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Abstract: Severely disabled people, like completely paralyzed persons either with 
tetraplegia or similar disabilities who cannot use their arms and hands, are often considered 
as a user group of Brain Computer Interfaces (BCI). In order to achieve high acceptance of 
the BCI by this user group and their supporters, the BCI system has to be integrated into 
their support infrastructure. Critical disadvantages of a BCI are the time consuming 
preparation of the user for the electroencephalography (EEG) measurements and the low 
information transfer rate of EEG based BCI. These disadvantages become apparent if a 
BCI is used to control complex devices. In this paper, a hybrid BCI is described that 
enables research for a Human Machine Interface (HMI) that is optimally adapted to 
requirements of the user and the tasks to be carried out. The solution is based on the 
integration of a Steady-state visual evoked potential (SSVEP)-BCI, an Event-related  
(de)-synchronization (ERD/ERS)-BCI, an eye tracker, an environmental observation camera, 
and a new EEG head cap for wearing comfort and easy preparation. The design of the new 
fast multimodal BCI (called sBCI) system is described and first test results, obtained in 
experiments with six healthy subjects, are presented. The sBCI concept may also become 
useful for healthy people in cases where a “hands-free” handling of devices is necessary. 
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1. Introduction 

The achieving of autonomy is very important for disabled people, as it means improving the quality 
of their lives. Ambient assistive living, environmental control systems and supporting devices like the 
assistive robot FRIEND (Functional Robot arm with user-frIENdly interface for Disabled people) [1] 
are designed to restore the autonomy of disabled users in All Day Living (ADL) scenarios and in 
professional life. To ensure economic feasibility, the support systems have to provide user independence 
from care personal for several hours. The user needs then complete control over the Human Machine 
Interface (HMI), which itself depends completely on the remaining mental and physical capabilities of 
the user. Additionally, a gradual or sudden change in motion capabilities may happen depending on the 
disability. HMI concepts that are helpful at a specific point in time, like systems that use head motion 
capabilities, may later become insufficient. That holds, e.g., for patients with muscular dystrophy, 
multiple sclerosis or amyotrophic lateral sclerosis (ALS) where motion based communication 
capabilities may decrease over time. Steady-state Visual Evoked Potential Brain Computer Interfaces 
(SSVEP-BCI) and Motion imagination Event-related (de)-synchronization (ERD/ERS) BCI are then 
becoming important. 

Depending on the disability of the user, many HMI methods to issue commands are possible [2], 
however all have some disadvantages. Often BCI is mentioned as a specific HMI for a large class of 
disabled users, esp. for users with very limited motion capabilities. The feasibility of an SSVEP-BCI to 
control FRIEND has been shown in [3] and was demonstrated also on several exhibitions and 
conferences (CEBIT Hannover 2008, RehaCare Duesseldorf 2008, ICORR 2007). Figure 1 shows 
control of FRIEND with a SSVEP-BCI in an All Day Living laboratory experiment (ADL) [2].  
The control of different assistive devices like an internet radio, the assistive robot FRIEND, and other 
environmental systems serve here as use cases for BCI application. However, BCI use is time 
consuming and has an error rate that cannot be neglected, which is the reason to design a new hybrid 
BCI and research its capabilities. 

 

Figure 1. Control of FRIEND with a SSVEP-BCI in an ADL-test bed. SSVEP Diodes are 
located at the frame of the screen. 
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To simplify preparation, improve the comfort of the user, extend the user group, and enable  
research for optimized HMI, a new electroencephalography (EEG)-cap was designed and integrated 
with an SSVEP-BCI, an ERD/ERS-BCI, an eye-tracker, and an environmental camera. The integration 
of signal processing for both BCI methods with image processing for an eye tracker and environmental 
camera in one software package is also accomplished and improves software development capabilities 
in research and future application of sBCI. 

In a first setup, we tested the control of an internet radio, a microwave, and a fridge with six healthy 
participants. Signal processing for the BCI signals is carried out with a Bremen-BCI software package, 
which was described [4–6] including results of European Project BRAIN [7]. In this paper, we are 
reporting first test results. The BCI tests aim mainly on feasibility of the sBCI concept and on a 
comparison with BCI results which we achieved with a standard EEG cap. 

We focus here on the sequential use of the sBCI components whereby the eye tracker or the 
ERD/ERS-BCI acts as a selector for systems in the environment and the SSVEP-BCI enables the 
control of the selected device. Five subjects used the eye tracker and one subject who was trained in  
ERD/ERS–BCI used that one for selection. In both cases, the SSVEP-BCI facilitated the control of the 
selected device. All participants succeeded in performing five requested tasks with a good performance: 
the subjects who used eye tracker spent 3.9 s on average on the selection of the target device; however, 
20 s on average were needed with ERD/ERS-BCI; a peak information transfer rate (ITR) of  
73.9 bit/min was achieved with the SSVEP-BCI; a mean ITR of 41.2 bit/min and an accuracy of 96.3%. 

The paper is organized as follows: In Section 2, we consider two use cases for BCI—control of home 
appliances and control of an Internet radio. Section 3 discusses the state of art in EEG-based BCI. In 
Section 4, we discuss the layout of the sBCI system and design decisions. Section 5 describes the user 
interface and control methods chosen so far. Section 6 gives details about the subjects, the data acquisition 
and the results. The paper closes in Section 7 with a discussion of the results and the lessons learned. 

2. Use Cases and General Design Decisions for sBCI 

The use cases are inspired by the support of users with tetraplegia in an ADL scenario. Simple 
devices like a fridge or microwave and more complex ones like an internet radio have to be operated.  
Typically, the user has to select a device and then issue commands to the selected device. For a 
fulfillment rate of the initialized tasks larger than 80%, the user has to support the automation system. 
The user can interrupt it if a problem in task execution arises and issue corrective commands. After the 
problem is solved, control is handed back to the automation system. 

2.1. Use Case 1: Control of Simple Home Appliances 

Here we consider an ADL scenario. The user sits in a wheelchair with a robot arm and would like to 
drink. The user may first select the fridge and then send an “open” command to the actuator that opens 
the door of the fridge. 

Once the door is open, the user chooses the robot arm and issues a high level command “grasp 
bottle”. The robot arm which is mounted on the wheelchair performs an autonomous picking up of the 
object in the fridge. The control of the robot arm is realized as a combination of vision-based object 
recognition and advanced path planning as described in [1]. 
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2.2. Use Case 2: Operation of Complex Devices 

For a device like an internet radio, a sequence of inputs and commands has to be generated to start a 
specific task. It may also be necessary to intervene in task execution to support the automation 
algorithms. Typical commands after choosing the internet radio are: (a) turn radio on/off; (b) select 
channel; (c) set volume up/down; (d) operate playback functions (pause, resume fast forward/backward 
etc.). The user has to select the HMI and then issue one or more commands. 

2.3. General Design Requirements 

General requirements for a BCI that is used by a disabled user as an HMI are: (a) preparation of the user 
should be possible within 5 min, (b) wearing comfort has to allow uninterrupted usage for several 
hours, (c) the user must be able to switch the system or components on and off without external support. 

3. State of Art for EEG-Based BCI 

The BCI system establishes a direct communication channel between the human brain and a control 
or communication device. BCIs detect the human intention from various electrophysiological signal 
components, such as steady-state visual evoked potentials (SSVEPs) [8,9], P300 potentials [10] and 
sensorimotor rhythms (SMR) and translate it into commands. The brain signals are recorded from the 
scalp using electroencephalography (EEG). The movement-related modulation of mu (7–13 Hz) and 
beta (13–30 Hz) sensorimotor rhythm induced by the imagination of limb movements [11,12] has gained 
considerable interest as a more natural paradigm for the non-invasive BCIs. Compared to those BCIs based 
on evoked potentials such as SSVEP and P300, motor imagery BCIs do not need external stimulation. 
SMR modulation patterns in the form of event-related de-synchronization (ERD) and event-related 
synchronization (ERS) are independent in terms of any stimulation and allow the user to freely decide 
when they wish to generate a control signal. Nevertheless, ERD/ERS-BCIs are generally even more 
demanding in the usage and more complex in the implementation. ERD/ERS-BCIs require extensive 
user training and adaptive signal processing algorithms tailored to the mental states (fatigue, workload 
and emotion) and learning rates of each subject [13,14], although advanced signal processing methods 
and well-designed training interfaces are used in BCI research. However, the output of the ERD/ERS-based 
BCI systems is still less reliable and the interaction speed is much lower in comparison to other 
paradigms and still far away from mainstream interaction modalities such as joysticks or mice. 
Currently, the SSVEP approach provides the fastest and most reliable paradigm for non-invasive BCI 
system implementation and requires little or no training. Steady-state visual evoked potentials are brain 
responses elicited by presenting repetitive visual stimulation above 5 Hz. Exposing the user to 
flickering lights in frequencies between 5 and 20 Hz evokes SSVEPs with comparatively large 
amplitude [15] but it is inconvenient and tiring for the user. Moreover, during the non-control state (NC 
state), when the user does not want to generate any command, the continuing flickering could induce false 
positive classifications if the BCI system mistakenly declares the NC state as an intentional control state. 

As explained in the next chapter, the requirements for control of complex devices lead to the 
development of a BCI with hybrid architecture (hBCI). A hybrid BCI (hBCI) is usually defined as a 
BCI combined with at least one other interface system or device. Such a system or device might be a 



Micromachines 2015, 6 295 
 
BCI channel relying on other brain patterns, the output of an external assistive device (chin-joystick, 
switch, etc.) or other bio signals (heart rate, eye gaze, muscular activities, etc.) [16]. Recently 
multimodal interfaces have demonstrated promising results towards more reliability, flexibility and 
faster interaction. Some of them are based on multiple brain signals [17–21]. Others combine brain and 
additional bio signals [22,23]. A multimodal interface including eye tracking to determine the object of 
interest and a brain-computer interface to simulate the mouse click is presented in [24,25]. Eye 
movements are detected with a remote eye tracker that is mounted opposite of the user and uses an 
infrared camera to observe gaze direction. A limitation of such a remote system is that it can only be 
used with screen-based interfaces. 

A further important issue in non-invasive BCI research is to make the EEG acquisition system more 
comfortable and suitable for daily use. Basically, two trends of development can be identified for this 
design aspect. Firstly, minimizing the number of electrodes in order to reduce hassle and setup time 
and, secondly, the development of dry [26–28] or water-based electrodes [29]. Several commercial  
non-medical EEG headsets following these trends have been released over the last few years.  
The commercially available BCI headsets promise ease of use, low cost, short setup time, as well as 
mobility. The headsets are wireless and vary in the number of electrodes: NeuroSky’s MindSet and 
MindWave (http://www.neurosky.com) use a single EEG electrode positioned on the user’s forehead; 
ENOBIO [30] provides four channels of bioelectric signals; Emotiv’s EPOC headset [31] measures 
electrophysiological signals using 14 saline non-dry sensors placed over the user’s head. However, the 
data acquired by such consumer devices contains neither event related potentials nor sensorimotor 
rhythms. These commercial-graded systems focus on gaming, entertainment, and biofeedback training 
based on the attention level and meditation. Based on this state of art analysis, the system layout and 
design decisions are discussed in the next chapter. 

4. System Layout and Design Decisions 

The capacity of EEG based BCIs must be carefully reflected in order to integrate a BCI with the 
ambient intelligence environment and control strategy of assistive systems for a disabled user. A 
detailed analysis of the support tasks carried out for FRIEND and other devices in the environment of 
the disabled user lead to the following principal actions that had to be carried out with a BCI: 

• Start and stop the BCI completely or only a specific BCI mode; 
• Selection of a specific support device (e.g., robot, gripper, microwave, fridge or radio); 
• Selection of a specific action of the selected device (e.g., open fridge, grasp bottle, open/close 

gripper, chose moving direction of robot arm, move arm a specific distance in chosen direction); 
• Switch to the HMI screen; 
• Navigate within the HMI screen (left, right, up, down); 
• Start a specific action; 
• Stop a running action. 

In this paper, a new EEG head cap for BCI in combination with an eye tracking system is 
introduced. We will mainly focus on the sequential hybrid BCI, where the eye tracker or ERD/ERS-BCI 
acts as a selector and the SSVEP-BCI generates the control commands. 
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The sBCI system includes a lightweight, ergonomically designed headset which integrates  
multi-channel EEG equipment, an eye tracker system with environmental observation and an 
integrated visual stimulator for SSVEP-BCI. The full integration of the SSVEP stimulator, SSVEP 
electronic and BCI software with the eye tracker was the main reason to design an eye tracker instead 
of using a commercially available one. An EEG amplifier Porti 32 (Twente Medical Systems 
International, Oldenzaal, The Netherlands) connected to a standard notebook is used to measure the 
brain activity, while an LED pattern generator produces flicker frequencies. A programmable remote 
controller sends the control commands to the controlled devices. The universal structure of the sBCI 
interface allows the easy integration of additional devices and further functionalities into one common 
graphical user interface. The following sections describe the system layout and design criteria. 

4.1. Gaze-Controlled Interface 

An overview about eye tracking technology can be found in [32]. The sBCI system described here 
is from a Video-Occulography (VOG) type. It uses a mobile head mounted eye tracker, which is 
specifically developed for use with the BCI-headset and SSVEP-BCI. Wearable eye trackers which 
were available on the market did not allow a seamless integration into the sBCI multimodal headset. 
The provided software is also not open source and the integration into a single hybrid system is rather 
difficult, especially if additional information (e.g., the pupil diameter) is required. The sBCI eye tracking 
system detects the user’s intention to interact with a specific device in its environment. For this, three 
cameras are used. Two cameras are for tracking of left and right eye, the remaining one is for monitoring 
the environment. Figure 2 shows the principal layout, with one of the eye cameras and the environmental 
camera of the tracking system DeLock USB CMOS Cameras 95,852, 1.3 Megapixel are used in all 
cases. The resolution of the DeLock cameras is set to 1280 × 1024 pixels for environmental images 
and to 640 × 480 pixels for eye tracking. The user’s eyes are illuminated by Infrared (IR)-LEDs 
(LD271, OSRAM Opto Semiconductors GmbH, Regensburg, Germany) Pmax = 2.7 mW) through a 
dichroic mirror (Edmund Optics NT62-630, Barrington, NJ, USA). 

The eye cameras are mounted in parallel to the IR-LEDs and have modified lenses without the 
mandatory IR blocking filter. Instead, two IR pass filters (LUXACRYL-IR 1698) in front of the lenses 
suppress most of the visible environmental light. The light of the IR-LEDs in combination with the two 
infrared filters in front of the eye cameras give a stable illumination of the eyes. This significantly 
eases the process of detecting the pupils and estimating the gaze direction. Figure 3 shows the 
characteristic image of an eye camera and the result of pupil recognition. 

The dichroic mirrors allow mounting the eye cameras outside the user’s field of vision. It reflects 
the IR light coming from the LEDs into the user’s eyes and back into the eye cameras while being fully 
transparent for visible light. Additionally, the mirror holders can be used for the SSVEP stimuli  
LEDs. Based on the estimation of the gaze direction, the object of interest is determined. The object 
recognition may follow different approaches. The object may be recognized in the image of the 
environmental camera by using specific colors that are not immediately recognizable as marker, by 
using SIFT (Scale Invariant Feature Transform) or a comparable algorithm to recognize known objects 
or by specific markers, e.g., chosen from ARToolKit [33]. Figure 4 shows typical markers of the 
different categories. Based on the estimation of the gaze direction the object of interest is determined. 
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Figure 2. Layout of eye tracker and environmental camera to recognize gaze direction and 
objects to be controlled. 

 

Figure 3. Eye and pupil detection (large white circle) shown in eye camera image. 

 
 

 
(a) (b) (c) 

Figure 4. Marker layout used to distinguish between home devices, object with specific 
color and size as marker (a), object to be recognized by SIFT (b) and artificial ARToolKit 
marker (c). 

Although very powerful SIFT algorithms have been developed for object recognition [34,35] the 
recognition approach in this paper is based on specific ARToolkit markers which are detected in the 
live video stream [36]. This decision was made to decouple sBCI and SIFT related research projects 
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and to be able to show the feasibility of BCI usage in complex control tasks without image processing 
overhead. The ARToolKit allows extracting the 3D position of the marker in the world coordinate 
system while knowing the exact marker dimensions. 

To determine the gaze direction, it is necessary to extract the pupil centers from both eye camera 
images. The following standard image processing methods are used: 

• Calculating the histogram; 
• Finding first distinctive maximum; 
• Threshold the image based on that maximum; 
• Erode and dilate the image with a circle element; 
• Use edge detection and calculate best fitting ellipse (regarding its roundness and size). 

Before using the eye tracker system, a calibration is required. The eye tracker calibration specifies 
the relationship between both eye cameras and the scene camera. Each subject is instructed to fixate 
upon a calibration marker shown in front of him/her for a short time while changing the head position 
and the viewing angle. Simultaneously, the eye tracker records the pupil centers and marker 
coordinates for each fixation. The marker coordinates and the pupil centers are grouped into a 
constraint matrix that is used to compute a transformation matrix via singular value decomposition. 
After calibration, this matrix can be used to transform the pupil centers to gaze coordinates relative to 
the scene image. The gaze coordinates are then used to determine the object in the environment where 
the user is concentrating on. This object can then be selected as the one to where future input 
commands are directed. 

For the selection procedure, the eye tracker or the ERD/ERS-BCI can be used. A recognized object 
may be considered to be selected if the user looks at it for more than a predefined fixation interval.  
To achieve a fast object selection while avoiding unwanted selection actions, the selection interval 
should be chosen carefully. Best results are achieved with a selection time between 1.5 and 3 s. Usage 
of ERD/ERS for selection is described in the next section. 

4.2. sBCI-Headset 

The primary goal of the sBCI newly developed head set was an easily applicable, convenient, 
wearable, and appealing multi-sensor device, which allows easy data fusion of BCI paradigms with other 
input modalities like eye tracking. The sBCI, shown in Figure 5, includes a hard case cap with adapters 
for up to 22 EEG-electrodes, two eye cameras, one camera for environment monitoring, and a miniature 
SSVEP stimulator with four surface-mounted (SMD) LEDs allowing a 4-way SSVEP interaction. 

The EEG-electrodes are placed at the pre-defined positions according to the extended international 
10-10 system of EEG measurement. The electrodes which are integrated in the headset are 
commercially available conventional Ag-AgCl EEG gel electrodes. The electrode assembly with the 
holder and spiral spring provides many degrees of freedom for good adaptation on the user’s head and 
also offers the possibility of gel injection and abrading the skin for reducing the impedance. The  
CAD-models of the headsets are developed with the help of 3D-models of adult heads and 
manufactured by using a rapid prototyping technology. The sBCI-headset is built in three different 
sizes based on head circumferences in order to fit the heads to a large number of users. 
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(a) (b) 

Figure 5. sBCI headset which includes a hard case cap with 22 EEG electrode positions  
(a) two eye cameras, one camera for observation of the environment and four SSVEP-stimuli 
at the edges of the infrared mirrors (b). 

4.3. Brain Computer Interface 

4.3.1. SSVEP-BCI 

Eight EEG electrodes are used to record neural activity from the occipital region of the scalp.  
The visual stimulation is provided using four LEDs in SMD 0805 size (surface mounted device,  
2.0 × 1.25 mm). The flicker frequency and brightness of the LEDs is controlled by a dedicated LED 
controller. This device uses a PIC18F4550 microcontroller (Microchip, Chandler, AZ, USA) as a 
communication interface and master timing generator and eight PIC16F690 microcontrollers as 
independent brightness controllers for up to eight output channels. The flicker frequency is adjustable 
from 0.2 to 1000 Hz with a timing resolution of 50 μs. The brightness can be set between 0% and 
100% with a resolution of 1%. All brightness and timing parameters are controlled by software and can 
be adjusted at runtime from a host computer via USB interface. The LED controller is configured by 
software specially written for this purpose which allows easy access to the complete controller 
functionality. The four stimuli LEDs are placed at the corners of the eye tracker’s dichroic infrared 
mirrors, as shown in Figure 6. To simply the navigation among LEDs for the user, two different colors 
are used: green LEDs are placed on the top and red LEDs at the bottom of the mirrors. The LED 
controller also allows a different assignment of frequencies to the four LED positions. This 
arrangement of LEDs allows focusing on a stimulus while simultaneously observing the environment 
and/or the controlled device. 

The distance between the lights and the user’s eye is about 3 cm. The chosen stimulation frequencies 
are: 13 Hz (LED on left-bottom), 14 Hz (LED on left-top), 15 Hz (LED on right-top) and 16 Hz (LED on 
right-bottom). With the LED controller, it is easy to change frequencies of all LED as well as the 
on/off intervals in future consideration. The signal processing module uses the Minimum Energy 
Combination (MEC) for spatial filtering, signal power estimation, and normalization for each stimulation 
frequency [4]. The spatial filter re-adjusts the input channels in order to minimize background activity 
and noise. The next step of signal processing is the estimation of power in each stimulation frequency 
based on a 2 s data window. Spatial filtering and power estimation is executed every 125 ms. The 
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power values are normalized to convert the absolute values into relative probabilities. The probability in 
a stimulus frequency has to exceed a predefined threshold in order to be classified. After classification 
of a nonzero class, an idle period of 2 s is introduced, in which no further classification is made. 

 

Figure 6. Location of four flickering LEDs at the dichroic infrared mirrors and possible 
meaning in a specific application. 

4.3.2. ERD/ERS-BCI 

Motion imagination (MI) causes characteristic changes in EEG signals (ERD/ERS) which can be 
measured as power changes in specific frequency bands. The topography and time course of the 
changes depend on several factors, including the type of MI, the contents of the imagery, the subject 
training and experience. Before the ERD/ERS-BCI can be efficiently used, the user has to undergo a 
calibration procedure performed in a cued paradigm. Three types of motion imagination are used as 
intentional control (IC) states: left hand (LH), feet (F) and right hand (RH). The data recorded during 
the calibration session was used to adapt the classifier to the individual user. This is ensured by 
identification of individual frequency bands for μ and β rhythms, estimation of spatial filters using the 
Common Spatial Pattern (CSP) algorithm [37], extraction of features and training of two-stage 
classifiers. As first, logistic regression classifier is trained to discriminate between non-control (NC) 
and IC states. If the data represents a potential IC state, it is passed to the second stage classification 
procedure, which performs the discrimination between three IC states [7]. In the operational phase, the 
participants used the asynchronous ERD/ERS-BCI to scroll through the device submenu and select a 
device of interest. The EEG subject-specific features extracted from the 2 s long sliding window were 
exploited as inputs to the created classifier. The classifier output, which is updated every 125 ms, is 
passed on the circular buffer containing the classifier outputs for the last 5 s. The control signal is 
forwarded to the sBCI interface if six uniform IC classifications were collected. After the execution of 
each command, an idle period of 2 s is introduced. 

5. User Interface and Control Method 

In order to consider feasibility of the sBCI system for the control of complex systems, a test bed is 
designed which contains the HMI for the operation of an internet radio, a fridge and a microwave.  
The internet radio is used as a complex device while the fridge and microwave are two examples for 
simple devices which are used together with FRIEND in an ADL scenario. The control of the internet 
radio with sBCI has a similar complexity as the control of an assistive robot. A robot can be used in a 
study only after additional safety measures are introduced in order to avoid endangering of the user. 
Ensuring user safety requires extensive study of failure modes of sBCI and the development of a safety 
concept [38]. The safety study would exceed the content of this publication. 
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The user interface takes the classification from the BCI and gaze commands from the eye tracker as 
an input and sends commands to the selected devices. Depending on the subject’s abilities and  
preferences, either the eye tracker or the ERD/ERS-based BCI can be set up to select the target device. 
The SSVEP-BCI facilitates the control of the selected device. 

Figure 7 shows the graphical user interface (GUI) for the internet radio. It gives access to the main 
functionalities and informs the user about the currently selected position inside the hierarchical 
structure of the interface. sBCI user interface presently contains three external home devices: internet 
radio (Grundig Cosmopolit 7), fridge and microwave. The interface is similar for all devices and is 
divided in two parts: The left side allows the device selection while the right side changes dynamically 
and gives access to the respective functionalities of the chosen device. All icons of this interface 
originate from www.iconarchive.com. Each command coming from the BCI or the eye tracker is 
accompanied by an audible and visual feedback to the user. 

The following devices and main functionalities are currently implemented: 

• Internet radio: On/off, channel selection from 0 to 9, music source selection (internet radio, 
FM radio, music archive), menu configuration (right, up, left, down, and OK), volume up/down 
and standard playback functions (pause, resume and end playback, select previous or next track). 

• Fridge: open and close door. 
• Microwave: Cooking time selection, start cooking and release door. 

 

Figure 7. GUI for the internet radio. 

5.1. Gaze-SSVEP Interface 

The combined control interfaces of the headset allow the user to select a specific device with the eye 
tracker by simply focusing on it for a predefined selection time. After selection, the device is operated 

http://www.iconarchive.com/
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using the SSVEP-BCI. When the user has selected a specific device with the eye tracker, several buttons 
appear on the GUI showing different functionalities which are related to this device, as shown in Figure 8. 
The SSVEP stimuli start flickering and the SSVEP-BCI automatically starts analyzing the EEG signals. 

The hierarchical menu structure of the interface implies a two-level control: 

Level 1: All functionalities of a specific device are grouped together in sub-menus. This level 
enables the navigation through the functionalities’ sub-menus (13 and 16 Hz), offering access to the 
sub-menu actions (14 Hz) and stopping the SSVEP processing and returning to the primary BCI-system  
by using the standby-command (15 Hz) (see Table 1). Furthermore, the first level enables the direct 
access to several sub-menus in order to accelerate navigation. 

Level 2: The sub-menu provides the user several buttons related to the different actions. The user can 
navigate through the available actions (13 and 16 Hz), execute the action by using the select-command  
(14 Hz), or quit this menu level (go back to level 1) (15 Hz). 

To turn down the volume on the radio, the user has to produce the command sequence shown in  
Table 2. A two-level menu structure has great advantages, especially for devices with a large number 
of functionalities, e.g., the internet radio or the microwave or the robot arm. There is no need to have 
the same menu for the fridge application because only the door can be chosen for a control command. 
However, to avoid inconsistencies in the user interface, the same hierarchical structure has been 
applied to all considered devices. 

 

Figure 8. Hybrid Gaze-SSVEP BCI with sequential processing. The eye tracker acts as a 
selector which activates the SSVEP system. 

Table 1. Quick access to submenus. 

Device “Left” (13 Hz) “Select” (14 Hz) “Exit/Stand-by” (15 Hz) “Right” (16 Hz) 
Internet radio Volume Channel Mode Menu 

Fridge Door Door Door Door 
Microwave Timer Timer Operation Operation 

Table 2. Turn down the volume on the radio. 

Number Frequency Action Audit. Feedback Command 
1 13Hz Volume (level 1) Volume - 
2 14 Hz Select (level 1) Increase - 
3 13Hz Left (level 2) Decrease - 
4 14 Hz Select (level 2) Select Turn Down 
5 15 Hz Exit (level 2) Volume - 
6 15 Hz Standby (level 1) Standby - 
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5.2. ERD/ERS-SSVEP Interface 

The ERD/ERS acts in this mode as a selector which activates the SSVEP system. Figure 9 shows 
the principle operation. In the current study, sensorimotor rhythms related to the imagery of left hand, 
feet, and right hand movements are detected, thus providing three control commands. 

Left and right hand imagery are used to browse available devices. The select command is carried 
out by feet imagery. At the beginning of each experiment the “Internet Radio” button is highlighted. 
This indicates the starting point for navigating through the device submenu. Figure 10 shows the 
operation of the hybrid ERD/ERS-BCI. 

In order to, e.g., select the device “Microwave”, the subject has to imagine the motion sequence 
right hand, right hand, feet. As the menu wraps at each end, the sequence left hand, feet gives the same 
result. After a selection command, the cursor automatically moves back to the initial position. “Internet 
Radio” button is chosen in this layout as initial position. 

 

Figure 9. Hybrid ERD/ERS-SSVEP BCI with sequential processing. The ERD/ERS-BCI 
acts as a selector which activates the SSVEP system. 

 

Figure 10. Multiclass self-paced ERD/ERS-BCI is designed to discriminate three  
MI-classes. Left/right hand and feet motor imagery are used to scroll down/up and to select 
a target device. 

6. Subject and Data Acquisition and Results 

A preliminary evaluation of the sBCI-SSVEP and a comparability test of the sBCI-ERD/ERS  
system is carried out in order to prove the feasibility of the concept and compare sBCI results with 
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previous ones that use the same software packages. A total of six able-bodied subjects were recruited. 
All participants used the sBCI-SSVEP system. Five participants (subjects A–E, aged 30.8 ± 7.4;  
3 female and 2 male) used the eye tracker system to select a target device. One participant for the 
comparability test (subject F, 31 years old, female) used the ERD/ERS-BCI as the primary system of 
the sBCI. Subject F has been trained regularly for 12 months on the ERD/ERS-BCI. She also attended 
the study published in [7] but was the only trained subject available at the time of the sBCI study. In all 
cases the SSVEP based BCI was used to control the selected device. All subjects had normal or 
corrected to normal vision. According to self-reports, none of the participants had a previous history of 
neurological and psychiatric diseases that may have influenced the experimental results. The subjects 
were sitting in a comfortable chair. The markers were placed on physical devices at a distance of about 
3 m from the subject. 8 channels (Pz, PO3, PO4, PO7, Oz, PO8, O9, O10) were used for SSVEP 
detection, and 14 channels (FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz,CP4, Pz) covering 
the sensorimotor area were passed to the ERD/ERS signal processing modules. All channels were 
grounded to the AFz which was placed on the forehead. The impedance was kept below 5 kΩ. An EEG 
amplifierPorti32 (Twente Medical Systems International, Oldenzaal, The Netherlands) was used to 
capture the EEG data. The Porti32amplifier records unipolar inputs, configured as the reference 
amplifier, i.e., all channels are amplified against the average of all connected inputs. The signals were 
high-pass filtered at 0.1 Hz and digitized with a sampling rate of 256 Hz. To reduce power line noise, a 
50 Hz notch filter was applied. The hybrid sBCI system was realized using the BCI 2000 general 
software framework [39]. The signal processing module implemented the methodology presented in  
Sections 4.3.1 and 4.3.2 using the Matlab interface of BCI2000. The user interface (GUI) and gaze 
detection software were implemented as external modules in C++. The BCI2000 was configured to 
stream its output to external modules via UDP (User Datagram Protocol) in real time. 

6.1. Experimental Protocol 

Each experiment starts with an Eye tracker calibration or an ERD/ERS calibration. 
(1) Eye tracker calibration: Eye tracker calibration is required to establish mapping between the 

eye cameras and the environmental camera for a particular user. During a short fixation interval, the 
system records the 2D pupil center and the corresponding 3D coordinates of the marker. The 
participants were asked to fixate the marker (placed ca. 3 m away) from nine different points of view. 
This procedure was repeated for two further distances (ca. 2.5 m and 2 m) in order to maintain 
accurate gaze detection even if the markers were not in the same plane. 

(2) ERD/ERS calibration: Before the ERD/ERS system could be used to select a target device, the 
classifier needs to be trained in the participant’s EEG patterns. During the calibration phase, a total 
number of 120 trials consisting of 40 randomly distributed trials for each motor imagery were 
conducted. The user was instructed to perform one of the three imagery movements (left Hand, right 
Hand, Foot-motion imagination) which were indicated on the screen. Motion imagination was expected for 
4 s at an interval of 5 s. During this calibration session, the subject was not provided with any feedback. 

After the calibration phase, five tasks covering all three devices (Table 3) were introduced to the 
subjects. Each subject was free to familiarize with the hybrid interface before the actual experiment 
started. Additionally, a short introduction to the SSVEP interaction technique was given. 
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Table 3. Tasks. 

Number Task 
1 Internet radio: Switch the 5th channel 
2 Internet radio: Increase volume by three steps 
3 Fridge: Open and close door 
4 Microwave: Choose cooking time 11:10 min and start 
5 Microwave: Activate door release 

Five subjects who used the eye tracker as a primary system were asked to select a target device by 
gazing at the marker. To evaluate the time needed for selection, users were required to gaze at each 
marker five times until the SSVEP stimuli started flickering. The time period between moving the head 
in the direction of the marker and triggering a selection event was measured. The ERD/ERS user 
imagined motions until the SSVEP stimuli started flickering and repeated this also five times. Each 
task starts with the selection of a device using either the eye tracker or an ERD/ERS-BCI and ends 
with turning off the SSVEP-LEDs. 

6.2. Performance Measures 

In this study the performance of the SSVEP-BCI was evaluated using the ITR (bit/min) [40] and 
accuracy (ACC) (%). The performance of the selection system (eye tracker or ERD/ERS) was obtained 
by measuring the time needed to select a specific device. The ITR was calculated based on the 
following formula: 

𝐵𝐵 = log2𝑁𝑁 + 𝐴𝐴log2𝐴𝐴 + (1 − 𝐴𝐴)log2 �
1 − 𝐴𝐴
𝑁𝑁 − 1�

 (1) 

In Equation (1), B represents the number of bits per trial, A represents the probability of correct 
classification and N is the number of choices. N is equal to 4, based on 4 LED for the control 
commands (“right”, “select”, “exit/standby”, “left”). A is calculated as the number of correct 
classifications divided by the total number of classified commands. To obtain ITR in bits per minute,  
B is multiplied by the speed, which is the number of classified commands divided by time T. The time 
T was measured as the elapsed time from the moment of device selection until turning off the SSVEP-BCI. 

6.3. Results 

All six participants succeeded in performing the five requested tasks with good performance.  
None of them reported any pain or discomfort while wearing the sBCI-headset. 

The performance of the SSVEP-BCI is presented in Table 4. All six subjects were able to use the 
hierarchical SSVEP-interface to complete the assigned tasks. For each task, two measures of performance 
were available: ACCSSVEP and ITRSSVEP. The information transfer rate was calculated according to 
Equation (1). The subjects achieved a mean ITR of 41.2 bit/min and a mean accuracy of 96.3%. 

Table 5 shows the time that was needed to select a target device by subjects A–E who used the  
eye tracker. 

Five participants who used eye tracker as a selection device gazed at each marker five times to 
activate the corresponding device. The values shown in Table 5a are the averaged values across these 
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five selections. The best result was achieved by subject D who required only averaged 2.29 s to 
perform a selection. In contrast to this result, subject B needed 6.94 s on average. The most suitable 
reason for this difference was identified as a shortcoming of the image processing software. Excessive 
eye makeup of subject B seems to disturb the results of pupil detection. 

Table 6 shows the results of the comparability test for the sBCI-ERD/ERS system. 

Table 4. SSVEP-BCI: Information Transfer Rate (ITR)SSVEP (bit/min) and  
Accuracy (ACC)SSVEP (%) achieved during operation with the selected device. 

Subject Task 1 Task 2 Task 3 Task 4 Task 5 Mean 

Subject ITRSSVEP ACCSSVEP ITRSSVEP ACCSSVEP ITRSSVEP ACCSSVEP ITRSSVEP ACCSSVEP ITRSSVEP ACCSSVEP ITRSSVEP ACCSSVEP 

A 55.4 100 52.1 100 58.4 100 25.8 89 73.9 100 53.1 98 

B 34.4 100 33.1 88 41.5 100 25.2 93 52.2 100 37.3 96 

C 69.7 100 64.0 100 64.0 100 40.9 100 64.9 100 60.7 100 

D 9.4 82 17.4 100 34.3 100 7.5 91 9.2 88 15.6 92 

E 57.9 100 33.3 88 54.2 100 32.4 93 64.9 100 48.6 96 

F 29.5 100 23.6 100 43.9 100 28.9 90 34.2 89 32.0 96 

Mean 42.7 97 37.3 96 49.4 100 26.8 92.7 49.9 96.2 41.2 96.3 

Table 5. Selection time using eye tracker. 

Subject Timemicrowave (s) Timefridge (s) Timeradio (s) Timemean (s) 
A 4.77 3.62 2.80 3.73 
B 4.89 7.38 8.54 6.94 
C 3.32 2.44 3.42 3.06 
D 2.10 2.37 2.40 2.29 
E 3.14 3.97 3.50 3.53 

Mean 3.56 3.96 4.13 3.90 

Table 6. Selection time using ERD/ERS-BCI. 

Subject Timemicrowave (s) Timefridge (s) Timeradio (s) Timemean (s) 
F 36 10.5 8.75 20 

Subject F who used ERD/ERS-BCI as selection system selected each device according to the five 
requested tasks: internet radio twice, fridge once, and microwave twice. Subject F spent an average of 
20 s on the selection task. The average selection speed was 6.05 s per command. In the study published  
in [34], subject F achieved 8.81 s per command. 

The results allow the assumption that the change to the new electrode cap induces no negative 
influence. The accuracy of the ERD/ERS-BCI for each assigned task achieved 100%. 

The results suggest also that the combination of eye-tracker and SSVEP-BCI is the preferable 
solution. Readers should remember, however, that this can finally be judged only in relation to the 
capabilities of the disabled user. First trials with the eye tracker in an environment with varying 
illumination show a decrease in accuracy. The recognition time may increase and reliability may 
decrease further if the eye tracker is used with real objects and SIFT as recognition methods instead of 
ARToolkit markers. ERD/ERS-BCI as a self-paced BCI is much slower than the eye tracker but is 
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important to switch the whole system or components on and off. In a forthcoming study with more 
participants who also will be trained for motion imagination, statistically sound results will be researched. 

7. Discussion and Conclusions 

A multimodal, hybrid BCI is designed which combines an eye tracker, an SSVEP-BCI, and a 
multiclass ERD/ERS-based BCI and offers the possibility for a detailed study in which different 
combinations of the system are researched and evaluated in relation to the disability of the user. For 
easy evaluation of this hybrid system, a multimodal sBCI-headset was designed. The proposed 
multimodal BCI system was used to control three devices that play an important role in future ADL 
application. The benefits of using two BCI modalities include the possibility to activate the eye- tracker and 
SSVEP-based control only on demand, i.e., both can independently be turned off during inactive 
periods. Thus, the hybrid setup of the system minimizes the number of involuntary selections and 
increases the convenience of the whole interface. 

The multimodal sBCI-headset is a sensing system which integrates multi-channel EEG equipment, 
an eye tracking system and a visual stimulator for the SSVEP-BCI. During the designing phase of the 
headset, all effort has been made to optimize the long term wearing comfort, while maintaining the 
ergonomic and aesthetic appearance and also the quality of EEG-signals. Despite the substantial 
investment of time and resources, it was not possible to successfully develop a one-size helmet that fits 
onto any adult’s head. All one-size prototypes of the sBCI-headset have failed the long term comfort 
tests. Consequently, the sBCI-headset is provided in three different sizes based on head circumference 
(Small: 56 cm, Medium: 58 cm, Large: 60 cm) in order to fit the head to the majority of adult users. 
Small distances up to 5 mm between the hard case cap and the skin were easily bridged by the soft 
springs of the electrode holders. Using such holders yields a double benefit. The wearing comfort is 
increased and the electrode-skin coupling enhanced. 

A preliminary test with six able-bodied volunteers using the newly designed sBCI-headset was 
performed. Two fusion techniques were evaluated: Gaze-SSVEP and an ERD/ERS-SSVEP, called a 
physiological and pure interface [41], respectively. The performance measurements show that the sBCI 
system provides an effective environmental control method for all six subjects. The two fusion 
techniques are compared with a limited data set only. The eye tracker as the selection device is in  
the set up obviously much faster than an ERD/ERS-BCI (3.9 s vs. 20 s) and achieves a high accuracy.  
However, the accuracy of the device selection is until now only tested with ARToolKit markers.  
While there is a limited accuracy of the ERD/ERS-BCI the probability to select an undesired device 
with an ARToolKit marker was close to zero. But usage of markers requires preparation of the users’ 
environment and limits the usage to such a prepared environment. To avoid markers, they will be 
replaced by object recognition based on SIFT features. That may decrease recognition speed and 
recognition accuracy especially if no constant illumination can be guaranteed. A statistically sound 
comparison of all features and possible combinations is in preparation. 

The participants instantaneously accepted the multimodal BCI system based on eye gaze and  
SSVEP-BCI because both systems require little to no training. The ERD/ERS-based BCI system which 
requires training to learn operation via motor imagery could only be used by one trained user. The 
results can therefore not be compared with each other. However, as mentioned before, the ERD/ERS 
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system is necessary to switch the eye-tracker and SSVEP-BCI on/off by disabled users without the 
need for additional support. The full integration of sBCI and the usage of the full potential of the new 
hardware requires a careful design and integration of the control strategy in an ambient assistant 
environment. The user should be able to operate all devices intuitively and without remembering 
specific sequences for each object. 

One of our future pieces of work will focus on further improvement of the eye tracker hardware 
components, primarily the cameras. With the cameras used presently, the determination of the focus 
point is not precise enough to distinguish between two objects that are close to the line of sight but at 
different distances. The interaction technique based on dwell time can benefit from high resolution images, 
while reducing the selection time. We are also working on integration of fast SIFT object recognition 
method [37] and an easy to train object database in order to overcome the need of artificial markers. 

Additionally, we will use sBCI to research optimal control modes for complex devices, to determine 
optimal blinking frequency and duty cycle, and research whether the measurement of error potential 
improves the robustness and how it can be used together with the eye tracker. 

Interested research institutes may acquire the system (one cap, electrode holder, SSVEP diodes incl. 
control unit and eye tracker incl. cameras but without EEG electrodes, EEG amplifier and control PC) 
from a vendor for a budget price of approximately €8,000. 
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