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Abstract: Recent years have witnessed a rapid development of brain-computer interface 

(BCI) technology. An independent BCI is a communication system for controlling a device 

by human intension, e.g., a computer, a wheelchair or a neuroprosthes is, not depending on 

the brain’s normal output pathways of peripheral nerves and muscles, but on detectable 

signals that represent responsive or intentional brain activities. This paper presents a 

comparative study of the usage of the linear discriminant analysis (LDA) and the naive 

Bayes (NB) classifiers on describing both right- and left-hand movement through 

electroencephalographic signal (EEG) acquisition. For the analysis, we considered the 

following input features: the energy of the segments of a band pass-filtered signal with the 

frequency band in sensorimotor rhythms and the components of the spectral energy 

obtained through the Welch method. We also used the common spatial pattern (CSP) filter, 

so as to increase the discriminatory activity among movement classes. By using the 

database generated by this experiment, we obtained hit rates up to 70%. The results are 

compatible with previous studies. 

Keywords: naive Bayes (NB); linear discriminant analysis (LDA); Welch method; brain 

computer interface (BCI) 
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1. Introduction 

About six decades after the invention of EEG (electroencephalographic signals), studies using brain 

signals to control devices have emerged, bringing about what we know as BCI (brain-computer 

interface) or BMI (brain-machine interface). Wolpaw et al. [1] point out that brain activity produces 

electrical signals that can be detected both in invasive and noninvasive ways, and BCI systems can 

translate these signals into commands, allowing communication with devices without involving 

peripheral nerves and muscles. 

Typically, noninvasive BCI systems use brain activity obtained from the scalp and are capable of 

allowing basic communication and control for individuals with severe neuromuscular disorders [2].  

In general, BCI systems allow individuals to interact with the external environment by consciously 

controlling their thoughts instead of contracting muscles (e.g., human-machine interfaces controlled or 

managed by myoelectric signals). They are composed of brain signal acquisition and pre-processing, as 

well as the extraction of significant features, followed by their classification (see Figure 1). The result 

of the classification allows external devices to control signals. Another thing about BCI systems is that 

the user receives stimuli (visual, auditory or tactile) and/or performs mental tasks while the brain 

signals are captured and processed. Based on the stimulus or task performed by the user, several 

phenomena or behaviors extracted from the EEG signals can be detected. 

Figure 1. A typical system block diagram. 

 

In practice, physiologically meaningful EEG features can be extracted from several frequency bands 

of recorded EEG signals. Therefore, many electrical brain activities have been used in EEG-based BCI 

systems, e.g., μ rhythm [3–7], slow cortical potential [8], event-related P300 [9,10] and steady-state 

visual evoked potential [11,12]. The activity most widely used to monitor the brain for BCI 

applications is the μ rhythm, which is related to motor actions [2,3,13,14]. Unlike event-related brain 

activities, the μ rhythm can be voluntarily modulated by users. 

Defined as the mental simulation of a kinesthetic movement [15,16], the imaginary motor activity 

can also modulate μ rhythm activities in the sensorimotor cortex without any physical body movement. 

McFarland et al. [17] reported that imagined movement signals can be reflected in the β rhythm  

(13–22 Hz). Pfurtscheller [18] pointed out that both α (8–13 Hz) and β rhythm amplitudes might serve as 

effective input for the BCI system to recognize patterns of real or imaginary movement. The event-related 
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desynchronization (ERD), which is the reduction of a specific frequency energy component, refers to 

increased neural activity during performed or imagined movements and appears over the primary 

motor cortex; the event-related synchronization (ERS), which is the enhancement of a specific frequency 

energy component, refers to a neural suppression during non-performed or non-imagined movements 

and sometimes appears over the primary motor cortex [14,18–21]. Following an ERD that occurs shortly 

before and during the movement, an enhancement of β oscillations (β ERS) appears within a one-second 

interval after the movement offset [20]. Such a post-movement β ERS has been witnessed after voluntary 

hand movements [22–24], passive movements [25], imagined movements [26] and movements induced 

by functional electrical stimulation. 

The study of Müller et al. [26] compares ERD/ERS patterns during active and passive foot 

movements, both in healthy individuals and paraplegic patients suffering from a complete spinal cord 

injury. The results showed mid-central β ERD/ERS patterns during active, passive and imagined foot 

movements in healthy individuals against a diffuse and broad distributed ERD/ERS pattern. During 

active foot movements in paraplegic patients, only a single patient showed similar ERD/ERS patterns 

related to active movement, and no significant ERD/ERS patterns were observed in paraplegic patients 

during passive foot movement. 

Similar results can be found related to both real and imaginary hand movement [27]; also, it is 

known that the brain area that controls hands has a good spatial separation [20]. Accordingly, it is 

possible to distinguish certain hand movements while processing the EEG signal’s electrical 

parameters. Based on this hypothesis, we aim to study and develop a system that uses EEG signals 

acquired from surface electrodes to describe the movement of the human hand. This study examined 

the behavior of spectral estimation by using a periodogram and the signal’s energy, so as to verify 

whether the extracted features can be used both in a naive Bayes (NB) and linear discriminant analysis 

(LDA) classifier. Furthermore, NB and LDA classifiers were compared for both a recognized 

international database [28] and the data collected in an uncontrolled environment. 

2. Methods 

2.1. Pre Processing 

2.1.1. Spectral Estimation 

Due to signal modulation during movement, it is established practice to use the signal on the 

frequency domain as a feature for the movements’ classification [29]. A classic estimator for the 

spectral energy would be the Fourier transform (FT) of the signal’s autocorrelation function [30]; 

however, estimators of the signal frequency spectrum should consider the signal’s non-stationary 

behavior. Thus, it is necessary to apply a method considering its nonstationarity, such as the wavelet 

transform, or to take an isolated segment and consider it as weakly stationary [31]. 

In this study, all EEG signals were windowed so that loss of resolution in the frequency domain and 

the influence of the lateral lobes of the window are the main consequences of applying a window to the 

signal [32]. The resolution is directly influenced by the main lobe; the leakage adds a tendency to the 

estimator in the frequencies adjacent to the frequency of interest [33]. According to [32], the 

approximate width of the central lobe in the rectangular window varies according to its size, getting 
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narrower as more samples are added to the window. By using an ANOVA (analysis of variance) table, 

we have also observed how the size of the window can affect the classification. 

The fact that the EEG signal can only be considered stationary in short periods of time (from about 1 to 

2 s) can become an issue for the experiment. One solution is to use Welch’s modified periodogram [33,34], 

which overlaps the segmented windows up to 50% of their size, allowing a large number of windows. 

The Welch’s method (also known as the periodogram method) for estimating power spectral density is 

carried out by dividing the time signal into successive blocks, forming the periodogram for each block 

and averaging them. Equation (1) defines the m-th windowed, zero-padded frame from the signal x: ݔ௠(݊) = ݊)ݔ(݊)ݓ + ܴ݉); ݊ = 0, 1, … ܯ, − 1;݉ = 0, 1, … , ܭ − 1 (1)

where R is defined as the window hop size, M is the sample size, and K denotes the number of 

available frames. Then, the periodogram of the m-th blocks is given by: 

௫ܲ೘,ெ(ݓ௞) = ܯ1 หܨܨ ேܶ,௞(ݔ௠)หଶ = ܯ1 อ෍ ௠(݊)݁ିೕమಘ೙ೖಿேିଵݔ
௡ୀ଴ อଶ (2)

where FFT is the Fast Fourier Tranform. In other words, the Welch estimator of the power spectral 

density is given by: 

ܵ௫ௐ(ݓ௞) = ܭ1 ෍ ௫ܲ೘,ெ(ݓ௞)௄ିଵ
௠ୀ଴  (3)

With a smaller number of windows, it is possible to obtain a lower random error, as given by 

Equation (3), since it increases the number of degrees of freedom. According to Stoica and Moses [33] 

empirical results showed that this method reduces the variance. 

2.1.2. Spatial Filter 

One of the challenges of using classification algorithms is the large amount of generated features 

against the amount of available training data. In the field of machine learning, we call this the curse of 

dimensionality. Therefore, the EEG signal pre-processing aims to reduce the space of features by 

selecting only the most discriminatory ones from the states to be classified [31]. 

Performed or imagined movements create certain spatial patterns in the scalp, generating in the 

central cortex a desynchronization contralateral to the movement followed by an increase of energy 

ipsilateral to the movement. Thus, it is possible to select channels that best discriminate right and left 

hand movements instead of using all channels, which reduces the space of features [35]. We can define 

the energy of a band pass-filtered signal by its variance [30], which, therefore, becomes perfect for 

capturing the discriminatory effect of the EEG signal within both α and β rhythms during the ERD and 

ERS related to the voluntary hand movement. 

We have suggested the usage of the common spatial pattern (CSP) algorithm in order to maximize 

the discriminatory activity between two classes of EEG signals. As the scalp conducts elements not 

belonging to the EEG signal, such as myoelectric signals from face muscle activity, the channels show 

a lot of similar nondiscriminatory activity covering up the EEG discriminatory activity. This happens 

mainly because the cortex signal is weak (amplitude in the μV band) in relation to the myoelectric 
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signals (amplitude in the mV band). The maximization of the discriminatory activity can be 

accomplished through a linear transformation that maximizes the variance of one condition, while 

minimizing the variance of the other condition by moving the original sensor space to a new one. In 

this paper, it is important to notice that bold uppercases represent a matrix, while bold lowercases 

represent a one-dimensional vector. For our purposes, an EEG signal segment is considered as a band 

pass-filtered signal, of size T with C channels, represented by ࢄ ∈ Թ஼×் (or (࢚)࢞ ∈ Թ஼)		in a certain 

time t. Thus, X is a concatenation of signals (࢚)࢞ represented by: ࢄ = ሾ(࢚)࢞, ࢚)࢞ + ૚), … , ࢚)࢞ + ࢀ − ૚)ሿ (4)

To be more precise, let ࢔(࢑)ࢄ  be a point of the bandpass-filtered EEG signal segment with size N of 

the class (k), defining the estimator of the co-variance matrix: 

઱(ܓ) = 1ܰ ෍ ࢔(࢑)ࢄ × ࢔(࢑)ࢄ ᇱtrace(࢔(࢑)ࢄ × ࢔(࢑)ࢄ ᇱ)ே
௡ୀଵ  (5)

Considering two classes (઱(ା)	and ઱(ି)), the CSP analysis consists of calculating a matrix ࢃ and a 

diagonal matrix ઩(࢑) with elements in [0,1], such that: ࢀࢃ × ઱(ା) ࢃ× = ઩(ା) 	ࢀࢃ × ઱(ି) ࢃ× =	઩(ି) ൫઩(ା) + ઩(ି) = ൯ (6)ࡵ

where ࡵ is the identity matrix. 

To accomplish this, it is necessary to whiten the matrix ઱ = 	઱(ା) +	઱(ି) as follows: ࡼ઱ࢀࡼ = ࡵ  (7)

This decomposition is always possible due to the positive definiteness of ઱ . Next, we shall 

transform the covariance matrices of each class,	ࡿ(ା) = ࡼ × ઱(ା) × (ି)ࡿ and ࢀࡼ = ࡼ × ઱(ି) ×  and ࢀࡼ

find an orthogonal matrix ࢁ and a diagonal matrix ઩(࢑) by the spectral theory, such that: ࡿ(ା) = ࢁ × ઩(ା) × ݀݊ܽࢀࢁ (ି)ࡿ = ࢁ × ઩(ି) × (8) ࢀࢁ

The spatial filter W projecting the signal (࢚)࢞ from the original sensor space to the surrogate space (࢚)ࡼࡿ࡯࢞ is then given by the projection of matrix P by Uꞌ: ࢃ = ᇱࢁ) × (9) ′(ࡼ

The new sensor space is generated through a supervised decomposition of the signal (࢚)࢞ 
parameterized by a matrix ࢃ ∈ Թ஼×஼ that projects the signal to a surrogate space (࢚)ࡼࡿ࡯࢞ ∈ 	Թ஼: (࢚)ࡼࡿ࡯࢞ = ࢀࢃ × (10) (࢚)࢞

Therefore, notice that each column ࢐࢝ ∈ 	Թ஼	(݆ = 1,… , (ܥ  consists of a spatial filter that linearly 

recombines all channels’ components, creating a new channel. Furthermore, notice that ࡭ =  is the ்(૚ିࢃ)

matrix leading to the original sensor space once again by giving the spatial pattern of the signal  [36] (࢚)࢞.The columns ࢐࢝ resulting in the values of ઩(܋)࢐ closest to 1 in both classes will be those that 

best discriminate them. 
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2.2. Signal Classification 

2.2.1. Naive Bayes 

A classifier always aims to reach the best hypothesis H through a given training dataset. The Bayes 

theorem allows one to calculate the a posteriori probability (the probability of a hypothesis 

considering a variable’s value) based on the a priori probability (the frequency of each hypothesis) of 

both the data found and the total data, according to Equation (11) [37]: ܲ൫ݒ௝หܣ൯ = ܲ൫ܣหݒ௝൯ × ܲ൫ݒ௝൯ܲ(ܣ)  (11)

where ݒ௝ is the hypothesis j in the set of hypotheses V, and A is the set of attributes ൏ ܽଵ, ܽଶ, … , ܽ௡ ൐ 

describing the data. 
When A has more than one attribute, it is then necessary to estimate ܲ(ܽଵ, ܽଶ, … , ܽ௡|ݒ௝) in order to 

calculate 	ܲ(ݒ௝│ܽଵ, ܽଶ, … , ܽ௡). The problem is that to estimate 	ܲ(ݒ│ܣ௝), it is necessary to have an 

extremely large amount of samples. Moreover, it is computationally costly, since it is necessary to 

calculate the joint probabilities for all possible A [30,37]. Thinking about that, we suggested the use of 

the NB classifier, which assumes that all attributes in A are independent. There is literature discussing 

that even if these attributes are not totally independent, it is possible to obtain a good classification 

performance. In addition, it has a simple implementation [38,39]. Thus, the joint probability is given by: ܲ൫ܽଵ, ܽଶ, … , ܽ௡หݒ௝൯ = ෑ ܲ൫ܽ௜หݒ௝൯௜  (12)

and the classifier output is given by: ݒெ஺௉ = argmax௩ೕ ∈ ௏ ൜ܲ൫ݒ௝൯ ×ෑ ܲ൫ܽ௜หݒ௝൯௜ ൠ (13)

where ݒெ஺௉  is the maximum aposteriori probability calculated within the space of hypotheses V. 

Notice that it is only necessary to estimate the probability distribution of each attribute for each class, 

it not being necessary to calculate ܲ(ܣ) if the number of observations is the same for each class. 

2.2.2. Linear Discriminant Analysis 

The LDA aims to project the data into a hyperplane within the space of features to find the 

orientation resulting in the projection that best discriminates both classes [38,39]. A linear 

discrimination combining the components of the features space ࢞ ∈ Թ஽ can be cast as: ݃(࢞) = ࢀ࢖ × ࢞ + ଴ (14)݌

where ࢖ ∈ Թ஽ is the weight vector, ݌଴ is a constant and D is the size of the feature vector. A linear 

classifier for the classes ݒଵ	and	ݒଶ establishes the following decision rule: chooses ଵݒ if (ݔ)݃ ൐ 0 chooses ଶݒ if (ݔ)݃ ൏ 0 (15)
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Accordingly, the class ݒଵ is chosen when the internal product is superior to –ݓ଴, while the class ݒଶ 

is chosen when it is inferior. The hyperplane is given by the normal vector ࢖ and its orientation is 

given by the vector ࢖	 that maximizes the function (࢖)ܬ :ܬ = (16) ࢖௖ܵࢀ࢖࢖ௗܵࢀ࢖

where ࢊࡿ and ࢉࡿ are the data co-variance matrices of one class, so that ࢉࡿ is the common co-variance 

of all classes. We calculated ࢖ in order to maximize the function ܬ and find a vector ࢖ that maximizes 

the discriminatory activity between classes regarding the common activity [38,39]. 

3. Experimental Section 

3.1. Materials and Data Synchronization 

The proposed experimental BCI system is shown in Figure 2. We have based our experiment on 

computer-generated stimuli introduced by Monitor 2 to a volunteer who remained sitting in a chair. Data 

were first obtained from a 10–20 system EEG cap (Spes Medica, CAMSUMA20, Genova, Italy) [40] 

and then analogically amplified and filtered by an EEG to be digitally converted for the computer 

through an ADC (Analog to Digital Converter) from National Instruments (NI USB 6008, National 

Instruments, Austin, TX, USA). A key was placed both on the right and left arms of the chair to be 

triggered according to the stimulus; the signal reading was held through another ADC (NI USB 6008). 

Both stimuli generation and data acquisition were synchronously performed by the computer shown 

in Figure 2. The acquisition was continuously performed until the ensembles were divided into 8-s 

windows. Thus, the stimuli presentation was synchronized in time to the signal by software. The 

stimuli sequence shown in Figure 3 was submitted as the following: 

(1) From 0 to 1.5 s: a white screen appeared establishing the so-called reference period; 

(2) From 1.5 to 3 s: a pre-stimulus a cross appeared on the screen; 

(3) From 3 to 6 s: the stimulus presentation occurred (a blue arrow pointing to the right or a red 

arrow pointing to the left); 

(4) From 6 to 8 s: a white screen appeared once again establishing the so-called post-stimulus period. 

This experiment was based on previous studies [22,28] that proved that there exists a large bilateral 

desynchronization within the frequency bands of both µ and β rhythms during movement imagination, 

which always keep the energy ipsilateral to the movement superior to the energy contralateral to the 

movement. Such studies proved that during brief periods (from 1 to 3 s), the movement imagination 

shows a difference in energy within µ and β rhythms that is capable of distinguishing a movement 

from another. The choice of using the 8-swindow occurred experimentally. 

Along the experiment, the volunteer was asked to push the mechanical keys installed on the chair. 

Every time a red arrow appeared on the screen, indicating the left-hand movement, the volunteer had 

to push the key located on the left arm of the chair using his left hand. Whenever a blue arrow 

appeared, he/she had to perform the same action, but this time using his/her right hand. Such an 

experiment was held in a synchronous way, i.e., it was possible to control the time when the movement 

was performed [41], supporting the identification of the ERS/ERD effect during the signal analysis.  
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A post-stimulus period was generated in order to allow the brain enough time to return to its normal 

state after movement performance [42]. 

Figure 2. Block diagram of the proposed experiment. 

 

Figure 3. Ensemble time scale. 

 

The ADC (NI USB6008) was configured to acquire 6 EEG channels (F3, F4, C3, C4, P3 and P4) 

with a sample frequency of 256 Hz. These channels were selected to cover the most important areas 

related to the motor cortex. For data configuration, acquisition and synchronization, we developed two 

software systems through the LabVIEW (Version 2009) development tool. One works like a control 

software (Software I) and is responsible for calling out the other (Software II), as well as gathering 

data and managing the digital-analog acquisition (Figure 2). The acquisition must be synchronized 
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with stimuli presentation performed by Software II (Monitor 2), which is responsible for triggering the 

acquisition process by communicating with Software I (Monitor 1). Next, the presentation of a  

pre-determined number of ensembles starts as Software I saves the corresponding data; the sequence 

generating stimuli is randomly created and differs from one experimental run to another. Moreover, 

Software II also controls and saves data obtained from the keys. For this experiment, key control was 

performed, so that the volunteer could have a 1-s window after stimulus presentation (from 3 to 4 s) to 

push the key, so as to guarantee that it did not react if pushed before or after the appearing of  

the window. 

The synchronization between stimulus presentation and time base (where the first sample equals 0 s 

and the ݊ sample equals ݊ × ܶ s; ܶ s being the sample period) was tested through feedback in the 

acquisition board. The acquisition board has analog inputs for A/D conversion, as well as digital inputs 

and outputs at TTL (Transistor-Transistor Logic) voltage levels. The feedback consisted of linking 2 

digital outputs (S0 and S1) to 2 analog channels and codifying each segment through digital outputs.  

A small change was implemented in the Software II, so as to cause the digital output values to change 

according to a certain established pattern when changing the ensemble segment, e.g., as in the passage 

from the reference period to pre-stimulus. 

The outputs connected to the 2 analog channels remained in their logic states during the whole 

period of the observed segment. Along the stimulus period, for instance, S0 remained at a high logic 

level (5 V), while S1 remained at a low logic level (0 V) during all 3 s. Therefore, it was possible to 

verify whether the transitions and the time base of data acquisition occurred synchronously by 

checking the data obtained through analog channels. 

3.2. EEG Signal Processing 

EEG signal preprocessing consists of applying a band pass filter both in µ and β rhythms (4th order 

Butterworth digital filter) and separating signals into ensembles according to each movement class 

(right or left). The Software I registers both the synchronism data and the pushed button. Data are then 

separated regarding both the class and the pushed button, e.g., in the case of the synchronism file 

indicating an ensemble pointing the arrow to the left and the volunteer pushes the right button or no 

button at all, the segment acquired is then automatically discarded. 

CSP Filter 

For our purposes, the first step to calculate the spatial filter W is to estimate the co-variance 

matrices of the training set using Equation (6). It is important to notice that every time the CSP filter 

was calculated, we used only the training set. 

In order to maximize the discriminatory activity between the two classes during hand movement, 

we applied both 1- and 2-s windows to the EEG signal to further extract the channels’ spectral 

components and variances that best discriminate the classes in terms of the determined eigenvalues. 

According to previous studies, the ERD/ERS effects usually occur up to 2 s after movement 

performance [27,41,42]. Thus, we considered times 3 and 4 s of the ensemble shown in Figure 3 as the 

starting points of the window. Accordingly, to calculate W we need to: 
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(1) Estimate ઱ۺ  and ઱܀  (which are the co-variance matrices for the left and right classes, 

respectively) through the training set; 

(2) Find the matrix ઱ = 	઱܀ +	઱ۺ; 

(3) Perform the “whitening” operation in order to obtain the matrix P; 

(4) Decompose ઱ۺ and ઱܀ through matrix P to obtain the matrices ۺࡿ	 and ܀ࡿ, whose eigenvalues ઩ۺ and ઩܀	 represent the discriminatory activity in the new CSP channel space; 

(5) Select both the ݊ largest eigenvalues ઩ۺ and ઩܀ that will maximize the variance in the left-hand 

movement condition while minimizing the variance in the right-hand movement condition; 

(6) Calculate the spatial filter and select 2 × ݊ columns of the matrix W, which are related to the ݊ 

largest eigenvalues of ઩ۺ	 and ઩܀, respectively. 

To successfully accomplish the EEG signal classification, we need to properly choose the features; 

that is, for the LDA classifier, the energy of the two best CSP channels (for the NB classifier, Welch 

periodogram’s components are also used) that allow identifying and classifying both right- and  

left-hand movements. Many authors use algorithms to verify each feature’s relevance [43]. For this 

experiment, the manual method for choosing features performed by an expert was applied. Using an 

expert to virtually select the best features is a common practice that many times generates higher hit 

rates than automatic methods [41,43]. 

3.3. Features Extraction 

It is important to notice that all of the features were selected using only the training set. 

3.3.1. Energy of CSP Filtered EEG  

The feature extracted through CSP filters is the logarithm of the energy of the signal projected with 

the best eigenvalues for each class. Accordingly: ࢐ࢋ࢛࢚࢘ࢇࢋࢌ = log൫ࢀ࢐࢝ × ࢄ × ᇱࢄ × ൯ (17)࢐࢝

where ࢐ࢋ࢛࢚࢘ࢇࢋࢌ is the feature vector used for classification and ࢐࢝ is the ݆-th spatial filter. Operation log() is applied in order to approach energy distributions as close as possible to a Gaussian. The EEG 

signal segment X is obtained considering previous discussions. The expert chooses the features for the 

column of the filter ࢃ with the highest discriminatory activity. 

3.3.2. Welch’s Periodogram Components 

The first step to determine the spectral components was to find the initial instant of the cut of the 

window, by using the training set. It is well known that the ERD/ERS effects can occur during 

movement and/or movement planning, mainly in µ and β rhythms, where the signal is filtered. After 

band pass filtering it, the signal was squared to obtain its energy. Next, we calculated the energy 

average of all ensembles in each class to verify the ERD/ERS evidence, as described by [27,42].  

The average energy of each channel is given by: 			ݕ݃ݎ݁݊ܧ = ෍ܯ1 ௝௜(௖)ଶெ௜ୀ଴ܥ  (18)
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where ܥ௝(௖) is the channel ݆ of the EEG signal in condition (ܿ) and M is the number of ensembles.  

To better visualize the data, a moving average filter was applied to the resulting signal, so as to smooth 

it. Results show the time instant in which the ERD/ERS occurs, determining the initial instant to be 

windowed. Effects are expected to be more prominent from the instant of the movement to about 2 s 

after it. Once the initial instant of the “windowing” was obtained, Equation (3) was applied within a  

2-s window. For a 2-s window at 50% overlap, we used three 1-s windows, as shown in Figure 4. 

Figure 4. Windowing for a 2-s segment at 50% overlap between windows according to the 

Welch method. 

 

By using 1-s windows, it was possible to obtain a frequency resolution of 1 Hz between each 

spectral component. Values were represented by graphs, as well as the lateralization index (LI), which 

shows the difference of energy between the right and left hemispheres [27,44]: 

( ) ( ) 2leftmovement leftmovement rightmovement rightmovementLI EnergyLCH EnergyRCH EnergyRCH EnergyLCH = − + −  (19)

where the Energy LCH of the channels in the left hemisphere and Energy RCH is the energy of 

channels in the right hemisphere. Energy LI values indicate a high contralaterality of the signal. By 

applying them to the energy of each frequency component, it was possible to observe which 

components best discriminate the classes. The LI can also be obtained in the time domain, so as to 

verify in which instants the highest LI values occur, indicating a larger discriminatory activity. The 

expert uses the components with high LI to compose the set of features. 

Moreover, same spectral components used by [29,45–47] to classify EEG signals are suggested as 

features. In order to reach a good spectral component resolution, a rectangular window was used, since 

it possesses the lower central lobe. We separated it into three 1-s windows at 50% overlap between 

each window, as shown in Figure 4. The feature vector is given by: ࡲࢋ࢛࢚࢘ࢇࢋࢌ = log(ݔݔܩ෢ (ܨ) ) (20)

where ࡲࢋ࢛࢚࢘ࢇࢋࢌ	  is the feature vector used for signal classification and ݔݔܩ෢ (ܨ)  is the vector 

containing the estimated frequency components. Notice that it is not necessary to use all frequency 

components, but only the best ones. It is important to verify that operation log() was applied in order 

to normalize the distributions. Time T (from the beginning of the “windowing”) was determined 

according to the considerations mentioned before. 



Micromachines 2014, 5 1093 

 

In this study, both NB and LDA classifiers were used. The NB classifier is responsible for modeling 

the distributions. Since features were normalized through the log() function, the normal distribution 

was used. The features’ vectors and quantity provide the number of distributions. For comparison, the 
LDA classifier was used in order to determine both the vector ࢐࢖ and the constant ݌଴. The number of 

constants of the vector ࢐࢖ is given by the amount of features used. It is important to point out that using 

large amounts of features in a linear classifier can cause an overfitting [37]. 

4. Results and Discussion 

Our findings came from ten volunteer sin an uncontrolled environment. 

4.1. Analysis Based on Signal Energy 

Through the signal energy and the LI analysis over time, it was possible to identify when the 

ERD/ERS occurred and to determine when the signal should be windowed in order to extract its 

features, so as to better discriminate movement classes. An analysis of the LI average energy of all of 

the EEG signal ensembles over time was held. The experiment had four sessions performed (S1 to S4) 

of up to 140 ensembles. However, the amount of ensembles varied according to the movement, since 

only the ensembles in which the volunteers had pushed the correct button were selected. 

As an example, Figures 5 and 6 show a graphic result of the analysis of the relative average energy 

of the signal for C3 and P3 channels and C4 and P4 channels, respectively, in session S3. Both 

channels were band pass filtered in the µ band (from 8 to 12 Hz), and a 63-point moving average filter 

was applied over the average signal, so as to smooth the graph lines. In the y-axis is shown the relative 

energy between the reference times, while the x-axis shows time periods. Accordingly, it was possible 

to visualize how much the energy increases or decreases between no activity at all (reference period) 

and the performed movement (stimulus). 

Figure 5. Relative average energy of channels C3 and P3 during S3 (μ rhythm). 
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Figure 6. Relative average energy of channels C4 and P4 during S3 (μ rhythm). 

 

Results show a strong desynchronization about 500 ms after pre-stimulus presentation at 1.5 s in 

channels C3 and P3 for both types of movement (Figure 5). ERD/ERS effects can be observed both 

during and after movement in the channel covering the motor cortex (C3), always keeping the energy 

ipsilateral to the movement superior to the energy contralateral to the movement; however, an ERS 

appeared to be sharpest in the left hemisphere. The same effect had been observed in channels 

covering the parietal lobe, indicating motor activity. Notice that in all cases, the ERS effect of the 

ipsilateral side occurred about 800 ms after the arrow pointed at time 3 s, indicating a discriminatory 

effect between the energy of both classes. Thus, in order to extract the spectral components and the 

signal energy for signal windowing, we used initial values between 3.5 and 4 s (from 500 ms to 1 s 

after the appearance of the arrow). No discriminatory activity was observed in β rhythm and channels 

F3 and F4. Therefore, no signal from β rhythm was used for classification process, since it showed no 

relevant discriminatory feature. 

4.2. Analysis Based on LI 

The LI was calculated through central channels (C3 and C4) and parietal channels (P3 and P4) only, 

using Equation (20), since they showed motor activity. Figure 7 shows the normalized LI average graph 

over time for all four sessions. LI results indicate a high signal lateralization on the central lobe from about 

500 ms after the appearing of the arrow to about 2 s after its appearing at 5 s, corroborating the choice of 

starting the windowing at 3.5 s. The graph is normalized, and also note that when the curves are above 

the zero line, this indicates that an ERD is occurring; when below zero, this indicates that an ERD is 

occurring, and when is below zero, this indicates that an ERS is occurring, according to Equation (20). 

4.3. Analysis Based on the Welch Periodogram 

This session shows the results obtained from the periodogram. The LI (see Figure 8) of the spectral 

components was also evaluated to determine which frequency components presented a larger 
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discrimination. A 2-s window was used to obtain a frequency resolution of at least 1 Hz; signals were 

filtered by a band pass between 8 and 24 Hz, so as to entirely cover the sensorimotor rhythm. Only as 

an example, Figure 9 shows the analysis in the frequency of the experiment in session S3. Our findings 

show a clear energy distinction between the movement classes in µ rhythm on channel C3 and a 

slightly distinction on channel P3, always keeping the energy ipsilateral to the movement superior to 

the energy contralateral to the movement. We found similar results for channels C4 and P4. No 

relevant discriminatory activity was observed within β rhythm, since, as mentioned before, there is no 

perceptive discriminatory activity in β rhythm regarding the volunteers. 

Figure 7. Relative average LI for channels C3, C4, P3 and P4 in all sessions. 

 

Figure 8. LI on the frequency domain for all sessions. 
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Figure 9. Average energy on the frequency domain for channels C3 and P3. 

 

4.4. Analysis Based on the Spatial Filter 

In order to analyze the CSP filter, its coefficients had to be calculated based on the entire database 

and then applied to it. Filters were calculated through a two-second window starting at 3 s. These 

windows were chosen, because an evaluation of the filter functionality showed whether the segment of 

the signal creates a new channel space with discriminatory activities by analyzing the selected 

segment. As mentioned before, only central and parietal channels were considered for calculating the 

coefficients of the filter. Signals were filtered within µ rhythm. Original channels (C3, C4, P3 and P4) 

were linearly combined by the filter W obtained according to our methodology, so as to create a new 

space of channels, which were named CSP1, CSP2, CSP3 and CSP4. As an example, Figure 10 shows 

the average energy in the frequency domain for channels CSP1 and CSP2. 

Figure 10. Average energy in the frequency domain for channels CSP1 and CSP2. CPS, 

common spatial pattern. 
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The eigenvalues matrices ઩(܀) and ઩(ۺ) indicate which channels present the highest discriminatory 

activity. Notice that the results obtained from ઩(܀) and ઩(ۺ) are in agreement with the graphic results. 

In channel CSP1 (઩(࢑) first column), ઩(܀) has minimum value and ઩(ۺ) has maximum value, indicating 

that the left movement class energy should be superior to the right movement class energy (also, ઩(܀) +	઩(ۺ) =  :(ࡵ
઩(܀) = 0.37 0 0 00 0.47 0 00 0 	0.50 00 0 0 0.54 

઩(ۺ) = 	0.63 0 0 00 0.53 0 00 0 0.50 00 0 0 0.46 

(21)

The first and only column of matrices ઩(܀) and ઩(ۺ) shows the filters that best discriminate both 

classes, which is also in agreement with our graphic results. Applying the filter had also increased the 

discriminatory activity between both movement classes. We could verify this by analyzing the 

proportional energy between both classes for the same channel, according to: ܧ௉(௖) = (ோ)ܧ(௖)ܧ + (22) (௅)ܧ

where 	ܧ௉(௖) is the proportional energy in class (ܿ), ܧ(௖) is the energy of class (c) and ܧ(ோ) and ܧ(௅) are 

the energies of the right class movement and the left class movement, respectively. By verifying the 

proportional energy in the right class for the 10-Hz component for the channel C4 of the original 

sensor space, for instance, we obtained the results shown in Table 1. 

Thus, filter application increased the contrast between both classes according to the results. It is 

important to point out that the coefficients were estimated from all databases; for classification, 

however, the training set only was used. 

Table 1. A comparison of the proportional energy between classes with and without the 

CSP filter. 

Without CSP Filter, Channel C4 With CSP Filter, Channel CSP4 0.63 = (ࡾ)ࡼࡱ 0.59 = (ࡾ)ࡼࡱ 

4.5. Classification Based on Signal Energy 

Results shown in this session were obtained from the cross-correlation procedure, where 9/10 of the 

data were separated for training and 1/10 for classification. The training and classification procedure 

were performed 100 times; both training and testing data were selected randomly. The classification 

rate was given by the average of all performances. The standard deviation is also presented. 

The spatial filter was calculated first through four channels (C3, C4, P3 and P4) and then through 

two channels (C3 and C4). Calculating the filter through four channels allowed a new channel space 

with four CSP channels, where the two columns of filter W with the highest eigenvalues of each class 

were tested. All resulting channels (CSP channels) were considered. Calculating the filter through two 

channels allowed two new CSP channels to be used to calculate the classifier. As an example, Table 2 
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shows all four resulting CSP filters. Following the same methodology, Table 3 shows the results 

obtained from the NB classifier. 

Table 2. Average hit rates with the LDA classifier using CSP channels and channels C3, 

C4, P3 and P4 to estimate W. 

Window
Hit rate by session (% average ± standard deviation) 

S1 S2 S3 S4 
W1 66.8 ± 10.6 68.5 ± 8.72 69.0 ± 10.3 64.8 ± 9.48 
W2 66.5 ± 10.7 67.0 ± 8.91 69.9 ± 10.6 64.5 ± 7.95 
W3 65.2 ± 9.51 66.8 ± 8.88 70.6 ± 10.1 65.1 ± 7.62 
W4 66.7 ± 9.13 66.4 ± 8.45 68.5 ± 9.91 66.8 ± 8.77 
W5 64.1 ± 10.6 67.8 ± 8.24 69.6 ± 9.01 65.4 ± 8.71 
W6 64.9 ± 9.73 66.4 ± 8.71 68.1 ± 11.2 67.4 ± 9.12 

Table 3. Average hit rates with the NB classifier using all CSP channels and channels C3, 

C4, P3 and P4 to estimate W. 

Window 
Hit rate by session (% average ± standard deviation) 

S1 S2 S3 S4 

W1 66.1 ± 10.5 66.2 ± 9.32 64.3 ± 9.76 62.9 ± 9.34 
W2 64.4 ± 10.7 64.6 ± 8.86 64.6 ± 10.6 62.4 ± 8.15 
W3 63.6 ± 9.93 65.2 ± 8.40 65.2 ± 10.6 62.1 ± 8.55 
W4 64.6 ± 11.4 63.5 ± 8.50 65.0 ± 9.87 62.0 ± 9.85 
W5 62.6 ± 10.5 65.1 ± 8.87 65.0 ± 10.4 59.7 ± 9.32 
W6 63.1 ± 10.1 64.0 ± 8.94 62.6 ± 9.55 59.5 ± 9.34 

In general, no relevant variance on classification rates for differently-sized windows was observed. 

However, we noticed a large variability among sessions; S3 indicated the highest hit rate. It is not 

possible to confirm whether the window size influenced it due to the high standard deviation found in 

the results; the variances among the types of window are smaller than the standard deviation of each 

window in the same session. Using two channels (C3 and C4) to estimate the spatial filter coefficients 

together with the two resulting CSP channels allowed for classification rates closer to that of using 

four channels (C3, C4, P3 and P4) to estimate the filter coefficients through the four resulting CSP 

channels. The worst result came from the tow CSP channels obtained by calculating the coefficients 

through all four EEG signals. These findings provide a good indication that using small windows 

(about 1 s) is an advantage, since it reduces the processing time, a common concern for systems  

tested online. 

We also noticed that the increase of channels degraded the classification rates mainly for sessions S3 

and S4. Its probable cause is the fact that only two channels (C3 and C4) showed high motor activity. 

Studies reporting the occurrence of high hit rates following this same methodology usually have a 

larger amount of channels, using 55 and 56 channels of a modified 10–20 system. Larger amounts of 

channels increase the resolution in the motor area, providing more discriminatory information among 

classes than only four channels, which probably leads to better classification rates. High variability 

indexes caused by high leakages indicate that classification depends both on training and testing sets, 
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which is a common characteristic in this kind of study [36]. As a comparison, Table 4 shows the hit 

rate obtained only from channels C3 and C4 in session S3. Results were found by substituting matrix 

W with the identity matrix. Using an unfiltered signal allowed slightly lower rates than using a filter 

calculated by two EEG and two CSP channels and estimated by four EEG channels considering four 

CSP channels as the input characteristic. However, it is not possible to verify whether using the filter 

had significantly improved the classification result, because of the high variability. In order to verify 

whether the filter increases the EEG signal hit rate, further studies using larger amounts of channels 

covering the motor area and removing artifacts are necessary. 

The LDA classifier again showed classification rates higher than the NB classifier. Using smaller 

windows significantly degraded classification, indicating that a significant amount of data is necessary 

for energy estimation. It is worth mentioning that the expected value of the signal energy gets closer to 

the real value by increasing the number of samples for its estimation [30]. Thus, smaller windows have 

a higher variability of values, which degrades the classification rate. Using higher sampling rates can 

lead to a better characterization of the signal energy in smaller windows. 

Table 4. Average hit rates using channels C3 and C4 for classification. 

Window 
Hit rate session S3 (% average ± standard deviation) 

LDA Naive Bayes 

W1 67.8 ± 9.75 63.2 ± 10.5 
W2 68.3 ± 8.85 63.3 ± 10.0 
W3 68.2 ± 10.4 63.7 ± 11.5 
W4 67.1 ± 9.65 63.3 ± 8.68 
W5 68.8 ± 10.2 63.1 ± 10.7 
W6 66.7 ± 9.65 61.2 ± 10.1 

4.6. Classification Based on the Spectral Components as the Input Feature 

This session shows the classification results obtained from spectral components. The components 

selected according to the higher values given by the LI index of the frequencies were inserted into the 

features vector. As a comparison, we used 2, 4 and 10 spectral components with two (C3 and C4) and 

four (C3, C4, P3 and P4) channels. It is worth mentioning that the amount of features is given by the 

product of the number of spectral components by the number of channels. Tables 5 and 6 show the 

results of four sessions using two and four channels, respectively. 

Table 5. Average hit rates using the spectral components of two channels (C3 and C4). 

Session 

Spectral Components 

2 4 10 

LDA NB LDA NB LDA NB 

S1 62.5 ± 16.6 62.9 ± 17.5 62.5 ± 13.3 65.4 ± 15.3 61.2 ± 16.6 63.5 ± 16.3 
S2 60.7 ± 14.9 52.8 ± 12.4 61.6 ± 13.6 55.7 ± 13.9 61.9 ± 14.5 56.1 ± 14.5 
S3 60.9 ± 16.0 57.3 ± 15.9 60.6 ± 15.2 56.8 ± 15.2 60.6 ± 13.5 60.3 ± 14.3 
S4 62.4 ± 14.0 59.4 ± 13.1 60.9 ± 11.8 58.8 ± 11.9 68.4 ± 11.8 65.4 ± 11.6 
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Table 6. Average hit rates using the spectral components of four channels (C3, C4, P3 and P4). 

Session 

Spectral Components 

2 4 10 

LDA NB LDA NB LDA NB 

S1 62.6 ± 16.2 64.9 ± 18.4 59.6 ± 16.1 68.4 ± 17.3 54.6 ± 17.2 65.8 ± 13.5 
S2 62.6 ± 13.9 50.7 ± 13.4 64.3 ± 12.5 54.1 ± 14.9 59.3 ± 13.6 51.7 ± 14.8 
S3 56.1 ± 15.2 55.7 ± 13.3 52.7 ± 15.9 53.8 ± 16.1 45.9 ± 15.6 51.1 ± 15.9 

S4 58.9 ± 12.4 51.0 ± 14.1 60.1 ± 12.6 55.4 ± 13.0 60.8 ± 12.7 54.7 ± 11.9 

Our findings indicate a lower average hit rate than those obtained through the energy of the CSP 

filtered signal. A higher variability was also observed, indicating irregularity in classification rates. 

The LDA classifier maintained a higher hit rate among sessions, except for S1 when using four EEG 

channels. The number of channels had influenced mainly the hit rates given by the NB classifier, 

probably because the high dependence maintained by the channels’ signals violate its principle of 

considering only independent features. The number of spectral components had not significantly 

influenced classification rates, which is an interesting finding, since the number of features directly 

influences the computational efficiency in online applications. The high variability of the data shows 

that using this kind of feature made the classifier very dependent on the training set, so as not to 

generalize data classification in a satisfactory manner. 

Results indicate both variability and hit rates similar to those obtained through the signal energy and 

the CSP filter. These results indicate that using spectral components as input feature requires “well 

behaved” stationary signals, since it is usually necessary to use larger windows for a good frequency 

spectrum resolution, so that non-stationary behavior is not desirable. By comparing the laterality 

indexes over time, we can verify that the volunteers are able to maintain the movement laterality for 

approximately 1 s between 4 and 5 s. The problem of using much smaller windows is that the loss of 

frequency leads to the loss of information within the sensorimotor rhythm, since it already has activity 

in narrow frequency rhythms. 

To confirm the investigation, ANOVA and multiple comparisons were used. For the statistical 

validation methodology, three-factor experiments were used (three-factor fixed effects model).  

In general, factorial designs are most efficient for this type of experiment. By factorial design, we 

mean the investigation of all possible combinations of the levels of the factors in each complete trial or 

replicate of the experiment. ANOVA provides a statistical test of whether or not the means of several 

groups are all equal. If they are not all the same, you may need information about which pairs of means 

are significantly different and which are not. A multiple comparison procedure is a test that can 

provide such information. Two means are significantly different if their intervals are disjoint and not 

significantly different if their intervals overlap. This experimental design is a completely randomized 

design. Consider the three-factor factorial experiment with underlying model Equation (23): 

௜ܻ௝௞௟ = μ + τ௜ + β௝ + γ௞ + (τβ)௜௝ + (τγ)௜௞ + (βγ)௝௞ + (τβγ)௜௝௞ + ϵ௜௝௞௟ ൞݅ = 1,2, … , ݆ܽ = 1,2, … , ܾ݇ = 1,2, … , ݈ܿ = 1,2, … , ݊ (23)
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where μ is the overall mean effect, τ௜ is the effect of the i-th level of factor A (electrode placement), β௝ 
is the effect of the j-th level of factor B (volunteers), γ௞  is the effect of the k-th level of factor C 
(different sessions), (τβ)௜௝ is the effect of the interaction between A and B, (τγ)௜௞ is the effect of the 

interaction between A and C, (βγ)௝௞ is the effect of the interaction between B and C, (τβγ)௜௝௞ is the 

effect of the interaction between A, B and C and ϵ௜௝௞௟ is a random error component having a normal 

distribution with mean zero and variance σ. 

An analysis for an experiment using single factor (classifiers), using analysis of variance, was also 

made. It was found that the iteration between the classifiers is significant, i.e., they present distinct 

values for the database presented. 

Notice that the model contains three main effects (A, B and C), three two-factor interactions, a 

three-factor interaction and an error term. The F-test on the main effects and interactions follows 

directly from the expected mean squares. These ratios follow F distributions under the respective null 

hypotheses. We used α = 0.05 (significance level). The analysis of variance for a three-factor 

experiment showed that the main effects, due to the electrode placement, volunteers and different 

sessions, are significant, i.e., there is strong evidence to conclude that the variances of the three main 

effects are different. 

5. Conclusions 

Our findings allow us to conclude that it is possible to classify EEG signals through information 

about hand movement behavior. We also verified the physiological effect of hand movement in the 

brain through noninvasive measurements by using six EEG channels. The volunteers showed activity 

lateral to the movement within the µ rhythm for channels located both in central and parietal areas of 

the lobe. Activity for central and parietal channels within the β rhythm was also observed; however, no 

relevant discriminatory activity within this band was verified. The spatial filter did not significantly 

increase the hit rate in either classifier. This probably happened because the obtained signals did not 

show good spatial resolution. Besides, there were only six channels available, of which only four 

showed activities related to sensorimotor rhythms. Furthermore, this technique is highly sensitive to 

artifacts for filter estimation, and the signals were not handled so as to remove these artifacts. Table 7 

presents the classification hit rate for right and left hand of other studies. Note that this studies uses 

other databases and different feature extraction: 

Table 7. Hit rate for other studies. 

Classification Method Accuracy (%) Reference

Gaussian Support Vector Machines 86 
[48] 

LDA 61 
Multi-Layer Neural Network 80.4 

[49] 
LDA 80.6 
Hidden Markov Model 81.4 [50] 
Finite Impulse Neural Network 87.4 [51] 
Morlet Wavelet and Bayes Quadratic integrated over time 89.3 [52] 
LDA 65.6 [53] 
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Further studies using a cap with higher electrode resolution are required to validate the CSP filter 

theory. By using signal energy, with or without the CSP filter, we were able to obtain a good behavior 

in the classifiers and to maintain the hit rates, even with small one-second windows. The use of 

spectral components proved to be very sensitive to the quality of the signal and, therefore, a secondary 

choice for using classification features. In turn, the periodogram proved to be a useful tool to show 

which frequency bands are more relevant for classification. Using the data obtained through the 

periodogram together with other preprocessing techniques, such as principal components analysis, 

allows the development of algorithms for the automatic selection of features. We found lower rates 

primarily due to the lack of training by the volunteers and feedback, as well as the use of uncertified 

equipment and experimental runs in an uncontrolled environment. In order to increase the 

discriminatory activity between the two movement classes, results show the necessity of using 

feedback during the experiment, such as was performed by the BCI Competition II [28]. Although the 

LDA classifier had maintained higher rates than the NB classifier, they showed similar performance. 

It was possible to confirm whether the use of the LDA is different than NB by the ANOVA 

analysis, indicating that the use of LDA can improve the classification hit rate rather than NB. Thus,  

it is possible to say that the statistical parameters of the volunteers are quite distinct from each other. 
The results of this model showed that the interactions are true once(τβ)݆݅, (τγ)݅݇ , (βγ)݆݇and (τβγ)݆݅݇  
are significant. 
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