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Abstract: The rapid growth of the micro-electro-mechanical systems (MEMS) is being 
driven by the rapid development of the micro manufacturing processes. Laser beam 
machining is one of the micro manufacturing processes which can shape almost all ranges 
of engineering materials. In this study, the effect of laser power on the quality of drilled 
micro holes using Cu50Zr50 amorphous alloys foils is experimentally investigated. It 
indicates that both entrance and exit circularities diameters increase with laser power. The 
circularities of the holes at the entry and the exit are in the range of 0.893 to 0.997. The 
taper of drilled holes increases quickly to a stable value with the increase of laser power 
from 60 to 110 W, then decreases quickly when the laser power becomes larger than  
170 W. The micro holes with a diameter of 400 to 1200 μm are manufactured successfully 
by laser drilling processes. The formation mechanism of the quality of the laser drilled hole 
is analyzed based on the laser beam and the properties of amorphous alloys foils. 
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1. Introduction 

With the rapid growth of the micro-electro-mechanical systems (MEMS), the need of micro parts is 
becoming an increasing trend [1]. Micro holes are widely used in micro oil sprayers [2], micro mixers [3], 
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and inkjet nozzle [4]. Various manufacturing technologies are used to fabricate micro-holes. Micro 
punching [5], micromechanical drilling [6], micro ultrasonic machining [7], micro electro discharge 
machining [8], and micro-powder injection molding [9] processes are used to manufacture high quality 
micro holes. Laser beam drilling is one of the advanced manufacturing processes which can drill 
almost all ranges of engineering materials including diamond, metallic alloys, polymer and so on [10,11].  
Bharatish et al. [12] investigated the effect of laser parameters such as pulse frequency, laser power, 
scanning speed and hole diameter on the quality of drilled holes in Alumina ceramics. Jay et al. [13] 
presented a short micro hole drilling technique based on laser ablation by modulating a continuous 
wave (CW) single mode 300 W fiber laser. A blind hole of 23 μm in opening diameter and 167 μm in 
depth was created in a stainless substrate. Romoli et al. [14] manufactured micro holes with 180 μm in 
diameter using ultra short pulsed laser process using pulse energies within the range of 10–50 mJ. The 
inner surface quality of the drilled hole is better than that using electrical-discharge machining (EDM). 
Aqida et al. [15] investigated the microstructures evolutions of amorphous and partially crystalline 
Cu45Zr48Al7 alloys in laser micro processing. The results indicated that the channel widths in the 
amorphous sample were lower than those in the partially crystalline channels most likely due to its low 
thermal conductivity. No grains were formed under 300 W of laser power and 7.2 ms of exposure time 
because the cooling rate was slow enough to form micro the pre-existing nuclei. Lu et al. [16] 
investigated the laser induced ablation and associated damage behaviors by femtosecond laser 
micromachining of a Zr-based amorphous alloy in air. This indicates that femtosecond laser ablation is a 
promising method for micromachining amorphous alloys without crystallization. Lin et al. [17] 
proposed a simple model to estimate the drilling-hole shape and it was verified with experiments in the 
pulsed laser drilling process. It also indicated that the contour dimensions of the drilling hole are 
significantly affected by laser power and inclination angle. Liu et al. [18] presented a novel laser-driven 
flyer punching technology to punch micro holes. A single hole of 1 mm in diameter and an array of 
three holes of 0.8 mm in diameter were successfully punched on the sheet metal of 10 μm in thickness 
by single pulse. Ji et al. [19] investigated the response of the Fe78Si9B13 metallic glass under different 
ratio of laser beam diameter (d) to die hole diameter (D) in micro scale laser punching. It indicated that 
the dynamic fracture behavior of the Fe78Si9B13 metallic glass is sensitive to the ratio d/D. Zr-based 
amorphous alloys have attracted large interest due to their unique physical properties and mechanical 
properties in micro-electromechanical systems manufacturing field, such as excellent corrosion 
resistance, superior specific strength, low elastic modulus and high wear resistance [20–25]. Furthermore, 
in contrast with traditional crystal materials, Zr-based amorphous alloys exhibit better plasticity in 
super cooled liquid region, so they are expected to become important materials in microforming [26]. 
In this study, a laser micro drilling processing of Cu50Zr50 amorphous alloys foils was carried out 
experimentally to investigate the effect of laser power on the quality of drilled holes. Then the qualities 
of micro hole manufactured by laser drilling processes are analyzed and discussed based on the laser 
beam characteristics and the properties of amorphous alloys foils. 

2. Experimental 

A master alloy with a nominal composition of Cu50Zr50 (numbers indicate at %) has been prepared 
by arc melting a mixture of Cu (99.9%) and Zr (98.8%) in an argon atmosphere. A Cu50Zr50 
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amorphous alloy foil with a thickness of 70 μm was prepared by using copper-mold rejecting process. 
The thermal analysis was examined by using a differential scanning calorimeter (DSC) at a heating 
rate of 15 K/min in a flow of purified nitrogen gas, as shown in Figure 1. It indicates that the received 
foil is amorphous alloy. The laser drilling micro hole processes were conducted by a Nd:YAG laser 
device (Chutian Laser Group, Wuhan, China) with the Gaussian mode, the experimental set up of laser 
drilling micro hole as shown in Figure 2. The laser powers were adjusted by changing the current. 
There are 15 gears of the current on the operation panel of the laser equipment. The laser powers were 
changed by controlling the output of the current. So, the output of laser powers can be changed from 
60–200 W. Early exploration experiment indicates that the quality of micro hole is the mainly 
influenced by the laser power. The processing parameters are 60–200 W of laser power, 0.4 mm of 
laser beam diameter and 0.5 × 10−3 s of the irradiation time. 

Figure 1. Differential scanning calorimeter (DSC) curve of the Cu50Zr50 foil prepared by 
copper-mold rejecting process. 

 

Figure 2. Experimental set up of laser drilling micro hole. 

 

3. Results and Discussion 

Figure 3 shows the surface topographies of the drilled micro hole by laser beam under laser power 
of 160 W and irradiation time of 0.5 × 10−3 s. The diameters of entrance and exit circles are  
observed and measured by an Olympus optical microscope and calculated according to standard  
DIN ISO 1101-2012 [27]. The variations of the mean diameters and their Standard deviation of drilled 
hole with laser powers are shown in Figure 4. It clearly indicates that both the diameters of entrance 
and exit circles increase with the laser power. At the laser power range of 60 to 80 W, both the 
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diameters of entrance and exit circles increase quickly with the laser power increase. When the laser 
power reaches 90–140 W, both the diameters of entrance and exit circles increase slightly. Both the 
diameters of entrance and exit circles increase quickly again when the laser power reaches 150 W. 
Meanwhile, the standard deviations (Sdev) of diameters are very small. Apparently, both the diameters 
of entrance and exit circles are dependent on the laser power. The curves can be divided into three 
regions (region I, region II and region III) according to their features. 

Figure 3. (a) Surface topography of the entrance circle. (b) Surface topography of the exit circle. 

 

Figure 4. Variation of mean diameters and Sdev of entrance and exit circles with laser power. 

 

The circularity of the hole at the entry and the exit was determined by using Equations (1) and (2): 
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where, dmin and dmax, as shown in Figure 1, are the minimum and maximum diameters at the exit of  
the hole respectively. Similarly, Dmin and Dmax are the minimum and maximum diameters at the 
entrance of the hole respectively. Cent and Cext are the circularities of the holes at the entry and the  
exit respectively. 

The circularity of the hole at the entry and the exit is shown in Figure 5. It is clear that both the 
circularities of the holes at the entry and the exit are in the range of 0.893 to 0.997. Micro holes with 
high shape accuracy are manufactured by the laser drilling process. The shape of the laser beam is a 
circle; correspondingly, the irradiated region is also a circle. Theoretically, the laser drilled hole is also 
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a circle for isotropic materials. The experimental material is amorphous alloys foil, which can be 
regarded as an isotropic material in micro scale. However, the received materials is not absolutely 
isotropic in micro scale, so the heterogeneous distribution of the material microstructure resulted in 
different fracture behavior. Thus, only slight scatters of circularities occur in laser drilling micro holes. 

Figure 5. Variation of circularities of entrance and exit circles with laser power. 
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Taper is one of the most important parameters to characterize the quality characteristic deviating 
from the desired value of the drilling hole. For measuring the taper of laser drilled hole, the entry mean 
diameter (Dent) and the exit mean diameter (dext) as shown in Figure 3 were measured. Considering the 
thickness (t) of the specimen, the taper angle (θ) was calculated using Equation (3): 

1θ tan ( )
2

ent extD d
t

− −
=  (3) 

Figure 6 shows the variation of taper of micro hole with laser power. The smaller the taper is, the 
better the quality is. It indicates that the taper of drilled hole increases with the increase of laser power. 
The taper tends to reach a stable value when the laser power larger than 120 W. It then decreases 
quickly when the laser power becomes larger than 170 W. All the taper values of the drilled holes are 
below 1.0 rad and the standard deviations (Sdev) of tapers are relatively small. This result is better than 
that in [17] which using crystalline materials. If the micro hole the taper is low, that means the taper 
quality is high when manufacturing micro holes using the laser drilling process. 

Figure 6. Variation of conical degrees and Sdev of entrance and exit circles with laser power. 
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4. Conclusions 

In the present research, a laser drilling process of 70 μm thick Cu50Zr50 amorphous alloys foil was 
carried out to examine the effects of laser power on entrance circularity and exit circularity. Both 
entrance and exit circularities of micro holes are significantly influenced by laser power, and increase 
with laser power. The circularities of the holes at the entry and the exit are in the range of 0.893 to 
0.997. Micro holes with high shape accuracy are manufactured by the laser drilling process. All the 
taper values of the drilled holes (below 1.0 rad) are very low for micro holes. The laser drilling process 
can manufacture micro holes of Cu50Zr50 amorphous alloys foils with high quality. 
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