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Abstract: In the recent years horizontal drilling (HD) has become increasingly important in oil
and gas exploration because it can increase the production per well and can effectively rework
old and marginal vertical wells. The key element of successful HD is accurate navigation of the
drill bit with advanced measurement-while-drilling (MWD) tools. The size of the MWD tools is
not significantly restricted in vertical wells because there is enough space for their installation in
traditional well drilling, but the diameter of devices for HD must be restricted to less than 30 mm
for some applications, such as lateral drilling from existing horizontal wells. Therefore, it is essential
to design miniature devices for lateral HD applications. Additionally, magnetometers in traditional
MWD devices are easily susceptible to complex downhole interferences, and gyroscopes have been
previously suggested as the best avenue to replace magnetometers for azimuth measurements.
The aim of this paper is to propose a miniature gyroscope-based MWD system which is referred
to as miniature gyroscope-based while drilling (MGWD) system. A prototype of such MGWD
system is proposed. The device consists of a two-axis gyroscope and a three-axis accelerometer.
Miniaturization design approaches for MGWD are proposed. In addition, MGWD data collection
software is designed to provide real-time data display and navigation algorithm verification. A
fourth-order autoregressive (AR) model is introduced for stochastic noise modeling of the gyroscope
and the accelerometer data. Zero velocity and position are injected into a Kalman filter as a system
reference to update system states, which can effectively improve the state observability of the
MGWD system and decrease estimation errors. Nevertheless, the azimuth of the proposed MGWD
system is not observable in the Kalman filter, and reliable azimuth estimation remains a problem.

Keywords: MGWD; multilateral well; horizontal drilling; MWD; Kalman filter; AR model;
quasi-stationary alignment; inertial sensor

1. Introduction

Horizontal directional wells offer large contact areas with oil- or gas-layered reservoirs, so
horizontal directional drilling (HDD) can enhance the production and exploration rate of oil or gas.
HDD technology enables successful oil or gas exploration under challenging environments, such as
offshore zones, mountain areas, and even downtown places [1]. Currently, re-entry well drilling, one
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of the HDD technologies, can revitalize old and marginal wells by intercepting its multiple vertical
fractures to optimize the oil or gas yield [2,3]. Multilateral well drilling is becoming increasingly more
valuable in horizontal well exploration, both from the standpoint of reworking existing wellbores and
with respect to drilling operations [4]. Multilateral drilling to the sides of an existing horizontal well
can be regarded as a branching from the stem of the main horizontal drilling tree and, naturally,
is characterized with much smaller diameters than traditional HD [5,6]. Therefore, significantly
smaller-diameter navigation equipment is needed in such applications, reaching as low as 15 mm
in diameter (Figure 1).
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Figure 1. Multilateral horizontal drilling is characterized by small-diameter branches stemming from 
the main horizontal well tree trunk, thus significantly increasing the peripheral oil well output. 

In multilateral horizontal drilling applications the navigation requirements become even more 
stringent compared to traditional MWD-based horizontal directional drilling. Traditional MWD 
HDD surveying tools determine the roll and the pitch of the drill bit by employing three-axe 
accelerometers and the azimuth of drill bit using three-axe magnetometers [7]. However, the 
precision of the magnetic surveying sensors is corrupted by several factors: (1) magnetometers are 
susceptible to external interferences caused by currents flowing in the atmosphere and solar winds, 
which can introduce independent errors distorting the calculation of the MWD toolset orientation [8]; 
(2) the presence of drilling fluids and debris downhole interacts with the earth magnetic field and 
further increases the azimuth error by up to 5° [9]; and (3) ferromagnetic interferences from the drill 
string induce large azimuth error which increases with the increase in the inclination angle and is 
especially significant when the well is drilled in the east/west direction [10,11]. In addition,  
randomly-located ore deposits in the vicinity of bottom-hole assembly (BHA) deteriorate survey 
quality due to strong, but intermittent magnetic interferences. One feasible approach to avoid these 
magnetic interferences is to enlarge the covering area of the non-magnetic drill collars of the BHA [12]. 
However, non-magnetic drill collars are characterized by their high cost, heavy weight, and relatively 
weak fracture, which is usually prone to failure. Gyroscope-based Inertial Navigation Systems (INS) 
can continuously provide position, velocity, and attitude of objects, such as submarines, airplanes, 
rockets, automobiles, etc., relative to an initial point by a combination of gyroscopes and 
accelerometers [13]. Such systems can serve as an alternative to magnetometer-based surveying in 
downhole MWD. Since such INS is a type of dead-reckoning system which needs to integrate the 
outputs of inertial sensors for the calculation of orientation and position, INS is characterized by 
short-term high accuracy and long-term error accumulation [14]. Even high-accuracy INS operating 
in an unaided mode may produce 5000 ft. position error per hour due to sensor’s error and bias 
accumulation [15]. Moreover, stochastic noise at the output of the gyroscopes additionally and 
significantly deteriorates the accuracy of this orientation solution, so building an appropriate 
gyroscope stochastic error model is pivotal in the quest to improve the overall quality of this 
navigation solution. In addition, it has to be noted that MWD systems, in particular, operate in very 
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the main horizontal well tree trunk, thus significantly increasing the peripheral oil well output.

In multilateral horizontal drilling applications the navigation requirements become even more
stringent compared to traditional MWD-based horizontal directional drilling. Traditional MWD HDD
surveying tools determine the roll and the pitch of the drill bit by employing three-axe accelerometers
and the azimuth of drill bit using three-axe magnetometers [7]. However, the precision of the
magnetic surveying sensors is corrupted by several factors: (1) magnetometers are susceptible to
external interferences caused by currents flowing in the atmosphere and solar winds, which can
introduce independent errors distorting the calculation of the MWD toolset orientation [8]; (2) the
presence of drilling fluids and debris downhole interacts with the earth magnetic field and further
increases the azimuth error by up to 5˝ [9]; and (3) ferromagnetic interferences from the drill
string induce large azimuth error which increases with the increase in the inclination angle and
is especially significant when the well is drilled in the east/west direction [10,11]. In addition,
randomly-located ore deposits in the vicinity of bottom-hole assembly (BHA) deteriorate survey
quality due to strong, but intermittent magnetic interferences. One feasible approach to avoid these
magnetic interferences is to enlarge the covering area of the non-magnetic drill collars of the BHA [12].
However, non-magnetic drill collars are characterized by their high cost, heavy weight, and relatively
weak fracture, which is usually prone to failure. Gyroscope-based Inertial Navigation Systems
(INS) can continuously provide position, velocity, and attitude of objects, such as submarines,
airplanes, rockets, automobiles, etc., relative to an initial point by a combination of gyroscopes and
accelerometers [13]. Such systems can serve as an alternative to magnetometer-based surveying in
downhole MWD. Since such INS is a type of dead-reckoning system which needs to integrate the
outputs of inertial sensors for the calculation of orientation and position, INS is characterized by
short-term high accuracy and long-term error accumulation [14]. Even high-accuracy INS operating
in an unaided mode may produce 5000 ft. position error per hour due to sensor’s error and
bias accumulation [15]. Moreover, stochastic noise at the output of the gyroscopes additionally
and significantly deteriorates the accuracy of this orientation solution, so building an appropriate
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gyroscope stochastic error model is pivotal in the quest to improve the overall quality of this
navigation solution. In addition, it has to be noted that MWD systems, in particular, operate in very
harsh downhole environments, making the utilization of gyroscopes downhole even more difficult,
because their stochastic noise characteristics are not stable at different and dynamically changing
temperatures and vibrations. However, advances in contemporary micro-electro-mechanical system
(MEMS) technology enables the manufacturing of new generations of gyroscopes of smaller size, with
excellent vibration immunity combined with high-temperature tolerance.

Gyroscopic multiple shot was firstly described in [16] which provided a series of photographic
images showing the inclination and the direction of a well, but the measurements were not in
real-time. Fiber optic gyroscope-based MWD surveying tool was proposed in [17], which was
used to monitor the BHA’s azimuth. A drilling BHA with a small-diameter rate gyroscope
was deployed in [18] to reduce borehole position uncertainty under the influence of disturbing
magnetic environments and near metal casings. The susceptibility of MEMS gyroscopes to shocks
and vibrations was successfully tested in harsh downhole environments and a wavelet-denoising
method was used to enhance the azimuth accuracy of the BHA [19]. A MEMS gyroscope guidance
system was designed for ultra-deep-water applications to shorten the drilling response time and
to decrease magnetic impact [20]. Nevertheless, BHA navigation errors caused by the bias in
MEMS gyroscopes are greatly increased in harsh environments if compensatory external adjusting
is lacking. Zero velocity update (ZUPT) alignment has been introduced to compensate for MEMS
errors [21] and this method limited the position error to 40 m during 90 min navigation with a
Litton LTN90-100 inertial measurement unit. However, ZUPT alignment is time consuming and is
useless for azimuth estimation [22]. Velocity matching alignment merges velocity measurements
from GPS to Kalman filtering to estimate the orientation of objects [23]. The prerequisite to use this
method is the availability of a GPS signal, but the radio signals cannot reach downhole. Therefore,
In-drilling Alignment (IDA) was proposed to constrain the azimuth error which was estimated to
be 25 times smaller than the error restriction in traditional magnetometer-based surveying [24,25].
Rotary-In-Drilling Alignment (R-IDA), a reduced version of the IDA, was recently proposed to
minimize INS dynamic position and azimuth errors. In R-IDA, the BHA was installed on a rotating
platform controlled by a stepper motor in the north-east plane associated with the azimuth angle [26].
However, IDA and R-IDA associated devices cannot be directly utilized in lateral HDD applications
because of size limitations.

This paper presents the design and algorithm verification of a MGWD device for lateral HDD
applications. The design requirements were defined as follows:

‚ The attitude error of the device should be less than 0.1˝ and the position error should be less than
1 m for 1000 m-deep wells.

‚ The device installs in a steel tube of 24-mm maximal diameter and the size of the
three-dimensional device should be less than 150 mm ˆ 150 mm ˆ 10 mm (length, width
and height).

‚ The temperature range of the device should be between 40 and 100 ˝C.
‚ The device should be able to perform well in a shock and vibration environment ranging up to

15 g RMS (5–500 Hz).

In order to meet the above design requirements, small-diameter and high temperature
sensors were selected. Custom software was designed for MGWD data collection and algorithm
implementation. The Allan variance method was utilized to test the error characteristics of all sensors
in the designed MGWD system. The results from the autocorrelation function calculation for the
gyroscopes and the accelerometers showed that the stochastic noise of the sensors cannot be simply
modeled with the Gauss-Markov model, so a fourth-order autoregressive (AR) model was employed
for the stochastic noise modeling of the sensors. The alignment method of the MGWD device utilized
zero velocity together with zero position update and accurate Kalman filter state space equation was
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built in terms of the system dynamics for fine alignment. In addition, this paper discusses system
stability and state observability of the developed laboratory model.

2. Fundamental Theory of Miniature Gyroscope-Based While Drilling (MGWD) System

2.1. Definition of Coordinate Frames

Body frame is an orthogonal axis aligned with roll, pitch, and azimuth of the objects [27]. The
MGWD system in this paper uses right, forward, and up direction as the body frame indicated in
Figure 2.
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SCC1300-D04 (Murata Electronic Inc., College Station, PA, USA) is a combined gyroscope  
(X-axis) and three-axis accelerometer component [28], which main characteristics are shown in Table 1. 
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Figure 2. Definition of SCC1300-D04 body frame.

SCC1300-D04 (Murata Electronic Inc., College Station, PA, USA) is a combined gyroscope
(X-axis) and three-axis accelerometer component [28], which main characteristics are shown in
Table 1.

Table 1. SCC1300-D04 Performance.

Parameters Gyroscope Parameters Accelerometer

Offset Short Term Instability <2.1˝/h Offset Error ˘70 mg
Angular Random Walk 0.86˝/

?
h Linearity Error ˘40 mg

Noise Density 0.02(˝/s/
?

hq Noise 5–7 mg
Temperature ´40–+125 ˝C Temperature ´40–+125 ˝C

2.2. MGWD System Navigation Solution

A two-axe gyroscope and three-axe accelerometer combine together in a MGWD system to
provide the angular rate and acceleration for drill bit, respectively, while the attitude can be obtained
by the integration of the angular rate. The two-axe gyroscope provides the angular rate of the
MGWD system in the direction of right and down, respectively, while the angular rate for the forward
direction can be assessed by the three-axes accelerometer because the velocity of downhole drill bit
movements is slow (1 m/min). Figure 3 illustrates the details of the MGWD system attitude solution
update. The roll (ϕ) of the MGWD system can be obtained based on the following equation [29]:

ϕ “ ´arctan

˜

fb
ib,y

fb
ib,z

¸

(1)

where fb
ib,y, fb

ib,z are the Y-axis and Z-axis accelerometer outputs.
Hence, the angular rate incremental can be written during the period of tk to tk+1 as:

∆ϕ “ ϕ ptk`1q ´ϕptkq (2)
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Figure 3. Miniature Gyroscope-Based While Drilling (MGWD) system attitude solution diagram. 
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where, ζ𝑘𝑘 has been updated previously by the following equation. ‖·‖ is the Euclidean norm. 
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Λ𝑘𝑘 = Δθ𝑘𝑘 +
1
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b  is the navigation frame angular rate with respect to 

the inertial frame referred to the body frame. 
Hence, the direction cosine matrix (Rb

n) between the body frame and the navigation frame can 
be updated according to the following solution: 

Rb
n = I +

sin‖Λ‖
‖Λ‖

(Λ ×) +
1 − cos‖Λ‖

‖Λ‖2
(Λ ×)(Λ ×) (9) 

where I is the identity matrix and (Λ ×) is the skew symmetric matrix of Λ.  
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Figure 3. Miniature Gyroscope-Based While Drilling (MGWD) system attitude solution diagram.

Generally, the direction cosine matrix and quaternion can represent attitude information. In this
paper, the rotation vector method is selected to update the quaternion attitude representation, as it
occurs in the presence of a coning motion. The same approach is used to update the quaternion with
a direction cosine matrix:

qnpkq
bpkq “ qnpkq

npk´1qq
npk´1q
bpk´1qq

bpk´1q
bpkq (3)

where qnpkq
npk´1q is the quaternion in navigation frame update. qbpk´1q

bpkq is the quaternion in body
frame update:

qnpkq
npk´1q “

»

–

cos ‖ 0.5ζk ‖
sin ‖ 0.5ζk ‖
‖ 0.5ζk ‖

0.5ζk

fi

fl (4)

where, ζk has been updated previously by the following equation. ‖‖ is the Euclidean norm.

ζk´1,k “

ż tk

tk´1

ωn
in pτqdτ “ ωn

in,mid∆t (5)

ωn
in,mid is the rotation rate of the navigation frame relative to the inertial frame at the midway of

the internal rtk´1, tks. ∆t is the sampling time.

qbpk´1q
bpkq “

»

–

cos ‖ 0.5Λk ‖
sin ‖ 0.5ζk ‖
‖ 0.5Λk ‖

0.5Λk

fi

fl (6)

Λk is the rotation vector, which can be updated by the following expression:

Λk “ ∆θk `
1

12
∆θk´1 ˆ ∆θk (7)

∆θk is the angular increment. ˆ is the cross product.

∆θk “ fb
ib∆t´ωb

in (8)

where, fb
ib are the accelerometer outputs and ωb

in is the navigation frame angular rate with respect to
the inertial frame referred to the body frame.

Hence, the direction cosine matrix (Rn
b) between the body frame and the navigation frame can be

updated according to the following solution:

Rn
b “ I`

sin ‖ Λ ‖
‖ Λ ‖ pΛˆq`

1´ cos ‖ Λ ‖
‖ Λ ‖2 pΛˆq pΛˆq (9)
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where I is the identity matrix and pΛˆq is the skew symmetric matrix of Λ.

pΛˆq “

»

—

–

0 ´Λz Λy

Λz 0 ´Λx

´Λy Λx 0

fi

ffi

fl

(10)

2.3. MGWD System Error Model

The Kalman filter estimates the attitude, velocity and position error of the proposed MGWD
system based on the system state equation. Equation (11) briefly illustrates the continuous time
MGWD system state propagation.

.
δx “ Fδx`Gw (11)

where δx “ rδφ δθ δψ δVN δVE δVD δL δλ δhsT, in which δϕ, δθ and δψ are roll, pitch, and
azimuth errors, respectively. δVN, δVE and δVD are north, east, and down velocity errors, respectively.
δL, δλ and δh are latitude, longitude, and height errors, respectively. G is the system noise matrix. F
is the state transfer matrix which can be written as [30].

F “

»

—

–

F11 F12 F13

F21 F22 F23

F31 F32 F33

fi

ffi

fl

(12)

where

F11 “

»

—

—

—

—

—

–

0 ´

ˆ

ωiesinϕ`
VE

R
tanϕ

˙

VN

R

ωiesinϕ`
VE

R
tanϕ 0 ωiecosϕ`

VE

R
´

VN

R
´

ˆ

ωiecosϕ`
VE

R

˙

0

fi

ffi

ffi

ffi

ffi

ffi

fl

F12 “

»

—

—

—

—

–

0
1
R

0

´
1
R

0 0

0 ´
tanϕ

R
0

fi

ffi

ffi

ffi

ffi

fl

F13 “

»

—

—

—

—

—

–

ωiesinϕ 0 ´
VE

R2

0 0
VN

R2

´ωiecosϕ´
VE

Rcos2ϕ
0

VEtanϕ
R2

fi

ffi

ffi

ffi

ffi

ffi

fl

F21 “

»

—

–

0 ´fD fE

fD 0 ´fN

´fE fN 0

fi

ffi

fl

F22 “

»

—

—

—

—

—

–

VD

R
´2

ˆ

ωiesinϕ`
VE

R
tanϕ

˙

VN

R

2ωiesinϕ`
VE

R
tanϕ

1
R
pVNtanϕ`VDq ωiecosϕ`

VE

R
´

2VN

R
´2

ˆ

ωiecosϕ`
VE

R

˙

0

fi

ffi

ffi

ffi

ffi

ffi

fl
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F23 “

»

—

—

—

—

—

–

´VE

ˆ

ωiecosϕ`
VE

Rcos2ϕ

˙

0
1

R2

´

V2
Etanϕ´VNVD

¯

2ωie pVNcosϕ´VDsinϕq `
VNVE

Rcos2ϕ
0 ´

VE

R2 pVNtanϕ`VDq

2ωieVEsinϕ 0
1

R2

´

V2
N `V2

E

¯

fi

ffi

ffi

ffi

ffi

ffi

fl

F31 “

»

—

–

0 0 0
0 0 0
0 0 0

fi

ffi

fl

F32 “

»

—

—

—

–

1
R

0 0

0
1

Rcosϕ
0

0 0 ´1

fi

ffi

ffi

ffi

fl

F33 “

»

—

—

—

–

0 0 ´
VN

R2
VEtanϕ
Rcosϕ

0 ´
VE

R2cosϕ
0 0 0

fi

ffi

ffi

ffi

fl

The above equations imply that the attitude, velocity, and position errors are coupled
together [31].

2.4. Kalman Filter Theory

Kalman filtering is a minimum variance estimate in the recursive form and in the present case it
is a linear, discrete time, system of finite dimensions [32]. It assumes that all variables are Gaussian
and system noise and measurement noise are uncorrelated. The goal of the Kalman filter is to estimate
the system state based on the knowledge of the system dynamics and the availability of separate noise
measurements [33]. The discrete Kalman filter can be given as follows:

xk “ Φk´1xk´1 ` Γk´1wk´1 (13)

zk “ Hkxk ` vk (14)

where xk is system state, which is same as the MGWD system state δx described in Equation (11).
Γk´1 is system noise matrix, which is the discretization form of G. Φk´1 is system state transfer

matrix, which is discrete form of F [34].

Φk´1 “ eF∆t « I` F∆t (15)

Γk´1 “

ż ∆t

0
eptk´τqFGdτ “ eF∆t

ż ∆t

0
e´FτdτG « eF∆t

´

I´ e´F∆t
¯

F´1G “ G∆t (16)

zk represents the system measurements at time k, and Hk is the measurement matrix. wk´1
and vk are the system noise and measurement noise, respectively, in which: ErwkwT

j s “ Qkδkj,

ErvkvT
j s “ Rkδkj, ErwkvT

j s “ 0. wk and vk are zero mean, uncorrelated white noise and their covariance
matrices are Qk and Rk, respectively. δkj is the Kronecker’s delta. The Kalman filter mainly consists of
two update periods: time update and measurement update.

Time update equation can be given as follows:

x´k “ Φk´1xk´1 (17)

P´k “ Φk´1Pk´1ΦT
k´1 ` Γk´1Qk´1ΓT

k´1 (18)
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Measurement update equation can then be expressed as:

Kk “ P´k HT
k

´

HkP´k HT
k `Rk

¯´1
(19)

where Kk is the Kalman filter gain.

xk “ x´k `Kk
`

zk ´Hkx´k
˘

(20)

Pk “ pI´KkHkqP´k pI´KkHkq
T
`KkRkKT

k (21)

The initial condition (x0,P0) of the Kalman filter will not have an impact upon the filter
convergence, and Qk, Rk just affect the final convergence value of Kalman filter. Moreover, the
Kalman filter will converge to some value if the system is completely controllable and observable;
in other words, if the controllable and the observable matrix (M = ctrb(F,G)) and N = obsv(F,H)) are
full rank [35,36].

3. MGWD System Design and Testing

3.1. MGWD System Design

Minimal diameter is an essential feature of the proposed MGWD system. To minimize the
dimensions of the MGWD system, a two-axis gyroscope and three-axis accelerometer are combined
together to provide attitude, velocity, and position information for the drill bit and one gyroscope
is placed into the cut part of the microcontroller circuit board. The layout and the dimensions of
the MGWD system are illustrated in Figure 4. The system hardware is composed of the azimuth
gyroscope circuit board, pitch gyroscope circuit board, and microcontroller circuit board. The boards
are connected by a micro header (pitch: 1.27 mm). In addition, SMD (Surface-Mount Device) 0402
footprint (1 mm ˆ 5 mm) resistors and capacitors are selected as peripheral electronic components
and they are placed on both sides of the circuit boards to reduce the device dimensions. The entire
dimensions of the MGWD system are (121.913 mmˆ 17.907 mmˆ 10 mm) (length, width and height).
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Workbench with the C programming language and the codes are downloaded to the flash memory 
of the microcontroller through a USB interface with a XDS100/200/ICDI emulator. The data output 
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language in WPF environment and data collection and processing codes are programmed with the 
C# language which consists of six stack panels: menu, serial port, initialization, data count, timer, and 
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The menu includes file control, parameter setting, and system control and help information. The 
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Figure 4. MGWD system layout and dimensions.

The system sample rate of the MGWD device is controlled to 20 Hz because of the low equipment
angular change rate. The data exchange protocol between the microcontroller and the two gyroscopes
is serial peripheral interface (SPI) which includes a single master (the microcontroller) and two slaves
(the two gyroscopes).

The data communication codes are programmed in the environment of IAR Embedded
Workbench with the C programming language and the codes are downloaded to the flash memory
of the microcontroller through a USB interface with a XDS100/200/ICDI emulator. The data output
baud rate is set to 115,200 bits/s.

MGWD data collection software interface (Figure 5) is designed with the XAML programming
language in WPF environment and data collection and processing codes are programmed with the
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C# language which consists of six stack panels: menu, serial port, initialization, data count, timer, and
data display.

The menu includes file control, parameter setting, and system control and help information. The
data display part is composed of a horizontal sensor (azimuth) and vertical (pitch) sensor original
data display, horizontal sensor original data curve line display, vertical sensor original data curve
line display, and calibration result display. The user interface design flow diagram of the software is
shown in Figure 6. The software process flow diagram can be found in Figure 7, which presents the
software development processes and the application methods utilized.Micromachines 2015, 6, page–page 
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3.2. MGWD System Test

3.2.1. Allan Variance Analysis

The Allan variance approach is selected to test the sensor stochastic noise characteristic. It is a
method of analyzing the time sequence to extracts the intrinsic noise in the system as a function of
the average time. A Y-axis gyroscope and a Z-axis accelerometer are used as an example to explain
the meaning of Allan variance. 8 h and 20 min static data with 20 Hz sample rate are collected for
inertial sensor Allan variance analysis.

Angular Random Walk (ARW) is a high frequency white noise exhibited in noise sequences
associated with MEMS devices by integrating 1-s time periods. In other words, the ARW value can
be obtained by reading the slope line for a time of 1 s. Conversely, the contribution of the white noise
to the inertial sensor error (ewhite_noise) can be quantified by the following Equation (22):

ewhite_noise “ ARWˆ
?

t (22)

where t is the integration time for the inertial sensor white noise. Bias stability of the inertial
sensor illustrates how the bias changes over a certain period of time due to the flicker noise in the
electronics [37]. The bias stability calculates the minimum average change in consecutive inertial
sensor measurements while analyzing the consecutive time-varying samples. The valley bottom
with the zero slope represents bias stability. Y-axis gyroscope and Z-axis accelerometer noise Allan
variances are shown in Figure 8 and ARW and bias stability of the inertial sensors are summarized in
Table 2. Bias stability of the inertial sensor illustrates how the bias changes over a certain period of
time due to the flicker noise in the electronics [37]. The bias stability calculates the minimum average
change in consecutive inertial sensor measurements while analyzing the consecutive time-varying
samples. The valley bottom with the zero slope represents bias stability. Y-axis gyroscope and Z-axis
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accelerometer noise Allan variances are shown in Figure 8, and ARW and bias stability of the inertial
sensors are summarized in Table 2.

Table 2. Results of Allan variance analysis.

Sensor Angular Random Walk Bias Stability

Y-Axis Gyroscope 0.004466835 (˝/h/
?

Hz) 0.00120876 (˝/s)

Sensor Velocity Random Walk Bias Stability

Z-Axis Accelerometer 0.052257815 (m/s/
?

h) 0.000554625 m/s2
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variance analysis.
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3.2.2. Stochastic Error Model

The INS error includes deterministic error and stochastic error. The deterministic error can be
eliminated from the raw measurements by a properly selected calibration method. In this paper,
the six-position calibration method is employed to calculate the system deterministic error [38]. The
calibration results are shown in Table 3.

Table 3. Six position calibration results.

Axis Gyroscope Calibration Error (˝/s) Accelerometer Calibration Error (m/s2)

X-Axis ´0.021121495327103 ´0.007083371298406
Y-Axis ´0.002242990654206 ´0.020187699316629
Z-Axis ´0.016448598130841 0.002405466970394

However, it is difficult to remove the stochastic error easily by any physical method, while
a precise mathematical model can solve the problem far more effectively. Although a first-order
Gauss-Markov model can accurately build a stochastic model for navigation-grade INS systems,
low-cost INS systems need a more precise stochastic model to ensure precision of the navigation
solution because of the complex noise components existing in it [39]. The autocorrelation results
(Figure 9) from the sensor stochastic error calculations show that the errors cannot be simply modeled
by a first-order Gauss-Markov model.

Hence, building an accurate stochastic error model for the MGWD system under the conditions
of no external reference aid information is a significant necessity for downhole drilling applications.
An AR model is selected for system noise modeling, which assumes that present observations zk are
related to the past observations and Gaussian white noise εw [40,41].

zk “ ´

p
ÿ

i“1

aizk´i ` εw (23)
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Figure 9. (a) Gyroscope autocorrelation results; and (b) accelerometer autocorrelation results. 

Typically, three methods can be used to estimate AR model coefficients ai: the Yule-Walker 
method, covariance method, and maximum entropy spectral estimation. The Yule-Walker method 
uses estimation of autocorrelation of the measurements to solve the model coefficients as well as the 
variance of white noise. The autocorrelation function of the AR model is illustrated by Equation (24). 
The key point to estimate the AR model coefficients utilizing the Yule-Walker approach is to solve 
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p
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 (24) 

The autocorrelation function Rzz of the AR process is obtained from Equation (24) by a simple 
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Figure 9. (a) Gyroscope autocorrelation results; and (b) accelerometer autocorrelation results.

Typically, three methods can be used to estimate AR model coefficients ai: the Yule-Walker
method, covariance method, and maximum entropy spectral estimation. The Yule-Walker method
uses estimation of autocorrelation of the measurements to solve the model coefficients as well as the
variance of white noise. The autocorrelation function of the AR model is illustrated by Equation (24).
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The key point to estimate the AR model coefficients utilizing the Yule-Walker approach is to solve the
following linear equation:

Rzz pkq “
p
ÿ

i“1

aiRzz pk´ iq (24)

The autocorrelation function Rzz of the AR process is obtained from Equation (24) by a simple
calculation. The white noise variance is given by Equation (25):

σ2
w “

p
ÿ

i“1

aiRzz p´iq (25)

It has been shown that the Yule-Walker method is applicable to estimate short data records but
it usually brings errors during estimation of AR model coefficients [38]. Similarly to the Yule-Walker
approach, the covariance method solves the AR coefficients by the following equation:

´ Czz p0, iq “
p
ÿ

i“1

aiCzz pi, kq (26)

where Czz(0,i) is the sample covariance sequence and Czz(i,k) are the coefficients of the sample
covariance matrix. Burg method is also related to maximum entropy estimate, which minimizes
the forward and backward prediction error energy in the least squares sense. The details about
this method were illustrated in a previous paper [38]. In this paper, the fourth-order AR model
coefficients are calculated by the Yule-Walker method. Tables 4 and 5 show the statistic noise AR
model coefficients for all inertial sensors. The AR model coefficients of the X-axis gyroscope are
obtained according to the angular rate calculated by the 3-axes accelerometer. In the following table,
a1, a2, a3, a4 are the AR model coefficients and βf,0 and βw,0 are the AR model prediction mean square
errors of the three-axes accelerometer and the three-axes gyroscope (with the X-axis gyroscope data
calculated from the three-axes accelerometer input as previously explained).

Table 4. Fourth order AR model coefficients of the three-axe accelerometer.

Axis a1 a2 a3 a4 βf,0

X-Axis Accelerometer 0.3308 ´0.0995 0.2036 0.3347 0.0034
Y-Axis Accelerometer 0.3307 ´0.1118 0.1956 0.3350 2.0947 ˆ 10´4

Z-Axis Accelerometer 0.1249 ´0.0801 0.0382 0.0724 3.3090 ˆ 10´6

Table 5. Fourth order AR model coefficients of a three-axe accelerometer.

Axis b1 b2 b3 b4 βw,0

X-Axis Gyroscope ´0.0866 ´0.5159 ´0.0947 ´0.1270 2.2871 ˆ 10´7

Y-Axis Gyroscope ´0.8466 ´0.1105 0.2948 ´0.1642 7.1662 ˆ 10´7

Z-Axis Gyroscope ´0.2683 ´0.0026 0.0192 ´0.3496 6.9822 ˆ 10´7

3.2.3. MGWD System Alignment

The basic principle of a strapdown inertial navigation system is to deduce navigation parameters
(position, velocity, and attitude) in accordance with their initial value. The initial attitude can be
measured automatically within the framework of the initial alignment rather than with the assistance
of an external information source. Instead of using such external assistance, a zero velocity update
(ZUPT) can be performed by stopping the system [13]. However, the initial position of the system
has to be obtained by external knowledge, such as GPS or a landmark point. The purpose of coarse
alignment is to build the relationship between the measurement frame where original sensor outputs
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are collected and the computation frame where velocity, position, and attitude of the actual MWD
system are calculated. In other word, coarse alignment is used as the initializing the transformation
matrix of attitude angles between the measurement frame and the computation frame.

MWD body frame is chosen as the measurement frame and the geographic frame is chosen as the
calculation frame in this paper. Two major coarse alignment methods in quasi stationary conditions
have been presented in previous research, gyro-compassing and analytical alignment approach.

Figure 10 illustrates the relationship between the geographic frame and the body frame
using the gyro-compassing method. Briefly, searching the angle between the geographic frame
(Xn, Yn, Zn) and the body frame (Xb, Yb, Zb) is the purpose of the coarse alignment. In general,
the geographic coordinate frame can be transformed into the body coordinate frame through three
times rotation, namely:

Xn, Yn, Zn pZ´Axisq´ Ñ XA, YA, ZA pY´Axisq´ Ñ Xp, Yp, Zp pY´Axisq´ Ñ pXb, Yb, Zbq

where, (XA, YA, ZA) and (XP, YP, ZP) are the intermediate coordinates transiting from the geographic
frame to the body frame. From geometrical point of view, the tilts between Xn, Yn and Xb, Yb equal
to the pitch and the roll of the MGWD system, respectively.
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Figure 10. Geometrical and rotational relationships between the body frame and the geographic frame 
for gyro-compassing alignment. 

The following formulas present the initial roll (φ), pitch (θ) and azimuth (ψ) based on their 
geometrical relationships illustrated on Figure 10 [42]. 

sinϕ =
fib,𝑦𝑦
b

g
 (27) 

sinθ = −
fib,𝑥𝑥
b

g
 (28) 

tanψ = −
ωib,𝑥𝑥
b

ωib,𝑦𝑦
b  (29) 

This paper chooses an analytical alignment method collecting 5-s data to provide the initial 
attitude navigation parameters calculation. This analytical alignment method directly utilizes the 
knowledge of gravity (g), earth rotation rate (ωie

n ), and their cross-product (g × ωie) to compute the 
transformation matrix Rb

n  [43]. The analytical Coarse Alignment equation is listed in the  
following Equation (30). 
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b

gωiecosφ

−
fib,𝑥𝑥
b

g
−

fib,𝑦𝑦
b

g
−

fib,𝑧𝑧
b

g ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(30) 

where gn = [0 0 g]T , ωie
n = [ωiecosφ 0 −ωiesinφ]T , gb = −�fib,𝑥𝑥

b fib,𝑦𝑦
b fib,𝑧𝑧

b �
T

, and  
ωie
b = �ωib,𝑥𝑥

b ωib,𝑦𝑦
b ωib,𝑧𝑧

b �
T
. 
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Figure 10. Geometrical and rotational relationships between the body frame and the geographic frame
for gyro-compassing alignment.

The following formulas present the initial roll (φ), pitch (θ) and azimuth (ψ) based on their
geometrical relationships illustrated on Figure 10 [42].

sinφ “
fb
ib,y

g
(27)

sinθ “ ´
fb
ib,x

g
(28)

tanψ “ ´
ωb

ib,x

ωb
ib,y

(29)

This paper chooses an analytical alignment method collecting 5-s data to provide the initial
attitude navigation parameters calculation. This analytical alignment method directly utilizes the
knowledge of gravity (g), earth rotation rate pωn

ieq, and their cross-product pgˆωieq to compute the

1959
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transformation matrix Rn
b [43]. The analytical Coarse Alignment equation is listed in the following

Equation (30).

Rn
b “

»

—

–

pgnqT
`

ωn
ie
˘T

`

gn ˆωn
ie
˘T

fi

ffi

fl

´1 »

—

–

`

gb˘T

`

ωb
ie
˘T

`

gb ˆωb
ie
˘T

fi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

ωb
ib,x

ωiecosϕ
´

fb
ib,xsinϕ
gcosϕ

ωb
ib,y

ωiecosϕ
´

fb
ib,ysinϕ

gcosϕ

ωb
ib,z

ωiecosϕ
´

fb
ib,zsinϕ
gcosϕ

´fb
ib,yω

b
ib,z ` fib,zω

b
ib,y

gωiecosϕ

fb
ib,xω

b
ib,z ´ fib,zω

b
ib,x

gωiecosϕ

´fb
ib,xω

b
ib,y ` fib,yω

b
ib,x

gωiecosϕ

´
fb
ib,x

g
´

fb
ib,y

g
´

fb
ib,z

g

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(30)

where gn “ r0 0 gsT, ωn
ie “ rωiecosϕ 0 ´ωiesinϕsT, gb “ ´

”

fb
ib,x fb

ib,y fb
ib,z

ıT
, and

ωb
ie “

”

ωb
ib,x ωb

ib,y ωb
ib,z

ıT
.

The coarse alignment results for roll, pitch, and azimuth are: ´0.8061˝, 0.5371˝ and ´150.9636˝,
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate
the MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias,
and accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and
position. The Kalman filter is an estimator for linear systems, but modeling the system random noise
by a fourth-order AR model violates the linearity precondition for Kalman filtering. To address this
issue, the fourth-order AR model is decomposed into four first-order difference equations by defining
four accelerometer random noise middle state variables
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respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  
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δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 
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 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 
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Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

1,
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Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

2,
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 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 
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⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,
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 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 
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Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

4. According to Equation (23),
the fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can
be written in the following form [44]:

δfk “ ´a1δfk´1 ´ a2δfk´2 ´ a3δfk´3 ´ a4δfk´4 `βf,0w (31)

δωk “ ´b1δωk´1 ´ b2δωk´2 ´ b3δωk´3 ´ b4δωk´4 `βω,0w (32)

where the subscripts k, k´1, k´2, k´3 represent discrete sampled time moments k, k´1, k´2,
k´3 respectively.

The middle state variables are defined as follows:
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fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

1,k “ δfk´3 (33)
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

2,k “ δfk´2 (34)
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,k “ δfk´1 (35)
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

4,k “ δfk (36)

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as:

Micromachines 2015, 6, page–page 

15 

The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

1,k “
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

2,k´1 (37)
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

2,k “
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,k´1 (38)
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
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�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,k “

Micromachines 2015, 6, page–page 

15 

The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 
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δ𝑥̇𝑥9×1

Υ̇12×1
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where 

Ffw = �
Ffw,𝑥𝑥 0 0
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0 0 Ffw,𝑧𝑧

�  
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4
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⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

4,k “ ´a1
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

1, k´1 ´ a2
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

2, k´1 ´ a3
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3, k´1 ´ a4
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

4, k´1 `βf,0w (40)

1960
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Specifically, the above Equation can be written in the form of state space equation as:
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

1,k
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦
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⎥
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⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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⎢
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⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

2,k

Micromachines 2015, 6, page–page 

15 

The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
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⎤
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⎥
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 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
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⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤
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0 1 0 0
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 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,k´1
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

4,k´1

fi

ffi

ffi

ffi

fl

(41)

Similarly, by defining the gyroscope random noise middle state variables Θ1, Θ2, Θ3, Θ4, the
state space equation for the gyroscope random noise AR model can be written as:

»

—

—

—

–

Θ1,k
Θ2,k
Θ3,k
Θ4,k

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1
´b1 ´b2 ´b3 ´b4

fi

ffi

ffi

ffi

fl

»

—

—

—

–

Θ1,k´1
Θ2,k´1
Θ3,k´1
Θ4,k´1

fi

ffi

ffi

ffi

fl

(42)

The augmentation of the system state space model (Equation (11)) is written as follows:

»

—

–

δ
.
x9ˆ1.
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

12ˆ1.
Θ12ˆ1

fi

ffi

fl

“

»

—

–

F 0 0
0 Ffw 0
0 0 Fωw

fi

ffi

fl

33ˆ33

»

—

–

δx
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

Θ

fi

ffi

fl

`

»

—

–

G 0 0
0 βf 0
0 0 βω

fi

ffi

fl

33ˆ33

w (43)

where

Ffw “

»

—

–

Ffw,x 0 0
0 Ffw,y 0
0 0 Ffw,z

fi

ffi

fl

βf “

»

—

–

βf0,x 0 0
0 βf0,y 0
0 0 βx0,z

fi

ffi

fl

Fωw “

»

—

–

Fωw,x 0 0
0 Fωw,y 0
0 0 Fωw,z

fi

ffi

fl

βω “

»

—

–

βω0,x 0 0
0 βω0,y 0
0 0 βω0,z

fi

ffi

fl

Ffw and Fωw are the transfer matrices of the AR model and βf and βω are the AR model predicts
the mean square errors for the accelerometer and the gyroscope, respectively. The subscripts x, y
and z represent the X-axis, Y-axis and Z-axis, respectively. The specific parameters of Equation (43)
are illustrated in Appendix A. γ and Θ are the three-axes accelerometer random noise and the
three-axes gyroscope random noise, respectively, and the random noises of each axis are modeled
by a fourth-order AR model. γ and Θ are given as the following matrices:
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MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

“
“
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respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 
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where 

Ffw = �
Ffw,𝑥𝑥 0 0
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0 0 Ffw,𝑧𝑧
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4
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⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4
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⎣
⎢
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⎡
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 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
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⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 
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where 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4
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⎣
⎢
⎢
⎡
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 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦
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⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,x,

Micromachines 2015, 6, page–page 

15 

The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
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 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦
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⎥
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 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
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⎥
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⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
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⎥
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 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  
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The augmentation of the system state space model (Equation (11)) is written as follows: 
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 
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Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

3,z,
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

4,z
‰T (44)

Θ “
“

Θ 1,x, Θ 2,x, Θ 3,x, Θ 4,x, Θ 1,y, Θ 2,y, Θ 3,y, Θ 4,y, Θ 1,z, Θ 2,z, Θ 3,z, Θ 4,z
‰T (45)

where
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

i,x,
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

i,y,
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

i,z and Θ i,x, Θ i,y, Θ i,z, i = 1,2,3,4 represent the defined state variables of the
three-axes accelerometer and three-axes gyroscope respectively.

Therefore, the augmentation of the system state space model in Equation (43) can be rewritten in
a discrete system form as:

Xk “ Φk´1Xk´1 ` Γk´1wk´1

1961
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where Xk and Xk´1 are the augmentation system state variables at sampled time k and k´1, namely,

Xk “ rδx,
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The coarse alignment results for roll, pitch, and azimuth are: −0.8061°, 0.5371° and −150.9636°, 
respectively. In this paper, the quasi-stationary fine alignment method is selected to compensate the 
MGWD system error. The system state variables (attitude, velocity, position, gyroscope bias, and 
accelerometer bias) are estimated by a Kalman filter with measurements of zero velocity and position. 
The Kalman filter is an estimator for linear systems, but modeling the system random noise by a 
fourth-order AR model violates the linearity precondition for Kalman filtering. To address this issue, 
the fourth-order AR model is decomposed into four first-order difference equations by defining four 
accelerometer random noise middle state variables  Υ1,Υ2,Υ3,Υ4 . According to Equation (23), the 
fourth-order AR models of gyroscope bias and accelerometer bias disturbed by white noise can be 
written in the following form [44]:  

δf𝑘𝑘 = −a1δf𝑘𝑘−1 − a2δf𝑘𝑘−2 − a3δf𝑘𝑘−3 − a4δf𝑘𝑘−4 + βf,0w (31) 

δω𝑘𝑘 = −b1δω𝑘𝑘−1 − b2δω𝑘𝑘−2 − b3δω𝑘𝑘−3 − b4δω𝑘𝑘−4 + βω,0w (32) 

where the subscripts k, k−1, k−2, k−3 represent discrete sampled time moments k, k−1, k−2,  
k−3 respectively. 

The middle state variables are defined as follows: 

 Υ1,𝑘𝑘 = δf𝑘𝑘−3 (33) 

 Υ2,𝑘𝑘 = δf𝑘𝑘−2 (34) 

 Υ3,𝑘𝑘 = δf𝑘𝑘−1 (35) 

 Υ4,𝑘𝑘 = δf𝑘𝑘 (36) 

Therefore, the Equation (31) can be decomposed into 4 first-order difference equations as: 

 Υ1,𝑘𝑘 =  Υ2,𝑘𝑘−1 (37) 

 Υ2,𝑘𝑘 =  Υ3,𝑘𝑘−1 (38) 

 Υ3,𝑘𝑘 =  Υ4,𝑘𝑘−1 (39) 

 Υ4,𝑘𝑘 = −a1 Υ1,𝑘𝑘−1 − a2 Υ2,𝑘𝑘−1 − a3 Υ3,𝑘𝑘−1 − a4 Υ4,𝑘𝑘−1 + βf,0w (40) 

Specifically, the above Equation can be written in the form of state space equation as: 

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘
 Υ2,𝑘𝑘
 Υ3,𝑘𝑘
 Υ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−a1 −a2 −a3 −a4

�

⎣
⎢
⎢
⎡
 Υ1,𝑘𝑘−1
 Υ2,𝑘𝑘−1
 Υ3,𝑘𝑘−1
 Υ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (41) 

Similarly, by defining the gyroscope random noise middle state variables Θ1,Θ2, Θ3,Θ4, the state 
space equation for the gyroscope random noise AR model can be written as:  

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘
 Θ2,𝑘𝑘
 Θ3,𝑘𝑘
 Θ4,𝑘𝑘⎦

⎥
⎥
⎤

= �

0 1 0 0
0 0 1 0
0 0 0 1
−b1 −b2 −b3 −b4

�

⎣
⎢
⎢
⎡
 Θ1,𝑘𝑘−1
 Θ2,𝑘𝑘−1
 Θ3,𝑘𝑘−1
 Θ4,𝑘𝑘−1⎦

⎥
⎥
⎤
 (42) 

The augmentation of the system state space model (Equation (11)) is written as follows: 

�
δ𝑥̇𝑥9×1

Υ̇12×1

Θ̇12×1

� = �
F 0 0
0 Ffw 0
0 0 Fωw

�
33×33

�
δ𝑥𝑥
Υ
Θ
� + �

G 0 0
0 βf 0
0 0 βω

�
33×33

w (43) 

where 

Ffw = �
Ffw,𝑥𝑥 0 0

0 Ffw,𝑦𝑦 0
0 0 Ffw,𝑧𝑧

�  

, ΘsT. The system state transfer matrix Φk´1 “

»

—

–

F 0 0
0 Ffw 0
0 0 Fωw

fi

ffi

fl

and the system

noise matrix Γk´1 “

»

—

–

G 0 0
0 βf 0
0 0 βω

fi

ffi

fl

. To estimate the system state, the linear Kalman filter can

be employed because the augmentation system state space model is now linearized. Although
modeling white noise by AR model violates the assumption that the Kalman filter provides the
optimal estimation for linear system disturbed by white noise, Kalman filter can still be performed
in this context because the matrix Γk´1 corrects various components of the noise process rather than
deliver white noises. Thus, the performance of Kalman filter is suboptimal herein.

The measurement equation for Kalman filtering is expressed by:

Zk “ HXk ` vk (46)

where Zk is the difference between the estimate state pVN, VE, VD, L, λ, hq and the zero velocity and
position reference (VN,0, VE,0, VD,0, L0, λ0, h0):

Zk “

»

—

—

—

—

—

—

—

–

VN ´VN,0

VE ´VE,0

VD ´VD,0

L´ L0

λ´ λ0

h´ h0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(47)

H “

«

H11 H12 H13 H14 H15

H21 H22 H23 H24 H25

ff

(48)

where H11, H13, H21, H22 are 3 ˆ 3 zero matrices, respectively; H14, H15 H24, H25 are 3 ˆ 12 zero
matrices, respectively; and H12, H13 are 3 ˆ 3 unit matrices, respectively.

4. Results and Discussion

The test collects 60 s of stationary data to verify the algorithm and extracts the initial 5 s data for
coarse alignment. The initial latitude, longitude and position are 45.77755˝, 126.687898˝ and 124 m,
respectively and the initial velocities are set to 0. Figure 11 shows original data outputs of the system.
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(a) (b) 

Figure 11. (a) Two-axes gyroscope original data; and (b) three-axes accelerometer original data. 

Figure 12a–c describes the MGWD system position, velocity, and attitude outputs obtained with 
the aid of zero velocity and position, which show that the Kalman filter can track the real position 
and velocity correctly. All diagonal values of the initial estimation error covariance are set to 0.01 and 
all diagonal values of the system noise covariance matrix are set to 1. The measurement noise 
covariance matrix is set as: R = diag [0.1 0.1 0.1 0.1 0.1 0.1] and all initial system error states 
are set to 0. The maximum error for position, velocity and attitude between the mechanization 
outputs and the Kalman filter outputs are:, 2.4682 × 10−9, (2.6364 × 10−11)°, 5.401 × 10−5, 0.009 m/s,  
0.0179 m/s, −5.5009 × 10−4 m/s, (5.3521 × 10−4)°, (1.8512 × 10−5)°, and (4.6093 × 10−7)° Hence, for the 
attitude compensation, the zero velocity and position update approach cannot compensate for the 
azimuth error which drifts dramatically, as illustrated in Figure 13. Figure 13 shows attitude, velocity, 
and position estimation errors of: 0.0162°, −0.0073°, 0.0535°, 0.0043 m/s, 0.0093 m/s, −0.0032 m/s, 
(−0.1902 × 10−8)°, (−0.5976 × 10−8)° and −0.0002 m. The above results imply that Kalman filtering can 
effectively restrain position, velocity, and attitude error, but not the azimuth error. 

Figures 14a, b show the standard deviations of the attitude estimation errors and the standard 
deviations of the velocity estimation errors, respectively. In Figure 14a the standard deviations of the 
roll and the pitch estimation errors converge to about 0.0348° and 0.0104°, respectively, while the 
standard deviation of the azimuth is divergent. The conclusion is that the state variables of the roll and 
the pitch are completely observable by the Kalman filter, but the state variable of the azimuth, is not 
observable. Similarly, the state variables (north, east, and down velocity) in the Kalman filter are 
completely observable and converge to 0.0277, 0.0292 and 0.0270 m/s, respectively as shown in Figure 14b. 

As shown in Figure 15, the trace of the Kalman filter estimation error covariance matrix 
converges to 0.2 after 2 s. However, it is prone to drift because the azimuth error cannot be estimated 
in the Kalman filter. Additionally, the controllable and the observable matrices of the Kalman filter 
aided jointly by zero velocity and position updates are full rank. As a whole, the Kalman filter using 
zero velocity and position updates to compensate the MGWD system error with the fourth order AR 
model for statistical noise is convergent but drifts due to the azimuth error growth. Thus, as 
illustrated by Figure 14a, the standard deviation of the azimuth estimation error grows 
uncontrollably, and other observability-enhancing techniques, similar to IDA or R-IDA, should be 
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Figure 11. (a) Two-axes gyroscope original data; and (b) three-axes accelerometer original data.
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sought in order for this technique to ever become applicable downhole. This presents a challenge for 
such miniature systems, since their pre-determined, dynamically-controlled motion can be achieved 
only by adding relatively complex motion-inducing and motion-assessing enclosures, which by 
themselves have to be prone to high temperatures and high vibrations, while at the same time being 
reasonably inexpensive and technologically easy to implement. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. (a) MGWD system position solution with the Kalman filter; (b) MGWD system velocity 
solution with the Kalman filter; and (c) MGWD system attitude solution with the Kalman filter. 
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Figure 12. (a) MGWD system position solution with the Kalman filter; (b) MGWD system velocity
solution with the Kalman filter; and (c) MGWD system attitude solution with the Kalman filter.

Figure 12a–c describes the MGWD system position, velocity, and attitude outputs obtained with
the aid of zero velocity and position, which show that the Kalman filter can track the real position
and velocity correctly. All diagonal values of the initial estimation error covariance are set to 0.01
and all diagonal values of the system noise covariance matrix are set to 1. The measurement noise
covariance matrix is set as: R “ diag

”

0.1 0.1 0.1 0.1 0.1 0.1
ı

and all initial system error
states are set to 0. The maximum error for position, velocity and attitude between the mechanization
outputs and the Kalman filter outputs are:, 2.4682 ˆ 10´9, (2.6364 ˆ 10´11)˝, 5.401 ˆ 10´5, 0.009 m/s,
0.0179 m/s, ´5.5009 ˆ 10´4 m/s, (5.3521 ˆ 10´4)˝, (1.8512 ˆ 10´5)˝, and (4.6093 ˆ 10´7)˝ Hence, for
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the attitude compensation, the zero velocity and position update approach cannot compensate for the
azimuth error which drifts dramatically, as illustrated in Figure 13. Figure 13 shows attitude, velocity,
and position estimation errors of: 0.0162˝, ´0.0073˝, 0.0535˝, 0.0043 m/s, 0.0093 m/s, ´0.0032 m/s,
(´0.1902 ˆ 10´8)˝, (´0.5976 ˆ 10´8)˝ and ´0.0002 m. The above results imply that Kalman filtering
can effectively restrain position, velocity, and attitude error, but not the azimuth error.Micromachines 2015, 6, page–page 
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Figure 13. (a) Kalman filter position estimation error; (b) Kalman filter velocity estimation error; and 
(c) Kalman filter attitude estimation error. 
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Figure 13. (a) Kalman filter position estimation error; (b) Kalman filter velocity estimation error; and
(c) Kalman filter attitude estimation error.
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Figure 14 show the standard deviations of the attitude estimation errors and the standard
deviations of the velocity estimation errors, respectively. In Figure 14a the standard deviations of
the roll and the pitch estimation errors converge to about 0.0348˝ and 0.0104˝, respectively, while the
standard deviation of the azimuth is divergent. The conclusion is that the state variables of the roll
and the pitch are completely observable by the Kalman filter, but the state variable of the azimuth,
is not observable. Similarly, the state variables (north, east, and down velocity) in the Kalman filter
are completely observable and converge to 0.0277, 0.0292 and 0.0270 m/s, respectively as shown in
Figure 14b.Micromachines 2015, 6, page–page 
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Figure 14. (a) Standard deviation attitude estimation error; and (b) standard deviation velocity estimation error. 

 

Figure 15. Convergence of the estimation error covariance. 
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Figure 14. (a) Standard deviation attitude estimation error; and (b) standard deviation velocity
estimation error.

As shown in Figure 15, the trace of the Kalman filter estimation error covariance matrix
converges to 0.2 after 2 s. However, it is prone to drift because the azimuth error cannot be
estimated in the Kalman filter. Additionally, the controllable and the observable matrices of the
Kalman filter aided jointly by zero velocity and position updates are full rank. As a whole, the
Kalman filter using zero velocity and position updates to compensate the MGWD system error
with the fourth order AR model for statistical noise is convergent but drifts due to the azimuth
error growth. Thus, as illustrated by Figure 14a, the standard deviation of the azimuth estimation
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error grows uncontrollably, and other observability-enhancing techniques, similar to IDA or R-IDA,
should be sought in order for this technique to ever become applicable downhole. This presents a
challenge for such miniature systems, since their pre-determined, dynamically-controlled motion can
be achieved only by adding relatively complex motion-inducing and motion-assessing enclosures,
which by themselves have to be prone to high temperatures and high vibrations, while at the same
time being reasonably inexpensive and technologically easy to implement.
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Figure 15. Convergence of the estimation error covariance.

5. Conclusions

This paper presents the design and the algorithm verification of a small-diameter MGWD
system with reduced number of inertial sensors. In the reported design, small diameter, and
high-temperature sensors are selected to meet MGWD system design requirements. The integrated
MGWD data collection software can perform both real-time data display and post-processing for
a complete navigation solution. Allan variance approach is selected to test sensor performance
based on stochastic error modeling. In order to eliminate the stochastic error, a precise
AR-based mathematical model is built. With the aid of a zero velocity and position update,
quasi-stationary fine alignment can deliver the real attitude, velocity, and position tracking utilizing
a Kalman filter that can effectively estimate system state with the employed augmented system
state space model. In addition, the Kalman filter for system state estimation was determined
to be convergent through evaluating the estimation error covariance matrix. However, the
uncontrollable growth in the azimuth error cannot be compensated using this approach, and separate
observability-enhancing mechanisms should be sought and integrated before such MGWD systems
can really be applicable downhole.
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Appendix A

The specific parameters of augmentation system state space model in Equation (43) list
as following:

Ffw,x “

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1

´0.3308 0.0995 ´0.2036 ´0.3347

fi

ffi

ffi

ffi

fl

Ffw,y “

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1

´0.3307 0.1118 ´0.1956 ´0.3350

fi

ffi

ffi

ffi

fl

Ffw,z “

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1

´0.1249 0.0801 ´0.0382 ´0.0724

fi

ffi

ffi

ffi

fl

βfx,0 “

»

—

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.0034

fi

ffi

ffi

ffi

fl

βfy,0 “

»

—

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2.0947ˆ 10´4

fi

ffi

ffi

ffi

fl

βfz,0 “

»

—

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 3.3090ˆ 10´6

fi

ffi

ffi

ffi

fl

Fωw,x “

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1

0.0866 0.5159 0.0947 0.1270

fi

ffi

ffi

ffi

fl

Fωw,y “

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1

0.8466 0.1105 ´0.2948 0.1642

fi

ffi

ffi

ffi

fl

Fωw,z “

»

—

—

—

–

0 1 0 0
0 0 1 0
0 0 0 1

0.2683 0.0026 ´0.0192 0.3496

fi

ffi

ffi

ffi

fl

βωx,0 “

»

—

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2.2871ˆ 10´7

fi

ffi

ffi

ffi

fl
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βωy,0 “

»

—

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 7.1662ˆ 10´7

fi

ffi

ffi

ffi

fl

βωz,0 “

»

—

—

—

–

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 6.982ˆ 10´8

fi

ffi

ffi

ffi

fl
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