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Abstract: We report a design concept for a deployable planar microdevice and the 
modeling and experimental validation of its mechanical behavior. The device consists of 
foldable membranes that are suspended between flexible stems and actuated by push-pull 
wires. Such a deployable device can be introduced into a region of interest in its compact 
“collapsed” state and then deployed to conformally cover a large two-dimensional surface 
area for minimally invasive biomedical operations and other engineering applications.  
We develop and experimentally validate theoretical models based on the energy 
minimization approach to examine the conformality and figures of merit of the device. The 
experimental results obtained using model contact surfaces agree well with the prediction 
and quantitatively highlight the importance of the membrane bending modulus in 
controlling surface conformality. The present study establishes an early foundation for the 
mechanical design of this and related deployable planar microdevice concepts. 
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1. Introduction 

Deployable devices that can be introduced into a region of interest in their compact collapsed states 
and then deployed to cover large volumes or surface areas are of great interest to various engineering 
and biomedical applications [1–5]. These include deployable sensor networks for structural health 
monitoring or robotics applications, compact launch-volume structures for space applications and 
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stents/catheters/optoelectrode arrays for minimally invasive diagnosis and treatments of cardiovascular 
and neuronal diseases. 

Existing deployable devices and tools, in particular those employed for minimally invasive  
bio-medical procedures, are mostly limited to mechanical functionalities. They also target limited 
geometries, as they very often rely on inflatable balloons for deployment [6,7]. Adapting these device 
designs for planar configurations while at the same time providing the ability to incorporate electrical, 
optoelectronic and other sensing and actuation capabilities are highly desirable to further expand the 
usage of deployable devices and to facilitate the exploration of novel applications. 

A conceptual design of our deployable planar device is shown in Figure 1. Foldable thin-film 
membranes, which may incorporate 2D electrode arrays or other electronic or optical components, as 
demonstrated in many recent studies on flexible electronics [8], are suspended between semi-flexible 
stems via embedded wire guides. The device may be introduced through a small burr hole in its 
compact collapsed state (the membranes fully folded). The push-pull wires then allow the membranes 
to be deployed in situ along a gap and cover a large surface area. 

The membranes must be sufficiently flexible to conformally contact typical engineering surfaces or 
tissues that contain topographical features. Previous studies reported mechanical modeling of the 
behavior of flexible conformal membranes. Kim et al. [9] predicted the tensile and compressive strains 
of epidermal electrodes that may be conformally attached to human skin. Other studies examined the 
deformation of thin membranes under elastocapillary effects. An analytic model reported in [10],  
for example, describes the folding and reopening processes of capillary-driven origami structures. In 
this and related models, the behavior of thin membranes subjected to capillary forces are studied by 
considering the mutual interaction between the surface and elastic energies [11–13]. 

We extend these past efforts and develop analytic models to investigate the conformality of flexible 
membranes as they contact surfaces and experimentally validate the models. We note that our goal for 
this analytic modeling is to help establish a basic understanding of the mechanics involved using 
simplified test cases rather than to examine complex geometric situations of a specific application. 

Figure 1. (a) Conceptual design of the deployable planar device. The foldable membranes, 
which may incorporate thin film electrode arrays, are suspended between stems via  
push-pull wires. These electrode arrays may, for example, be used for electrocorticography 
(ECoG) monitoring of cortical surfaces. (b) Zoomed view of the device in its collapsed and 
deployed state. 
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2. Mechanical Models 

To help quantify the conformality of the membranes, which is a key feature of our device concept, 
we define the bending angle θ1 as the angle between the membrane and the push-pull control wire 
(Figure 2). Our basic approach is to find this bending angle by identifying a minimum energy state of 
the membrane in contact with a model surface for different combinations of the extent of device 
deployment (as quantified by the deployment factor) and the surface topographic parameter  
(as quantified by the sulcus radius of curvature). The membrane bending radii and functional figures of 
merit, such as the membrane coverage and utilization ratios, can then be calculated based on the 
bending angle thus determined. 

We consider a single membrane fold, which is approximated as linearly interconnected segments, each 
with a uniform radius of curvature. The total energy Et of the fold is the sum of its elastic strain energy 
Ee and the interfacial energy Es (in contact with a surface via an interfacial fluid): Et = Ee + Es. The 
equilibrium bending angle is considered the one that minimizes Et under a given geometric constraint. 

The elastic strain energy per unit area e of a membrane segment that is bent to a radius of curvature 
R can be written as e = B/2R2. Here, B = Eh3/[12 (1 − ν2)] is the bending modulus of the membrane,  
E is the Young’s modulus, ν is the Poisson’s ratio and h is the thickness of the membrane [14–16]. The 
present analytic model considers only a 2D deformation of the membrane, and all of the energy terms 
are considered per unit width (into the page) of the membrane. The total elastic strain energy Ee can be 
obtained as the sum of the strain energies of all of the segments: 

1

n

e i i
i

E e A
=

= ∑  (1) 

where Ai is the area of the membrane segment with a radius of curvature Ri. 
The surface/interfacial energy Es can be generally expressed as Es = γsgAsg + γlgAlg + γslAsl, where γ’s 

are the surface tension coefficients and A’s are the corresponding areas of solid-gas, liquid-gas and 
solid-liquid interfaces. We consider two simplified topographies of contact surfaces for analytic 
modeling in the present study: (1) a featureless flat surface; and (2) a flat surface incorporating a sulcus  
(or valley). The latter may be considered to be emulating surfaces of internal organs (for example, gyri 
on cortical surfaces and digestive tracks). 

As mentioned before, the bending angle is determined to be the one that minimizes the total system 
energy under a given set of conditions. We first identify a range of possible bending angles, with the 
loose maximum being simply 180°. There exists a lower bound to the bending angle, θmin, due to the 
geometric constraints imposed by the push-pull wire and the holes punctured in the membrane. This is 
also the “initial” bending angle that the membrane may assume under a given deployment condition 
before making contact with a surface. The θmin is obtained by searching the minimum elastic energy 
state under given geometric constraints. 

2.1. Featureless Flat Surface 

Based on our experimental observation, we approximately represent a single fold of the membrane 
using seven segments: one flat segment of length l2, two sets of two bent segments with radii of 
curvature, R1 and R2, respectively, and two unbent segments of length l1 (Figure 2). 
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Figure 2. Geometric model of the membrane in contact with a featureless flat surface.  
(a) Top view of the membrane in a released state; (b) side view; (c) optical image of the 
membrane in its side view. 

  

These geometric parameters of the membrane are inter-related: 

1 1 1 22 2l R l lθ+ + =  (2) 

1 1 1 1 2 1 22 cos 2 sin 2 sinl R R l dθ θ θ+ + + =  (3) 

2 12R sθ =  (4) 

As illustrated in Figure 2a,b, l is the total length of a single fold of the polyimide membrane, s is the 
spacing between two adjacent holes for the push-pull wire and d is the deployment distance. 

The parameters l and s are fixed for a given device design, but d is adjustable (increased from d0 at 
the initial collapsed state) during a deployment process. 

The total energy is next expressed as a function of the bending angle θ1. After algebraic 
manipulation, we write: 
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Note that, in practice, the bending angle is always non-zero and greater than θmin after the device is 
deployed. Therefore, we do not consider a trivial case of θ1 = 0° in the model. 
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2.2. Flat Surface Incorporating a Sulcus 

We next consider a flat surface with a sulcus illustrated in Figure 3. The sulcus is located in the 
middle of the flat surface and modeled using two circular arcs of radius Rs. The membrane is assumed 
to bend with a constant radius of curvature R3 over the sulcus. A second bending angle θ2 is used to 
quantify the ability of the membrane to conformally follow the contour of the sulcus. 

Figure 3. (a) Geometric model of the membrane in contact with a featureless flat surface in 
side view; (b) optical image of the membrane in its side view. 

 

Similar to our model for the featureless flat substrate, we first relate the geometric parameters of the 
bent membrane: 

( )1 1 1 2 3 22 2 2 sl R l R R lθ θ+ + + + =  (7) 

1 1 1 1 2 1 22 cos 2 sin 2 sin 2 sl R R l R dθ θ θ+ + + + =  (8) 
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2 12R sθ =  (10) 

Once again, s is the spacing between adjacent holes for the push-pull wire and R2 is the radius of the 
bent segment between these holes (Figure 2). 

The total energy of the membrane is then written as: 

( )( )
2

1 1 2 2
sg sg 1g s1 2 2 1g

1 3

2 2t s
s

E B l l R d
R s R R
θ θ θ θ γ γ γ γ θ γ

 
= + + + + − + − + + 

 
 (11) 

  



Micromachines 2014, 5 533 
 
where: 
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2.3. Non-Dimensionalization 

To help gain further physical insights and “generalize” our models, we recast the equations for 
identifying the minimum energy states in their dimensionless forms. We define an elastocapillary 
length [17] LEC as LEC = (B/γ)1/2 where B is once again the bending modulus of the membrane  
B = Eh3/[12 (1 − ν2)] and γ ≈ γsg + γlg – γsl. A membrane longer than this characteristic length will be 
significantly deflected by the surface tension force. 

Using the featureless flat surface as an example, we write the first order derivatives of the total 
energy in their dimensional form and set them equal to zero: 
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After non-dimensionalizing all of the geometric parameters (R1, s, l, d) using LEC and rearranging 
the terms, we obtain: 
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 (15) 

We adopted a straightforward, albeit computationally inefficient, approach to solve the coupled 
equations. We evaluate the left-hand side of Equation (15) over an array of densely spaced values of θ1 
(and corresponding values of the non-dimensionalized R1 obtained from Equation (16)) within the 
range (θmin, 180°). The value of θ that most closely satisfies Equation (15) is then identified. For each 
case, we also confirmed through direct evaluation of Ee that the identified value of θ indeed minimizes 
the total energy. We used a step size of 0.001° for all of the results reported in the present article. The 
same procedure is repeated for different geometrical parameters and surface topographies. 

Two dimensionless parameters are employed to quantify the extent of membrane deployment and 
the geometry of the sulcus: the deployment factor Df = (d – l)/s and the dimensionless sulcus radius  
Sf = Rs/s. The deployment factor captures the geometric constraints imposed by the push-pull wire and 
the supporting holes and governs the lower bound to the bending angle θmin (θmin > 0). Using the 
definition of the deployment factor, we may rewrite Equation (15) as: 
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 + − 
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 (16) 

From Equations (16) and (17), we note that the bending angle for featureless flat surfaces is a function 
only of the two dimensionless numbers Df and s :θ1 = f(Df, s ). Similarly, the bending angles for 
surfaces with a sulcus can be derived as: (θ1, θ2) = f(Df, s , Sf). 
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The bending angle helps quantify the conformality of the membrane contacting a surface. Another 
important design consideration is how efficiently the membrane surface is utilized to perform useful 
electrical, optical or other functions over a large spatial coverage area. We define two additional 
dimensionless parameters to quantify these figures of merit. (1) The membrane utilization ratio: the 
fraction of the membrane area that makes contact with the cortical surface, ru = (l2 + 2Rsθ2)/l; and  
(2) the membrane coverage ratio: the fraction of the deployment area projection that is available for 
electrodes or other functional elements, rc = (l2 + 2Rsθ2)/d. Recall that l2 is the length of the flat 
membrane segment in contact with the model contact surface. For the featureless flat surface without a 
sulcus, the same definitions can be used, but with Rs = 0. Larger membrane utilization and coverage 
ratios are generally preferred as larger portions of the membrane surface are utilized for electrodes or 
other functional elements. 

3. Experiments 

To help validate our models, we constructed single folds of membranes of a range of thicknesses 
(3.8–12.7 μm) and measured respective bending angles on the two different types of model  
contact surfaces. 

We chose polyimide as our membrane material, as it has been widely used as a substrate to construct 
bio-compatible thin film electrode arrays [18]. The polyimide has a Young’s modulus of 2.3 GPa, a 
Poisson’s ratio of 0.34, a liquid-solid surface tension coefficient of γsl = 0.042 N/m and a contact angle of 
70° with water [19–22]. The surface tension coefficient of the water-air interface γlg is set as 0.073 N/m. 

A liquid solution of polyimide (PI-2545, HD MicroSystems™, Cupertino, CA, USA) was first spin 
coated on a glass slide and cured at 250 °C for 0.5 h and again at 350 °C for 0.5 h. The cured 
membrane was then peeled off from the glass slide. The membrane was attached to two glass slides 
that serve as rigid mechanical supports. The membranes were suspended using wires (0.20 mm in 
diameter, Como Nylon filament) inserted through mechanically punctured holes. 

Model contact surfaces were prepared using Agar gels to simulate the mechanical properties of 
biological tissues [23]. An Agar solution (0.5 g/100 mL DI water) was first heated at 200 °C until it 
boiled and then cooled down to form thick (~3 mm) blocks of gel. Some of the blocks were formed on 
a mold to create sulci. 

The experimental setup is shown in Figure 4. The two glass slides holding each membrane were 
mounted on two translational stages so that we could adjust the deployment distance d (see Figure 2). At 
the beginning of each experiment, an Agar block was gradually lifted up using a vertical translation stage 
until it made contact with the membrane, such that the membrane is suspended free from the wire. A 
digital camera captured the images of the membrane, which were then analyzed to determine the bending 
angles. For each membrane, experiments were repeated while varying the deployment distance d. 

The bending angles are obtained by measuring the angles between the unbent segment of the 
membrane and the push-pull wire through optical image analyses. We estimate the uncertainty in the 
measured bending angles to be approximately ±2° by considering the ambiguity in identifying pixels 
that define the membrane profile and random errors as determined from the standard deviation of  
7 independently measured values. Other measured geometric parameters, such as l, s and d, have 
estimated uncertainties below 3%. 
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Figure 4. Experimental setup for bending angle measurements with the zoomed view of 
the deployable device in contact with an agar block. 

 

4. Results and Discussion 

4.1. Featureless Flat Surface 

As mentioned in Section 2.3, the bending angle θ1 is a function only of the deployment factor Df 
and the normalized hole spacing s . Figure 5 shows contours of different bending angles as a function 
of Df and the normalized hole spacing s . For a given deployment factor, larger values of the 
normalized spacing result in larger bending angles. To achieve a given targeted bending angle, one 
needs larger values of the normalized spacing for larger algebraic values of the deployment factor. 

In this study, we mainly focus on how the behavior of the deployable device with fixed dimensions (l, s) 
changes as we vary the elastocapillary lengths by using membranes of different thicknesses. The model 
predictions presented below are plotted as a function of the normalized length to more explicitly show 
the effects of elastocapillary interactions between the membranes and the interfacial liquids. 

Figure 6 shows representative captured images of the polyimide membranes under different deployment 
conditions on the featureless flat surfaces. As expected, for a given hole spacing s = 1.5 mm, the bending 
angle is smaller for larger deployment distances (Figure 6a versus 6b and 6c versus 6d). A larger 
membrane thickness leads to a smaller bending angle (Figure 6a versus 6c and 6b versus 6d). 

Figure 7 shows the predicted and experimentally observed bending angles for three different values 
of the deployment factor Df = (d – l)/s as a function of the normalized membrane length l/LEC. The two 
results agree well with each other. 

As mentioned before, there exists a lower bound to the bending angle, θmin, due to the geometric 
constraints imposed by the push-pull wire and the holes punctured in the membrane. Recall that our 
energy minimization approach was applied only over the range (θmin, 180). For small normalized 
membrane lengths, the bending angle stays fixed at this value θmin. Only when the normalized 
membrane length l/LEC exceeds a threshold value corresponding to this θmin, then the bending angle 
increases with increasing normalized membrane lengths (or, for a given membrane length, as 
decreasing membrane thickness h, since LEC is inversely proportional to h3/2). A membrane with length 
l much larger than LEC is strongly deflected by surface tension forces and, thus, gives rise to large 
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bending angles. A shorter or thicker membrane (l smaller than LEC) in contrast will not be significantly 
bent by surface tension forces. 

For a given normalized membrane length, smaller algebraic values of the deployment factor result 
in larger bending angles (Figure 8). From the constraint 0 < d < l + s, the deployment factor Df can 
vary only within the range of (−l/s, 1). The deployment factor Df governs the lower bound to the 
bending angle θmin, which is also the initial bending angle of the membrane before it makes contact 
with the contact surface. Smaller deployment factors result in larger values of θmin. For a given 
membrane length l and a hole spacing s, a smaller deployment distance d leads to a smaller 
deployment factor Df and, hence, a larger initial bending angle. Once again, the experimental results 
agree well with the modeling results. 

Figure 5. Contours of the predicted bending angle as a function of the normalized spacing 
and the deployment factor. 

 

Figure 6. Optical images of the membranes of different thicknesses in contact with a 
featureless flat surface for different deployment distances. 
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Figure 7. Modeling and experimental results of the bending angle of the membranes  
(l = 7 mm, s = 1.5 mm) in contact with featureless flat surfaces. The results are shown as a 
function of the normalized membrane length for different deployment factors. 

 

Figure 8. Modeling and experimental results of the bending angle as a function of the 
deployment factor. 

 

Figure 9 shows the calculated membrane utilization and coverage ratios as a function of the 
normalized membrane length for different values of the deployment factor Df. Recall that the membrane 
utilization ratio is defined as ru = (l2 + 2Rsθ2)/l and the membrane coverage ratio as rc = (l2 + 2Rsθ2)/d. 
For a given combination of the deployment factor and the hole spacing, as the normalized length 
increases, the membrane is more readily deformed to make larger contact areas, leading to enhanced 
coverage and utilization ratios. These quantitative results allow the selection of an optimal membrane 
thickness to achieve acceptable coverage or utilization ratios without severely compromising the 
mechanical robustness of the membrane. 
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The deployment factor and hole spacing also affect the coverage and utilization ratios, but in different 
ways. As the deployment factor increases (i.e., s = 1 mm in Figure 9b) or the hole spacing decreases 
(i.e., Df =−0.3 in Figure 9b), the utilization ratio monotonically increases. The coverage ratio, in 
contrast, decreases with the increasing deployment factor (i.e., s = 1 mm in Figure 9a) or decreasing 
hole spacing (i.e., Df = −0.3 in Figure 9a) when the normalized length is large (l/LEC > 15 in Figure 9a). 
When the normalized length is small (l/LEC < 12 in Figure 9a), the coverage ratio increases with the 
increasing deployment factor or decreasing hole spacing. This can be understood from the asymmetric 
behavior of the coverage ratio depending on whether the bending angle θ1 is smaller or larger than 90°. 
As schematically illustrated in Figure 10, for given values of l and s, the surface contact length l2 
increases with the deployment distance d when θ1 < 90°, whereas l2 decreases with d when θ1 > 90°. 

Figure 9. The predicted membrane coverage and utilization ratios as a function of the 
normalized length. 

  

Figure 10. Schematic illustrations and optical images of the changes in the membrane 
bending behavior for different deployment factors when θ1 < 90° and when θ1 > 90°. 
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4.2. Flat Surface Incorporating a Sulcus 

For the model surface with a single sulcus, the bending angles (θ1, θ2) are a function only of the 
deployment factor Df, the normalized sulcus radius Sf and the normalized spacing s . Figure 11 shows 
the predicted contours of the bending angles as a function of the normalized spacing and the 
deployment factors for different normalized sulcus radii. For a given deployment factor and 
normalized sulcus radius, larger values of the normalized spacing result in larger bending angles. To 
achieve a given targeted bending angle θ1, one needs larger values of the normalized spacing for larger 
algebraic values of the deployment factor. In contrast, smaller values of the normalized spacing are 
preferred for large values of the deployment factor to achieve a given targeted bending angle θ2. 

Figure 11. The predicted contours of the bending angles as a function of the normalized 
spacing and the deployment factor for different normalized sulcus radii. 

  

Like the cases of the featureless flat surface, the model predictions shown below are plotted as a 
function of the normalized length to help more explicitly illustrate the elastocapillary interactions 
between the membranes of different thicknesses. The single-fold total membrane length l and the hole 
spacing s are fixed at 7 mm and 1.5 mm, respectively. 

Figure 12 shows representative optical images of the polyimide membranes. For a given deployment 
factor, as the thickness of the membrane increases (and, hence, as the normalized length decreases), the 
two bending angles θ1 and θ2 decrease. 

Figure 13a,b shows the predicted and measured bending angles θ1 and θ2 as a function of the 
normalized membrane length. The general qualitative trend for θ1 is similar to that for the featureless 
flat surfaces. Larger normalized membrane lengths lead to larger bending angles and, therefore, higher 
conformality. For the given set of the deployment factors and the radii of curvature of the sulci 
examined here, normalized lengths of the order of 20 and greater are necessary to achieve good 
conformality over the surface of the sulcus. The results of three different cases are shown in Figure 13: 
(I) Df = 0, Sf = 1 (Rs = 1.5 mm); (II) Df = −1/3, Sf = 1; (III) Df = 0, Sf = 4/3 (Rs = 2 mm). 
  

-0.6 -0.4 -0.2 0.0 0.2 0.4
0

3

6

9

12
 θ1 = 70° (Sf = 1)
 θ1 = 80° (Sf = 1)
 θ1 = 70° (Sf = 0.5)
 θ1 = 80° (Sf = 0.5)

No
rm

al
iz

ed
 s

pa
ci

ng
 s

Deployment Factor Df

(a)

-0.6 -0.4 -0.2 0.0 0.2 0.4
0

1

2

3

4

 θ2 = 30° (Sf = 1)       θ2 = 30° (Sf = 0.5)
 θ2 = 40° (Sf = 1)       θ2 = 40° (Sf = 0.5)

No
rm

al
iz

ed
 s

pa
ci

ng
 s

Deployment Factor Df

(b)



Micromachines 2014, 5 540 
 

Figure 12. Optical images of the membranes in contact with a surface incorporating a 
single valley for different deployment factors and normalized lengths. 

 

Figure 13. Modeling and experimental results of the bending angles (a) θ1 and (b) θ2 of  
the membranes in contact with a surface incorporating a sulcus as a function of the 
normalized length. 
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from the bottom segments covering the sulcus. Therefore, the geometric details of the sulcus do not 
significantly influence the top bending angle. In contrast, θ2 is dependent on the sulcus dimension, 
increasing with Sf. 

Figure 15a,b shows the two bending angles as a function of the normalized radius of the sulcus.  
As the normalized sulcus radius increases, the bending angle θ1 decreases, whereas bending angle θ2 
increases. A larger valley radius causes a longer portion of the membrane to be bent along the valley 
surface and, thus, a larger bending angle θ2. Since the total membrane length is fixed, the effective 
membrane length is reduced and, thus, the bending angle θ1 is decreased. 

Figure 14. Modeling and experimental results of the bending angles (a) θ1 and (b) θ2 as a 
function of the deployment factor. 

  

Figure 15. Modeling and experimental results of the bending angles (a) θ1 and (b) θ2 as a 
function of the sulcus length factor. 

  

Figure 16 shows the calculated membrane utilization and coverage ratios as a function of the 
normalized membrane length for different values of the deployment factor Df. For a given combination 
of the deployment factor and the hole spacing, as the normalized length increases, the membrane is 
more readily deformed and, thus, has a larger coverage and utilization ratios. However, the presence of 
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a valley (or sulcus) reduces the effective length of membrane when compared with the featureless flat 
surface. Therefore, the membrane is less deformed and has smaller coverage and utilization ratios than 
a surface without a valley. Similar to the featureless flat surface, the deployment factor also affects the 
coverage and utilization ratios in different ways. As the deployment factor increases (i.e., Sf = 1.5 in 
Figure 16b) or the normalized sulcus radius increases (i.e., Df = −0.3 in Figure 16b), the utilization 
ratio monotonically increases. The coverage ratio, in contrast, decreases with the increasing 
deployment factor (i.e., Sf = 1.5 in Figure 16a) or increasing normalized sulcus radius (i.e., Df = −0.3 in 
Figure 16a) when the normalized length is large (l/LEC > 15 in Figure 16a). However, when the 
normalized length is small (l/LEC < 12 in Figure 16a), the coverage ratio increases with the increasing 
deployment factor or increasing normalized sulcus radius. This can be once again explained by the 
asymmetric behavior of the coverage ratio between when the bending angle θ1 < 90° and when θ1 > 
90°. The surface contact length increases with the deployment distance d when θ1 < 90°, whereas it 
decreases with d when θ1 > 90° for given values of l and s. 

Figure 16. Predicted values of (a) the membrane coverage ratio and (b) the utilization ratio 
as a function of the normalized length for different combinations of the deployment factor 
and the normalized sulcus radius. 
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4.3. Design Flow of the Deployable Device 

The geometric parameters of the device (l, s, d and h), the mechanical properties of the membrane 
(E, v) and, if applicable, the surface tension of the liquid (γlg) must be selected to ensure successful 
device operation under the constraints and requirements of a specific application. Details of the design 
process flows differ for different applications. As an illustrative example, we present below a design 
process for a subdural ECoG device that can be introduced into and deployed along a gap between the 
skull and the cortical surface of a patient through minimally-invasive procedures. 

In this subdural application, the gap hg between the skull and the cortical surface (typically 1–2 mm) 
determines the maximum acceptable height hmax of the device in its collapsed state. Assuming that the 
membrane segments located between two adjacent holes are bent to form hemispherical arcs in the 
collapsed state (Figure 17a), one can then write: 
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max g2
l sh hπ≈ + ≤  (17) 

The initial deployment distance of a single fold of the membrane (in the collapsed state) may be 
approximated as d0 ≈ 2s/π. Smaller values of s are therefore preferred to make the device more 
compact in its collapsed state and also to make more of the membrane surface available for functional 
ECG electrodes. In practice, the minimum value of s is limited by the precision of a manufacturing 
technique and typically: 

min hole2s s r≥ ≈  (18) 

where rhole is the radius of the holes. With s set at its minimum value, one can determine the maximum 
acceptable value of l using Equation (17). 

Next, one needs to ensure that the membrane can achieve sufficient conformal contact with a sulcus 
of the cortical surface by setting a minimum acceptable value of the non-dimensionalized sulcus  
radius (Sf)min: 

min2 s
f f

RS Sd= ≥  (19) 

This places one limit on the achievable deployment distance dtarget in the fully-deployed state of  
the device: 

targ
m

et
in

2 s

f

R
Sd <  (20) 

If the push-pull wires are not allowed to bend down under the fully-deployed state, there is another 
limit on the achievable deployment distance dtarget one needs to consider to ensure that the membrane 
extends below the bottom surface of the stem and thereby maintains contact with the cortical surface 
(Figure 17b): 

( )0.5

t get
2

ar

2
2 4 w

l hd < −  (21) 

By considering trade-offs with the membrane utilization ratio or the membrane coverage ratio as 
illustrated in Figure 16, one then determines the minimum acceptable value of the membrane 
normalized length (l/LEC)min and hence the maximum acceptable value of the elastocapillary  
length (LEC)max. 

The elastocapillary length is a function of the bending modulus of the membrane and the surface 
tension coefficient of the interfacial liquid, which may be a cerebrospinal fluid or a saline solution.  
For general engineering applications, one may choose low-volatility liquids of high surface tension 
coefficients γ and of negligible health or environmental hazard (e.g., glycerol). For a given interfacial 
liquid, the maximum acceptable value of the bending modulus of the membrane is: 

2
max maxECB Lγ=  (22) 

A membrane material with a small Young’s modulus is generally preferred to minimize the bending 
stiffness and, thereby, increase the maximum acceptable membrane thickness. Practical values of the 
membrane thickness are limited by the requirements of manufacturing and device reliability/robustness. 
The value of the thickness is then chosen satisfying these requirements. 
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Figure 17. The initial collapsed state (a) and the full deployment state (b) of the device. 

 

5. Conclusions 

We report a design and mechanical model for a deployable planar micro-device. The device 
consists of a foldable membrane suspended between semi-flexible stems via push-pull wires for 
controlled deployment. The geometric profiles of the membrane under different device geometric 
parameters and contact surface topography are modeled based on the minimization of the total  
(elastic and surface) energy. The models are then used to predict the bending angles and the spatial 
coverage of the membrane. Experimental results show good agreement with the model prediction. Our 
work proves the early feasibility of our deployable and conformal planar micro-devices. This and 
related device architectures may enable new generations of devices for smart minimally invasive 
biomedical procedures and other engineering applications. 
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