Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Micromachines 2012, 3(2), 331-344; doi:10.3390/mi3020331
Article

MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

,
,
 and *
Received: 16 March 2012; in revised form: 31 March 2012 / Accepted: 18 April 2012 / Published: 26 April 2012
(This article belongs to the Special Issue Thermal Switches and Control of Heat Transfer in MEMS)
View Full-Text   |   Download PDF [1332 KB, uploaded 26 April 2012]
Abstract: Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.
Keywords: MEMS; micro heat engine; phase change; boiler; free piston; scavenging; micro heat transfer MEMS; micro heat engine; phase change; boiler; free piston; scavenging; micro heat transfer
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Thapa, S.; Ogbonnaya, E.; Champagne, C.; Weiss, L. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging. Micromachines 2012, 3, 331-344.

AMA Style

Thapa S, Ogbonnaya E, Champagne C, Weiss L. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging. Micromachines. 2012; 3(2):331-344.

Chicago/Turabian Style

Thapa, Suvhashis; Ogbonnaya, Emmanuel; Champagne, Christopher; Weiss, Leland. 2012. "MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging." Micromachines 3, no. 2: 331-344.


Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert