = 0. 

To develop the governing equations of a preloaded piezoelectric cantilever for the actuator, 
Hamilton’s principle can be applied to yield partial differential equations. However, a more direct 
method of generating a system of ordinary differential equations may be obtained using the  
Euler–Lagrange equations. First, an assumption of a modal expansion for w(x,t) should be applied. 

With a loading spring, the beam’s first mode of vibration is particularly dominant and obtains the 
greatest displacement at the tip of beam. Thus, our model and experimental device will utilize this 
property. We assume that the beam does work in the first mode, and hence, a single-mode approximation 
of the beam deformation is sufficient. The displacement at any point in the beam is represented as a 
function of the tip displacement via a function of the beam deformation, ϕ(x): 

( , ) ( , ) ( ) ( ) ( )w x t w L t x r t x= φ = φ
 

(15) 

Thus, Equation (14) can be reduced by incorporating the modal expansion in Equation (15) as: 
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A system of ordinary differential coordinates for the modal displacement and flux linkage follow by 
applying the Euler–Lagrange equations to Equation (16) such that: 

( )d Q t
dt r r
∂ ∂

− =
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(17) 

where Q(t) represents a generalized force, and there is no external work applied to the system, namely, 
Q(t) = 0. Substituting Equation (16) into Equation (17) generates equations for the dynamical system: 
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where: 
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using the following relationship based on the first mode of the linear mode shape: 
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for the system in Figure 1 with the parameters listed in Table 1. 

Table 1. Parameters of the actuator. 

Parameter Symbol Value 
Substrate properties 

Length la 120 mm 
Width b 20 mm 

Thickness hs 0.2 mm 
Density ρs 8650 kg/m3 

Young’s modulus Es 112 GPa 
Damping ratio ζ 0.01 

Piezoelectric laminate properties 
Thickness hp 0.25 mm 
Density ρp 7700 kg/m3 

Young’s modulus Ep 63 GPa 
Coupling coefficient d31 −630 × 10−12 C/N 

Laminate permittivity εsxx 3200 ε0 
Permittivity of free space ε0 8.854 × 10−12 F/m 

Loading spring properties 
Stiffness kb 10 kN/m 
Length lb,0 100 mm 

Pretension Δlb 1 mm 

4. Numerical Investigation of the Actuator for Nonlinear Oscillations 

4.1. The Nonlinear Elastic Energy of the Actuator 

Figure 3 shows the effects of the loading spring on the total potential energy of the short-circuited 
actuator, where the distance Δlb is the pretension of the loading spring. From Figure 3, it can be 
observed that as the pretension is increased, the repelling energy will exceed the total elastic potential 
of the actuator at a critical value. 

Figure 4 illustrates the influence of the pretension forces on the total potential energy of the  
short-circuited actuator. In each subfigure, the beam’s elastic potential, loading spring potential, and 
total potential are shown. Table 1 lists the relevant spring characteristics used in calculating the 
potential energy. 
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Figure 3. Variation in total elastic energy as a function of tip displacements with preloading. 

 

Figure 4. Static mechanical potential energy for a loading spring pretension of (a) 0.01 mm, 
(b) 1.25 mm and (c) 2 mm. The quadratic restoring potential of the beam (thin solid line) 
and the nonlinear potential of the loading spring (dotted line) are added to give the total 
potential energy (dark solid line) as a function of the tip displacement. 

Figure 4a shows little to no effect on the potential field of the actuator at the tip when the pretension 
of the loading spring is 0.01 mm, implying that the restoring forces of the loading spring are not 
sufficiently strong to produce any nonlinear influences. However, upon increasing the pretension to  
Δlb = 2 mm, a hardening spring force develops before a pitchfork bifurcation generates two new 
equilibrium points. Figure 4c shows the post-bifurcation result at an initial elongating length of  
2 mm, where a symmetric double-well potential can be observed. Because this study involves a novel 
actuator, it was necessary to investigate its harmonic displacement response. 

Figure 5 shows the equilibrium position of the tip and reveals that the post-buckled response has 
two equilibrium positions. Increases in stiffness or pretension cause the beam to buckle. When the 
beam buckles, it bends to one side and settles at that equilibrium position. The critical pretension  
( b

bl∆  = 1.29 mm) is defined as the maximum pretension before buckling. The system is in the  

pre-buckled state when the pretension is smaller than a critical value. In addition, the system is in the 
post-buckled state when the pretensions exceed the critical pretensions. In this case, the equilibrium 
positions are quite sensitive to the stiffness and pretension of the loading spring, and in the simulation 
study, a stiffness of 10 kN/m was used, unless otherwise stated. 
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Figure 5. The equilibrium position of the loading piezoelectric actuator (kb = 10 kN/m). 
The dashed line denotes unstable equilibrium positions. 

Decreasing the driving voltage from which tip displacements can be used is highly interesting for 
actuators. To provide insight into the capability of loading the piezoelectric actuator for this purpose, 
frequency sweeps were obtained via numerical simulation. 

4.2. Pre-Buckled Response 

Note that the elastic position energy is the main distinction between the pretension and classic 
cantilever beams. As shown earlier in the model, the main parameters of interest are the pretension and 
stiffness of the loading spring and the frequency and amplitude of the driving voltage. The response of 
the actuator is characterized by its tip displacement under the driving voltage. 

The experimental system was modeled using the motion equations of the loaded cantilever beam 
developed previously to validate the model. In Equation (21), we considered only a very simple model 
of the beam, where the displacement model is given by Equation (22) and the neutral axis is assumed 
to remain at the center of the copper beam. 

Here, the value of the driving frequency is swept from 0 to 30 Hz. The time response is simulated, 
with zero initial displacements and velocity, for 8000 cycles to ensure that the transient dynamics have 
decayed. For the last 100 cycles, the amplitude of the tip is stable. The amplitudes associated with 
various frequencies can be used to create the frequency response and equilibrium position curve and 
were obtained through numerical simulation. 

The simulated results of the actuator with pre-buckled cantilever beams show that the goal of 
improving the displacement of the cantilever tip was achieved using the pretensioning of the loading 
spring (see Figure 6). Figure 6a shows that with increasing pretension of the loading spring, the 
maximum displacement of the cantilever increases, and the nature frequency of the system decreases. 
The maximum amplitudes of the system were 0.19, 0.23, 0.31, and 0.77 mm when the pretensions 
were 0, 0.4, 0.8, and 1.2 mm, respectively. 

To study the amplification of a cantilever with a loading spring, the displacement amplification 
coefficient λA was used, which is the ratio of the amplitude with loading to that without loading. As 
observed from Figure 6b, λA increases with the pretension of the loading spring when the cantilever 
beam is pre-buckled. Apparently, the extreme value of the amplification can be obtained when the 
cantilever approaches the critical scenario. 
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Figure 7 shows the effects of the input voltage on the displacement amplification coefficient λA; the 
simulation results show that λA decreases with increasing applied voltage. Specifically, when  
Δlb = 0.4 mm (Figure 7a) and the applied voltage increased to 200 V from 10 V, the displacement 
amplification coefficient decreased to 2.1545 from 2.1887; when Δlb = 0.8 mm (Figure 7b), λA 
decreased to 4.5903 from 4.7681; and when Δlb = 1.2 mm (Figure 7c), λA decreased to 11.4578 from 
16.5957. For large applied voltages, the decrease is obvious. 

  

Figure 6. The simulation results for the (a) amplitudes and (b) amplified factors for a 
stiffness of 10 kN/m, applied voltage of 10 V, and pretension of 0.4, 0.8, and 1.2 mm over 
a range of frequencies. 

   

Figure 7. The simulated results for a stiffness of 10 kN/m, applied voltage of 10 V  
(dash-dot), 50 V (dot), 100 V (dashed), 200 V (solid), and pretension of (a) 0.4 mm,  
(b) 0.8 mm and (c) 1.2 mm over a range of frequencies. 

4.3. Post-Buckled Response 

Figures 3 and 5 show that with increasing stiffness and pretension of the loading spring, the 
cantilever buckled. When the electrodes of the actuator short circuit, the post-buckled response 
exhibits two equilibrium positions. In particular, there are two types of vibrations: in the first type, the 
beam response oscillates around one of the equilibrium positions, and in the second type, the beam 
exhibits large oscillations across the unstable zero displacement position. As a drive element, the 
symmetry of the displacements is as important as the amplitudes; hence, in this paper, the simulation 
focuses on the latter condition. 

According to Figure 8a, when the pretension was 1.3 mm (red dash), the cantilever buckled, and a 
double-well potential could be observed. Because a pretension of 1.6 mm was utilized, the equilibrium 
positions Ab ≠ 0. Figure 8b,c show that the displacement of the beam and its amplification coefficient 
were significantly increased and were greater than the pre-buckled values. λA decreases with increasing 
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pretension when the cantilever is buckled. For instance, λA decreases to 4.3129 from 131.9766 when 
the pretension increases to 1.6 from 1.3 mm. An interesting result from Figure 8a is that the equilibrium 
position varied with the frequency of the applied voltage. The oscillations of the cantilever were on 
either side of the unstable zero displacement position when the frequency was approximately the 
natural frequency. Under the other condition, the beam oscillated around one of the equilibrium 
positions because the frequency was far from the natural frequency. 

The pretensions of 1.30, 1.34, and 1.37 mm were utilized near the critical pretension of bifurcation, 
which produces large effects on the amplification of the displacements, as noted earlier. In contrast to 
the amplification coefficient, three pretension values evaluated at voltages of 10, 100, and 200 V are 
shown in Figure 9a–c, respectively. Comparing these three figures reveals that the difference in λA is 
significant; specifically, there is an appropriate driven voltage for each pretension of the cantilever that 
can produce the maximum λA. The largest λA of the three driven voltages were obtained for 10, 100, and 
200 V with pretensions of 1.30, 1.34, and 1.37 mm, respectively. Based on these results, we observe that 
the appropriate voltage increases with increasing pretension. According to Figure 3, the potential well 
depths of the cantilever increase with increasing pretension. The relationship between potential energy 
and kinetic energy in Equation (1) indicates that a deeper potential well requires more input energy, 
which is provided by the electric energy through the piezoelectric effect. In other words, the required 
voltage increases with increased pretention, as observed earlier based on the results in Figure 9. 

   

Figure 8. The simulation results for the (a) balance positions, (b) amplitudes of the tip 
displacement and (c) amplified factors for pretensions of 0 mm (dash-dot), 1.2 mm (dot), 
1.3 mm (dash), and 1.6 mm (solid). 

   

Figure 9. The simulated results with applied voltages of (a) 10 V, (b) 100 V, and (c) 200 V 
for pretensions of 1.30 mm (dot), 1.34 mm (dashed), and 1.37 mm (solid). 
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5. Experimental Results and Discussion 

5.1. Measurement and Instrumentation 

A picture of the preloaded piezoelectric actuator with a loading spring is shown in Figure 10a. The 
piezoelectric cantilever beam is installed in the cantilever holder, and the loading spring consists of 
two line springs that are jointed between the tip of the cantilever beam and the spring holder. The 
spring holder was attached to a clamping device that could be withdrawn or pushed toward the holder 
of the cantilever along secured tracks to apply the preloading forces. The distance between the spring 
holder and cantilever holder can be varied using the digital micrometer caliper between them, which is 
used to change the pretension of the loading spring. Figure 10a shows the effects of positioning the 
spring within the critical bifurcation distance. 

  

Figure 10. (a) The structure of the experimental pretension actuator; (b) the remaining 
necessary experimental equipment. 

A laser displacement sensor (Keyence LK-H020) and a DC power supply (MS2-H50) were used to 
record the transverse beam displacement. The laser displacement sensor and remaining required 
equipment are shown in Figure 10b. The measured signals (tip displacement) were passed through a 
converter (Keyence LK-G5001V), which was used to output a digital signal from an analog input for 
use by the computer. 

5.2. Comparisons of Experiment with Theory 

A picture of the preloaded piezoelectric actuator with adjustable pretension is shown in Figure 10a. 
The actuator consists of a bimorph piezoelectric beam and two preloaded springs with the physical 
parameters listed in Table 1. The piezoelectric beam is vertically clamped at one end and held in such a 
way as to alleviate the influence of gravity. The piezoelectric laminates are connected in parallel with 
one another using leads. The entire beam was then placed in series with a power source with variable 
frequency and amplitude. The tip displacement generated by the voltage applied to the actuators was 
then measured. The damped linear natural frequency of the cantilever was determined by averaging  
10 impulse tests: 

1

1

2 ln
r j

m Ac
jT A +

=   
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These data were then studied to determine the non-dimensional damping ratio: 

ζ
2c

c c
c km

= =   

This predicted a non-dimensional damping ratio of ζ = 0.0163 and a damped natural frequency of 
13.67 Hz, in good agreement with the modeled damped natural frequency of 13.69 Hz. A deviation is 
anticipated because the model neglects the very thin silver conducting electrode and the thickness of 
the epoxy adhesive coating layer used to bond the piezoelectric patch and substrate together. 

The experiments were performed to validate the phenomenological results of the numerical studies. 
Specifically, the amplified tip displacement response was investigated by performing frequency 
experiments from 1 to 30 Hz. The amplitude of the driven voltage was maintained at 10 V. The 
corresponding tip displacement with pretensions of 0.4 and 1.29 mm across the frequency range 
exhibits a stiffness softening behavior, and the amplification of the displacement was clear. In addition, 
with a pretension of 1.4 mm, an intrawell hopping behavior was observed, and the amplifier effect on 
the displacement was reduced. Figure 11 shows the simulation results corresponding to the 
measurements and similar trends in the simulation and experimental results. The cantilever beam is 
pre-buckled with pretensions of 0, 0.4, or 1.29 mm, and λA increases with increasing pretension. 
However, the amplitudes of the tip displacements increased from 0.19 mm to 1.2 mm when the 
pretension increased from zero to 1.29 mm. When the pretension was 1.4 mm, the beam was  
post-buckled, and the amplitudes of the tip displacements decreased to 0.5 mm. The balance position 
was one of two equilibrium values of the potential. The resonant piezoelectric cantilever beam 
provides greater values for the extremes of the tip displacement output only when the pretension is at 
or very close to its critical bifurcation pretension (1.29 mm); then, the displacement output of the 
actuator can be six times larger than the actuator without pretension. Hence, a displacement output that 
can increase by an order of magnitude larger over a frequency range can be expected with this device. 

 

Figure 11. The response measured via laser experiment (points) and simulation (lines) for 
a stiffness of 10 kN/m and pretensions of Δlb = 0 mm (asterisks and solid line), 0.4 mm 
(circles and dashed line), 1.29 mm (triangles and dotted line), and 1.4 mm (squares and 
dashed-dotted line) over a range of frequencies. 
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6. Conclusions 

This paper characterized the displacement output from a piezoelectric actuator with a loading 
spring. Most importantly, the amplifier effects of the displacement response were numerically 
predicted and experimentally validated. A complete nonlinear model was derived with an analytical 
preloaded piezoelectric cantilever beam formulation and appropriate modal expressions accounting for 
discontinuous piezoelectric laminates. The tip displacement output of the piezoelectric actuator can be 
as large as six times that of the actuator without pretension. The model was capable of accurately 
predicting the key characteristics of the piezoelectric actuator, such as resonant frequency, tip 
displacement and pitchfork bifurcation, as well as the amplified effects on the displacements in the 
experimental system. The amplifier effect of the actuator is significant near the critical buckling 
pretension, and the amplificatory post-buckled factor is larger than the pre-buckled factor. However, 
the balance position is unstable and affected by the driven voltage, frequency and load of the actuator. 
The pre-buckled simulation results show that the tip displacement amplificatory factor decreases with 
increasing driven voltage, and the post-buckled results show that there is an optimal match between the 
driven voltage and the pretension. Thus, the proposed preloaded piezoelectric actuator approach may 
be more practical in applications than traditional configurations. 
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