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Abstract: Movable suspended microstructures are the common feature of sensors or devices in
the fields of Complementary-Metal-Oxide-Semiconductors and Micro-Electro-Mechanical Systems
which are usually abbreviated as CMOS-MEMS. To suspend the microstructures, it is commonly
to etch the sacrificial layer under the microstructure layer. For large-area microstructures, it is
necessary to design a large number of etching holes on the microstructure to enhance the etchant
uniformly and rapidly permeate into the sacrificial layer. This paper aims at evaluating the fringe
capacitance caused by etching holes on microstructures and developing empirical formulas. The
formula of capacitance compensation term is derived by curve-fitting on the simulation results
by the commercial software ANSYS. Compared with the ANSYS simulation, the deviation of the
present formula is within ˘5%. The application to determine the capacitance of an electrostatic
micro-beam with etching holes is demonstrated in a microstructure experiment, which agrees very
well with the experimental data, and the maximum deviation is within˘8%. The present formula is
with simple form, wide application range, high accuracy, and easy to use. It is expected to provide
the micro-device designers to estimate the capacitance of microstructures with etching holes and
predominate in the device characteristics.

Keywords: CMOS; etching holes; fringe capacitance; MEMS

1. Introduction

Movable suspended microstructures are the common key feature of sensors and devices in
the fields of Complementary-Metal-Oxide-Semiconductors and Micro-Electro-Mechanical Systems
which are usually abbreviated as CMOS-MEMS. To suspend the microstructures, it is commonly
required to etch the sacrificial layer under the microstructure layer. For large-area microstructures, it
is necessary to design a large number of etching holes on the microstructure to enhance the etchant
uniformly and rapidly permeate into the sacrificial layer. However, the etching holes may alter
the characteristics of the microstructures, such as mechanical properties [1], magnetic field [2] and
electrical field [3–6]. According to the aforementioned literature, etching holes have great influences
on the characteristics of micro-devices not only the mechanical but also the electrical properties.

For parallel-plate capacitive micro-devices, etching holes may decrease the parallel-plate
capacitance but increase the fringe capacitance due to the fringe fields of the inner perimeters of
the etching holes. As a result, etching holes make evaluating the capacitance of microstructures
becomes much more difficult. There was some literature that evaluated the two-dimensional [7–11] or
three-dimensional [8,9,12] fringe capacitances of the microstructures without etching holes. However,
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no literature mentioned the evaluation of the capacitance of perforated microstructures. Therefore,
the authors of this work had presented an empirical formula for evaluating the fringe capacitance of
etching holes [13]. However, its structural dimension-range was too narrow for practical application
for CMOS-MEMS sensors and devices. Therefore, by modifying the previous work, this paper
proposes a simple but more accurate empirical formula for compensating the fringe capacitances
of etching holes for CMOS-MEMS. We carry out extensive simulations by the use of the commercial
software ANSYS (Ansys, Inc., Canonsburg, PA, USA) and then derive an empirical formula by curve
fitting on the simulation results. Then, the empirical formula is verified by practical microstructures.

2. Formula Derivation

There are four steps to derive the formula of the capacitance compensation term for etching
holes. Firstly, to determine the dominant terms of the influence of etching holes on capacitance, a
comparison will be carried out between a perforated and a non-perforated parallel-plate capacitor
with the same dimensions. Secondly, ANSYS simulation is employed to compute the capacitance
difference. Thirdly, the empirical formula of the capacitance compensation term is derived by
curve fitting on the simulation results. Finally, verify the empirical formula by many practical
microstructures with different etching holes dimensions.

2.1. The Capacitance Compensation Terms of Etching Hole

Figure 1 shows the cross-sectional view of a capacitive micro-plate-structure. The total electrical
fields consist of two parts: one is the uniform field under the bottom-surface of the plate and the
other one is the fringe field from the sidewalls and top-surface of the structure. Therefore, the total
capacitance (C) is the sum of the parallel-plate capacitance (Cp) under the bottom-surface and the
fringe capacitance around the sidewalls and the top-surface (Cf), i.e., C = Cp + Cf. For a perforated
capacitive micro-plate (Figure 2), the electrical fields may pass through the etching holes and thus
alter the total capacitance of the plate. Etching holes are usually uniform-distributed in MEMS
fabrication processes to ensure completely removing the sacrificial layer under the structural layer.
Therefore, we can divide the whole structure into the combination of many square unit modules and
analyze the fringe capacitance of a unit module. Figure 3 illustrates the unit modules as well as their
dimensions, where s, se, h and g represent the length of unit module, the length of etching hole, the
plate thickness, and the gap between the plate and ground respectively.
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Figure 2. Schematic diagram of the fringe fields of the etching-hole.  

Figure 1. (a) The cross-sectional view of a flat-plate capacitor; (b) The field lines resulted by a bias
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To understand the influence of the etching hole on the total capacitance of a unit module, let us 
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and Cf is the fringe capacitance around the sidewalls and top-surface. Cp can be calculated by the 
ideal parallel-plate capacitance formula, namely Cp = εA/g where A is the area of the bottom-surface 
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where f_holeC  is the fringe capacitance around the sidewalls and top surface nearby etching hole. By 
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term of etching holes effects on capacitive microstructures will be carried out. The formula of the 
capacitance compensation term (∆C) of etching hole can be expressed as follows: 
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Figure 3. (a) Schematic diagram of the capacitive structure with etching holes; (b) Schematic diagram
of the unit module. s: The length of unit module; se: The length of etching hole.

To understand the influence of the etching hole on the total capacitance of a unit module, let us
consider a contrastive unit module without etching hole, as shown in Figure 4a, the capacitance can
be expressed as:

C “ Cp ` Cf (1)

where C is the total capacitance, Cp is the ideal parallel-plate capacitance under the bottom-surface,
and Cf is the fringe capacitance around the sidewalls and top-surface. Cp can be calculated by the
ideal parallel-plate capacitance formula, namely Cp = εA/g where A is the area of the bottom-surface
of the unit module. On the other hand, the total capacitance Ce of the unit module with etching hole,
as shown in Figure 4b, can be expressed as:

Ce “ Ce
p ` Ce

f (2)

where Ce
p is the ideal parallel-plate capacitance under the bottom-surface of the unit module with

etching hole, that can be represented as:

Ce
p “ Cp ´ Cp_hole (3)

where Cp_hole is the ideal parallel-plate capacitance of the area that the etching hole occupied; Ce
f is

the fringe capacitance that can be approximately represented as:

Ce
f “ Cf ` Cf_hole (4)

where Cf_hole is the fringe capacitance around the sidewalls and top surface nearby etching hole. By
comparing the capacitance between the perforated and non-perforated unit module, a compensation
term of etching holes effects on capacitive microstructures will be carried out. The formula of the
capacitance compensation term (∆C) of etching hole can be expressed as follows:

∆C “ Ce ´ C “ ´Cp_hole ` Cf_hole (5)
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2.2. Simulations by ANSYS

To extract the capacitance compensation terms (∆C) of etching hole, the commercial finite
element software, ANSYS, is employed. Similar to our previous work [13], a series of
three-dimensional electrostatic field simulation for the unit modules with different dimensions are
carried out. To reduce the computing time, only a quarter of the unit module and electric field
is modeling in simulation because of its symmetric (Figure 5). Table 1 shows the parameters of
simulation. The size of the etching hole is characterized by the ligament coefficient µ, which is defined
as the ratio of the remaining link width (l) to the etching hole pitch, i.e., µ = l/pitch (Figure 6). The
non-perforated unit module (µ = 1) is also simulated as a standard for calculating the capacitance
compensation term of etching hole.

We divide the entire electrostatic field region (16µmˆ 16µmˆ 16µm) into the three regions with
different mesh sizes (Figure 7) and use the element type of Solid 122 to mesh the electrostatic field.
Table 2 shows the mesh sizes for each region. There are 27 regions with corresponding mesh sizes.
The elements near the electrodes have smaller mesh size due to the rapid changes in electrostatic field.
Table 3 compares the capacitances simulated by different mesh densities for different electrostatic
field spaces. The simulation results show good convergence, whose deviation is within 1%, even
increasing the mesh density and the space of electrostatic field. After a large number of simulations,
the capacitances of the perforated and non-perforated unit module with the same dimension would
be determined. By the use of Equation (5), the capacitance compensation term of etching hole (∆C)
can be extracted. Figure 8 shows one of the simulation results (s = 8 µm) and it was found that
the absolute value of capacitance compensation term increases as the ligament coefficient decreases.
However, the capacitance compensation will approach zero with increasing electrode gap. The reason
is due to fringe fields filling the area of the etching holes.

Table 1. Parameters of simulation.

Parameters and Units Values

Length of unit module, s (µm) 4.0, 6.0, 8.0, 10.0, 12.0
Thickness of unit module, h (µm) 1.0

Gaps, g (µm) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3, 1.4, 1.5, 2.0, 4.0

Ligament coefficient, µ = l/pitch a 1.0, 0.7, 0.6, 0.5, 0.4, 0.3
Length of the cubic region of the electrostatic
field in simulation, f (µm) b 16.0

a l and pitch are shown in Figure 6, b f is shown in Figure 5.
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Table 2. Mesh sizes and densities.

Position Mesh Density ˆ 1 Mesh Density ˆ 8

Region Value Mesh Size (µm) Mesh Size (µm)

1
0 ď x ď s{2` 0.1

0.1 0.050 ď y ď s{2` 0.1
0 ď z ď g` h` 0.1

2
s{2` 0.1 ď x ď s{2` 2.1

0.5 0.25s{2` 0.1 ď y ď s{2` 2.1
g` h` 0.1 ď z ď

g` h` 2.1

3
s{2` 2.1 ď x ď f

1 0.5s{2` 2.1 ď y ď f
g` h` 2.1 ď z ď f

Table 3. Capacitance comparison with different mesh densities and electrostatic fields for the
perforated unit module (s = 8.0 µm, h = 1.0 µm, g = 1.0 µm, µ = 0.5).

Electrostatic
Field (µm3) 83 123 163 203 243

Mesh Density C (pF) Error (%) C (pF) Error (%) C (pF) Error (%) C (pF) Error (%) C (pF) Error (%)

ˆ1/8 242.47 ´6.60% 256.60 ´1.16% 260.08 0.18% 261.33 0.66% 261.88 0.88%
ˆ1 242.05 ´6.76% 256.13 ´1.34% 259.61 0.00% 260.85 0.48% 261.40 0.69%
ˆ8 241.88 ´6.83% 255.94 ´1.41% 259.41 ´0.08% 260.65 0.40% 261.20 0.61%
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Figure 8. Simulation results of capacitance compensation term (s = 8 μm). ∆C: The capacitance 
compensation term of etching hole. 

2.3. Empirical Formula 

The authors had never applied the previous work [13] on real devices and found large deviation. 
By a real device experiment, we found that the ratio of hole-dimension to the gap between 
microstructure and ground (se/g) had a significant effect on the fringe capacitance and this effect was 
not considered in that work. Therefore, the main difference between the present work and [13] is 
including the term se/g into the empirical formula. For easy and quick estimating of the influence of 
etching holes on the entire capacitance of microstructures, this paper derives an empirical formula 
for the capacitance compensation term of etching hole. The empirical formula is obtained by curve 
fitting on the ANSYS simulation results. According to the capacitance analysis, the decreasing of 
parallel-plate capacitance and the increasing of fringe capacitance cause the capacitance compensation 
term. For the decreasing of the parallel-plate capacitance, it can be calculated by the ideal parallel-plate 
capacitance formula. On the other hand, for the increasing of the fringe capacitance, we introduce 
three dimensionless parameters, se/g, h/g and μ, to estimate the fringe capacitance. Therefore, the 
dimensionless functional form used to fit the ANSYS simulation results is: 

e e β 1 λ λ(1 μ)( ) α(1 μ)( ) γ(1 μ) ( )
ε

C
s g s g h g

s
−∆

= − − + − + −  (6) 

where α, β, γ and λ are the constants to be defined by curve fitting. The first term on the right-hand side 
of Equation (6) accounts for the ideal parallel-plate capacitance and the remaining terms account for 
the fringe capacitance due to the side walls and the upper surface, respectively. Since Equation (6) is 
nonlinear, the authors adopt the nonlinear curve-fitting algorithm, “nonlinearmodelfit” commend 
and loop operation, of the technical computing software Mathematica. By curve fitting on a large 
number of ANSYS simulation results within the dimension ranges, e5 s g≤ , 0.25 10h g≤ ≤  and 
0.3 μ 0.7≤ ≤ , the values of the optimized constants are α = 0.913, β = 0.557, γ = 0.465 and λ = 0.318. 
Therefore, the dimensionless capacitance compensation term of etching hole that we propose is: 

e e 0.557 0.682 0.318(1 μ)( ) 0.913(1 μ)( ) 0.465(1 μ) ( )
ε

C
s g s g h g

s

∆
= − − + − + −  (7) 

In the applicable ranges of se/g, h/g, and μ, the maximum deviation in capacitance between the 
empirical Formula (7) and the ANSYS simulation is within 5%±  (Figure 9). The applicable 
geometrical range of this work is wider than that of [13] (Table 4). 
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Figure 8. Simulation results of capacitance compensation term (s = 8 µm). ∆C: The capacitance
compensation term of etching hole.

2.3. Empirical Formula

The authors had never applied the previous work [13] on real devices and found large
deviation. By a real device experiment, we found that the ratio of hole-dimension to the gap
between microstructure and ground (se/g) had a significant effect on the fringe capacitance and this
effect was not considered in that work. Therefore, the main difference between the present work
and [13] is including the term se/g into the empirical formula. For easy and quick estimating of
the influence of etching holes on the entire capacitance of microstructures, this paper derives an
empirical formula for the capacitance compensation term of etching hole. The empirical formula is
obtained by curve fitting on the ANSYS simulation results. According to the capacitance analysis, the
decreasing of parallel-plate capacitance and the increasing of fringe capacitance cause the capacitance
compensation term. For the decreasing of the parallel-plate capacitance, it can be calculated by
the ideal parallel-plate capacitance formula. On the other hand, for the increasing of the fringe
capacitance, we introduce three dimensionless parameters, se/g, h/g and µ, to estimate the fringe
capacitance. Therefore, the dimensionless functional form used to fit the ANSYS simulation results is:

∆C
εs
“ ´p1´ µqpse{gq `αp1´ µqpse{gqβ ` γp1´ µq1´λ

ph{gqλ (6)
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where α, β, γ and λ are the constants to be defined by curve fitting. The first term on the right-hand
side of Equation (6) accounts for the ideal parallel-plate capacitance and the remaining terms account
for the fringe capacitance due to the side walls and the upper surface, respectively. Since Equation (6)
is nonlinear, the authors adopt the nonlinear curve-fitting algorithm, “nonlinearmodelfit” commend
and loop operation, of the technical computing software Mathematica. By curve fitting on a large
number of ANSYS simulation results within the dimension ranges, 5 ď se{g, 0.25 ď h{g ď 10 and
0.3 ď µ ď 0.7, the values of the optimized constants are α = 0.913, β = 0.557, γ = 0.465 and λ = 0.318.
Therefore, the dimensionless capacitance compensation term of etching hole that we propose is:

∆C
εs
“ ´p1´ µqpse{gq ` 0.913p1´ µqpse{gq0.557

` 0.465p1´ µq0.682
ph{gq0.318 (7)

In the applicable ranges of se/g, h/g, and µ, the maximum deviation in capacitance between
the empirical Formula (7) and the ANSYS simulation is within ˘5% (Figure 9). The applicable
geometrical range of this work is wider than that of [13] (Table 4).Micromachines 2015, 6, page–page 
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and (e) s = 12 µm.
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Table 4. The comparisons of the empirical formulas for the capacitance compensation term of etching
hole in comparison with the simulation by the commercial software ANSYS.

Empirical Formula Deviation Geometrical Range

Equation (8) in [13] ˘10% 5 ď se{g, 0.25 ď h{g ď 5 and µ “ 0.7
Equation (7) in this work ˘5% 5 ď se{g, 0.25 ď h{g ď 10 and 0.3 ď µ ď 0.7

3. Experiment Verification

We make perforated micro-beams to demonstrate the application of the present capacitance
compensation formula on determine their capacitance. Figure 10 shows the schematic of the test
micro-beam. A series of micro-beams with different lengths, widths, and etching-hole sizes are
manufactured by the MEMS process. Table 5 lists the dimensions of the test micro-beams. In total,
there are nine test-chips containing 54 test-beams. By unit-module length, they are divided into three
groups. Each group contains three chips and the three chips have three different ligament coefficients
(µ). Each chip contains six beams (Figure 11). By width, they are divided into two groups; each group
contains three beams with three different lengths.

To control the size of the test structure precisely, the authors adopt a low-resistance
silicon-on-insulator (SOI) wafer to make the micro-beam. Table 6 details the specifications of the
SOI wafer. The device layer forms the beam structure (thickness = 10 µm), which is patterned by
induction coupling plasma etching. The buried oxide layer forms the anchor of the test structure and
decides the gap between micro-beam and substrate (gap = 2 µm). After patterning the device layer,
49% Hydrogen Fluoride etchant is used to etch the silicon dioxide under the device layer and makes
the micro-beam release. The scanning electron microscope picture (Figure 11) shows that the test
beam with etching holes is completely suspended and without curl.

Table 5. Dimensions of the test micro-beams and unit modules. The beam thickness (h) is 10 µm and
the gap (g) between the beam and ground is 2 µm.

Chip Unit Module Dimensions Beam Dimensions
Length s (µm) Ligament Coefficient µ Width b (µm) Length L (µm)

1 80 0.7 400, 640 1920, 2880, 3840
2 80 0.5 400, 640 1920, 2880, 3840
3 80 0.3 400, 640 1920, 2880, 3840
4 100 0.7 400, 600 2000, 3000, 4000
5 100 0.5 400, 600 2000, 3000, 4000
6 100 0.3 400, 600 2000, 3000, 4000
7 120 0.7 360, 600 1920, 2880, 3840
8 120 0.5 360, 600 1920, 2880, 3840
9 120 0.3 360, 600 1920, 2880, 3840

Table 6. Specification of the silicon-on-insulator (SOI) wafer.

Diameter
(mm)

Type/Dopant Orient
Device Layer BOX

Layer
(µm)

Handle Wafer
Thick
(µm)

Resist
(ohm-cm) Finish Thick

(µm)
Resist
(ohm-cm) Finish

100 ˘ 0.1 P/B <1-1-1> 10 ˘ 0.5 0.010–0.015 P 2 400 ˘ 10 0.010–0.015 P

P/B: Positive/Boron.
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Figure 10. The schematic of test microstructures. L: length of the test beam. Figure 10. The schematic of test microstructures. L: length of the test beam.
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Figure 11. The scanning electron microscope picture of the test sample. 

The capacitances of the test structures are measured by Agilent E4980A LCR meter (Agilent 
Technologies, Santa Clara, CA, USA) (Figure 10). To eliminate the fringe effects of the probing pads 
and anchors, two test beams with different lengths fabricated in the same chip are required. The 
capacitance difference (CΔL) of the two beams is obtained by mutually subtract their capacitances 
measured by Agilent E4980A LCR meter. The experiment results are listed in the sixth column of 
Tables 7–9. The authors of this paper had published a two-dimensional capacitance formula for 
determining the capacitance of the micro-beam without etching hole [11], we can use that formula to 
calculate the capacitance difference of the present two test beams, that is: 

0.23 0.23

ε 1.06 3.31 0.73
L

b h b
C L

g g h∆
′ = ∆ − + +

    
      

 (8) 

where L∆  is the length difference of the two test beams. It should be mentioned here that Equation (8) 
does not consider the effects of etching holes. The results of Equation (8) are listed in the 6th column 
of Tables 7–9. For considering the effects of etching holes, we can add Equation (7) into Equation (8) 
to calculate the capacitance difference of the present two test beams, that is: 

L LC C N C∆ ∆
′= + ∆  (9) 

where ΔC is given by Equation (7) and N is the total number of etching holes. The results of  
Equation (9) are listed in the ninth column of Tables 7–9. Tables 7–9 compare the numerical results 
obtained by experiment and empirical formula for the ligament coefficients μ = 0.7, 0.5 and 0.3, 
respectively. The smaller the ligament coefficient is, the larger the total area of the etching holes is. 
When the ligament coefficient μ is 0.7 (Table 7), the mean deviation between Equation (8) (neglecting 
the effect of etching hole) and experiment is 5.89%, while those of this work and the authors’ previous 
work [13] are both about 3%. When the ligament coefficient μ is 0.5 (Table 8), the mean deviation of 
Equation (8) reaches to 24.40%, while those of this work and the authors’ previous work [13] are about 
4% and 3% respectively. When the ligament coefficient μ = 0.3 (Table 9), the most critical case in 
experiment and regular design, the deviation of Equation (8) reaches to 62.99%, while those of this 
work and the authors’ previous work [13] are about 3% and 7%, respectively. This is because the 
larger etching holes cause a significant capacitance decrease, but Equation (8) neglects the effect of 
etching hole. Figure 12 summarizes Tables 7–9. According to the aforementioned results and 
comparisons, accompanied with the capacitance compensation term of this work, Equation (7), 
significantly improves the capacitance prediction of the microstructures with etching holes. The 
maximum deviation of the 54 test-beams compared with experiment is within 8%. The present 
capacitance compensation term of etching holes can provide the MEMS designers to estimate the 
capacitance of micro-devices with etching holes and predominate in the device characteristics. 

 

Figure 11. The scanning electron microscope picture of the test sample.

The capacitances of the test structures are measured by Agilent E4980A LCR meter (Agilent
Technologies, Santa Clara, CA, USA) (Figure 10). To eliminate the fringe effects of the probing pads
and anchors, two test beams with different lengths fabricated in the same chip are required. The
capacitance difference (C∆L) of the two beams is obtained by mutually subtract their capacitances
measured by Agilent E4980A LCR meter. The experiment results are listed in the sixth column of
Tables 7–9. The authors of this paper had published a two-dimensional capacitance formula for
determining the capacitance of the micro-beam without etching hole [11], we can use that formula
to calculate the capacitance difference of the present two test beams, that is:

C1∆L “ ε∆L

«

b
g
´ 1.06` 3.31

ˆ

h
g

˙0.23
` 0.73

ˆ

b
h

˙0.23
ff

(8)

where ∆L is the length difference of the two test beams. It should be mentioned here that Equation (8)
does not consider the effects of etching holes. The results of Equation (8) are listed in the 6th column
of Tables 7–9. For considering the effects of etching holes, we can add Equation (7) into Equation (8)
to calculate the capacitance difference of the present two test beams, that is:

C∆L “ C1∆L ` N∆C (9)

where ∆C is given by Equation (7) and N is the total number of etching holes. The results of Equation
(9) are listed in the ninth column of Tables 7–9. Tables 7–9 compare the numerical results obtained
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by experiment and empirical formula for the ligament coefficients µ = 0.7, 0.5 and 0.3, respectively.
The smaller the ligament coefficient is, the larger the total area of the etching holes is. When the
ligament coefficient µ is 0.7 (Table 7), the mean deviation between Equation (8) (neglecting the effect
of etching hole) and experiment is 5.89%, while those of this work and the authors’ previous work [13]
are both about 3%. When the ligament coefficient µ is 0.5 (Table 8), the mean deviation of Equation
(8) reaches to 24.40%, while those of this work and the authors’ previous work [13] are about 4% and
3% respectively. When the ligament coefficient µ = 0.3 (Table 9), the most critical case in experiment
and regular design, the deviation of Equation (8) reaches to 62.99%, while those of this work and the
authors’ previous work [13] are about 3% and 7%, respectively. This is because the larger etching holes
cause a significant capacitance decrease, but Equation (8) neglects the effect of etching hole. Figure 12
summarizes Tables 7–9. According to the aforementioned results and comparisons, accompanied
with the capacitance compensation term of this work, Equation (7), significantly improves the
capacitance prediction of the microstructures with etching holes. The maximum deviation of the
54 test-beams compared with experiment is within 8%. The present capacitance compensation term
of etching holes can provide the MEMS designers to estimate the capacitance of micro-devices with
etching holes and predominate in the device characteristics.

Table 7. Comparisons of capacitance between experiment and formulae (µ = 0.7).

Chip Dimension Unit
Module

Experiment
(Average) [11] a [13] b [This work] c

∆L
(µm)

b
(µm)

s
(µm)

C∆L
(pF)

C1
∆L

(pF) Deviation C∆L
(pF) Deviation C∆L

(pF) Deviation

1 960
400

80
1.712 1.746 2.00% 1.663 2.86% 1.654 3.38%

640 2.514 2.768 10.11% 2.634 4.77% 2.621 4.25%

4 1000
400

100
1.697 1.819 7.21% 1.717 1.17% 1.716 1.11%

600 2.637 2.706 2.60% 2.554 3.15% 2.551 3.28%

7 960
360

120
1.527 1.576 3.19% 1.480 3.08% 1.482 2.97%

600 2.356 2.598 10.26% 2.438 3.48% 2.441 3.60%
Mean Deviation 5.89% 3.08% 3.10%

a C1
∆ L is given by Equation (8); b ∆C is given by the Equation (8) in [13]; c ∆C is given by Equation (7).

Table 8. Comparisons of capacitance between experiment and formulae (µ = 0.5).

Chip Dimension Unit
Module

Experiment
(Average) [11] a [13] b [This Work] c

∆L
(µm)

b
(µm)

s
(µm)

C∆L
(pF)

C1
∆L

(pF) Deviation C∆L
(pF) Deviation C∆L

(pF) Deviation

2 960
400

80
1.423 1.746 22.70% 1.437 0.98% 1.445 1.51%

640 2.437 2.768 13.55% 2.274 6.69% 2.285 6.24%

5 1000
400

100
1.509 1.819 20.52% 1.473 2.39% 1.490 1.25%

600 2.136 2.706 26.68% 2.187 2.39% 2.213 3.61%

8 960
360

120
1.209 1.576 30.35% 1.263 4.47% 1.283 6.13%

600 1.959 2.598 32.59% 1.972 0.66% 2.110 7.69%
Mean Deviation 24.40% 2.93% 4.40%

Table 9. Comparisons of capacitance between experiment and formulae (µ = 0.3).

Chip Dimension Unit
Module

Experiment
(Average) [11] a [13] b [This Work] c

∆L
(µm)

b
(µm)

s
(µm)

C∆L
(pF)

C1
∆L

(pF) Deviation C∆L
(pF) Deviation C∆L

(pF) Deviation

3 960
400

80
1.067 1.746 63.68% 1.076 0.84% 1.113 4.31%

640 1.744 2.768 58.74% 1.696 2.75% 1.754 0.62%

6 1000
400

100
1.156 1.819 57.35% 1.087 5.97% 1.137 1.66%

600 1.625 2.706 66.46% 1.608 1.05% 1.683 3.51%

9 960
360

120
0.914 1.576 72.44% 0.842 7.88% 0.972 6.40%

600 1.631 2.598 59.25% 1.294 20.66% 1.592 2.41%
Mean Deviation 62.99% 6.53% 3.15%
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Figure 12. Comparisons of capacitance between experiment and formulae, summary of Tables 6–8. 

4. Conclusions 

This paper presents a capacitance compensation term applying to the estimation of the 
capacitance differences caused by the etching holes on capacitive micro devices. In the geometrical 
dimension range e5 /s g≤ , 0.25 / 10h g≤ ≤  and e0.3 / 0.7s s≤ ≤ , the deviation between the formula 
and ANSYS simulation is within 5%. Compared with the experiment, the capacitance evaluation is 
also very accurate (the maximum deviation is within 8%). The most significant benefits of the present 
formula are its simple form, wide applicable dimension range and high accuracy. With the existing 
literature, this empirical formula is able to provide designers with a criterion to evaluate the effects 
of etching holes on micro devices promptly and precisely. 
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4. Conclusions

This paper presents a capacitance compensation term applying to the estimation of the
capacitance differences caused by the etching holes on capacitive micro devices. In the geometrical
dimension range 5 ď se{g, 0.25 ď h{g ď 10 and 0.3 ď se{s ď 0.7, the deviation between the formula
and ANSYS simulation is within 5%. Compared with the experiment, the capacitance evaluation is
also very accurate (the maximum deviation is within 8%). The most significant benefits of the present
formula are its simple form, wide applicable dimension range and high accuracy. With the existing
literature, this empirical formula is able to provide designers with a criterion to evaluate the effects
of etching holes on micro devices promptly and precisely.
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