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Abstract: Prognostics is seen as a key component of health usage monitoring systems, 
where prognostics algorithms can both detect anomalies in the behavior/performance of a 
micro-device/system, and predict its remaining useful life when subjected to monitored 
operational and environmental conditions. Light Emitting Diodes (LEDs) are optoelectronic 
micro-devices that are now replacing traditional incandescent and fluorescent lighting, as 
they have many advantages including higher reliability, greater energy efficiency, long life 
time and faster switching speed. For some LED applications there is a requirement to monitor 
the health of LED lighting systems and predict when failure is likely to occur. This is very 
important in the case of safety critical and emergency applications. This paper provides 
both experimental and theoretical results that demonstrate the use of prognostics and health 
monitoring techniques for high power LEDs subjected to harsh operating conditions.  
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1. Introduction 

Prognostics and health monitoring is a technology used to monitor degradation in engineering 
systems, understand when failure may occur, and provide a cost effective strategy for scheduled 
maintenance. Health monitoring and prognostics of engineering systems or products has become very 
important as failures may cause severe damage to the system, environment and users, and may result in 
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significant costly repairs. Adopting health monitoring and prognostics techniques requires continuous 
monitoring of key performance parameters and detecting any anomalies in these parameters. 

Even though typical life time of a high power light emitting diode (LED) is very high, typically 
specified in the order of 50,000 h [1], statistics show that half of the light emitting diodes fail before 
this limit is reached. The reason for this is that this specification is not based on individually measured 
characteristics of LEDs. Therefore, manufacturers and lighting system designers still need to monitor 
the health of assembled LEDs and predict their failures, especially for safety emergency critical 
applications in sectors such as aerospace, medical, energy and others.  

Numerous papers have been published that characterise the reliability and thermal behaviour of 
LEDs [1–9]. Recent publications have detailed the importance of temperature on the reliability of 
LEDs and the need for suitable packaging to ensure that appropriate heat is extracted [4]. Physics of 
Failure Models for high power LEDs have also been developed where thermomechanical models have 
been used to characterise a number of failure modes [10]. At present there is no reported work on  
real-time monitoring of LED degradation or the use of data driven models to predict degradation and 
remaining useful life for LEDs. This paper investigates two data driven methods which can easily be 
programmed onto a microcontroller for real time monitoring of LEDs. 

This paper demonstrates a data driven prognostics approach to monitor and identify LED failures, 
based on the requirement for the light output power. In the case of general lighting it is established that 
the light power should not be less than 70% of the initial power of the lights (referred to as typical 
expectation of the light power) [5]. It is also reported that the LED actually will not fail physically, but 
rather its light output power will decrease with time [5]. Therefore, the approach adopted in this work 
is to assess the life of an LED lighting system after their deployment based on the power of the light 
output emitted. This paper discusses two distance measure techniques, (i) Euclidean Distance and  
(ii) Mahalanobis Distance that have been used to analyse the degradation of light output and assess 
remaining life-time of LEDs. These data driven techniques are based on monitoring selected operational 
and performance indicators using sensors. The main advantage of these two distance measure 
techniques is that they can be implemented in a microcontroller used to control the LED drive circuit, 
and hence monitor the LED degradation in real time.  

2. Prognostics Approaches  

Figure 1 illustrates the three approaches to prognostics, which are (i) Data driven, (ii) Model driven 
and (iii) Fusion based modeling which combines both (i) and (ii) methodologies.  

Figure 1. Prognostics and health management approaches. 
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2.1. Data Driven Approach 

Data driven approach is considered as a black box approach to PHM as they do not require system 
models or systems specific knowledge to start the prognostics [11]. Monitored and historical data are 
used to learn the systems behaviours and used to perform the prognostics. Hence the data driven 
approach is suitable for the systems which are complex and which behaviours cannot be assessed and 
derived from first principles. The implementation of data driven techniques for the purpose of health 
monitoring and prognostics generally based on the assumption that the statistical characteristics of 
system’s performance will not change until fault occurs [11]. Therefore, the main advantage of data 
driven approach is that the underlying algorithms are quicker to implement and computationally more 
efficient to run compared to other techniques. However, it is necessary to have historical data and 
knowledge of typical operational performance data, the associated critical threshold values and their 
margins. Data driven techniques rely completely on the analysis of data obtained from sensors and 
exploit operational or performance related signals that can indicate the health of the monitored system. 
Data driven strategies for diagnostics and prognostics have been applied in a number of different 
Prognostics and Health Management (PHM) applications [12–19]. 

The principal disadvantage of the data driven approach is that the confidence level in the 
predictions depends on the available historical and empirical data. Historical and empirical data are 
required in the data driven approach to define the respective threshold values. In some instances it is 
difficult to obtain or have historical data available, for example in the case of a new system or device 
that may require long time and/or expensive tests to failure to generate this data. However, there are 
techniques and procedures available that can be used to achieve this [20,21]. Two of the strategies used 
to address this challenge are based on the use of:  

1. Hardware-in-the-Loop simulations (HiL). 

Hardware-in-the-Loop is a computer simulation which is used to test a real product or system by 
connecting it hardware that applies simulated loads as in real application. It is very fast and cheap to 
implement. In addition, several failure parameters (i.e., operational and environmental) can be 
controlled independently. HiL can also be used for algorithm development, testing and validation, 
benchmarking and development of metrics for prognostics [20].  

2. Accelerated Life Test (ALT) 

Accelerated load test is designed to cause the product to fail more quickly than under normal 
conditions by applying accelerated (elevated) stress conditions resulting in the same failure 
mechanisms. ALT becomes an important methodology in the development of the PHM for 
electronics. Several environmental and loading conditions can be applied independently to 
accelerate the failure [21].  

2.2. Model Driven Approach 

The model driven approach uses mathematical equations that predict the physics governing failures 
and therefore is sometimes referred to as the Physics of Failure (PoF) approach. It requires knowledge 
of the failure mechanisms, geometry of the system, material properties and the external loads being 
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applied to the system. An accurate mathematical model can benefit the prognostics process, where the 
difference between the output from a mathematical model and the real output of the system can be used 
to find the anomalies, malfunctions, disturbance etc. [22]. Using the difference between model and data 
values for a performance parameter, the early warnings for failures and remaining useful life can be 
predicted. There are many PHM work have been reported based on model-driven approach [16–19,22–26]. 
A block diagram of a typical model based approach shown below in the Figure 2.  

Figure 2. Block diagram of a model driven approach. 

 

2.3. Fusion Approach 

The fusion approach is based on the advance features of both data driven and model based approach. 
This approach will require an accurate mathematical model of the system for physics based failure 
approach and enough historical data and knowledge of typical operational performance data for data 
driven approach. The aim of the fusion approach is to overcome the limitations of both the model and 
data driven approach to estimate the remaining useful life (RUL) [19]. Therefore the accuracy of  
the fusion approach should be high [19], although for real-time analysis it may not be suitable due to  
the computational resource required. There are many applications reported based on fusion  
approach [27–29]. A block diagram of a typical model based approach shown below in the Figure 3.  

Figure 3. Block diagram of a fusion approach. 
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3. High Power Light Emitting Diodes (LEDs)  

A high power LED is an optoelectronic device which consists of a p-type region, n-type region and 
a p-n junction. A high power LED is defined as an LED with power equal or greater than 1 Watt. 
When the LED is forward biased and current passes through the p-n junction, electron in the n-region 
get sufficient energy to move across the p-n junction into the p-region and holes are injected into the  
n-region from the p-region through p-n junction [30]. Some of the electrons and holes recombine in the 
active region (p-n junction) where electrons move one energy band to another. This process is known 
as the radiative recombination process. When the radiative recombination takes place, energy is 
released in the form of photons with the wavelength related to the change in the energy band. This 
process is illustrated in the Figure 4. Applications of High Power LEDs are continuously increasing as 
they are energy efficient (typically 85%), green (e.g., no mercury), have demonstrated longer life than 
traditional lighting sources, and emits low UV radiation [30]. Single colour LEDs have demonstrated 
over ten time efficient than the incandescent lamps and white LEDs are more than two times  
efficient than the incandescent lamps [30]. For example, typical LEDs can operate for >50,000 h 
(approximately 11.5 years for a 50% calendar time usage) provided the drive current and p-n junction 
temperature remain within the limits specified by the manufacturer [4]. For example, for the  
Philips Luxeon Star when operated in warm white mode, the maximum values recommended for the  
DC forward current and junction temperature are 350 mA and 135°C respectively [31]. A schematic  
cross-section of a LED assembly with typical construction is shown in Figure 5.  

Figure 4. Radiative recombination process in the p-n junction (LED die) where the photon 
emitted in the form of light. 

 

Previous research in performance of LEDs has shown that gradual reduction of the luminance up to 
30% is expected for non-safety critical applications [5]. Therefore, the useful life of a LED for general 
lighting is given by the time in which it takes for the luminance to reduce by 30% from its initial value. 
But some for safety critical and emergency application, the amount of luminance reduction allowed 
may be less than 30%. It should also be noted that the life time specified by the manufacturer is the 
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average life time of LEDs, and some LEDs would fail before this specified life time due to variations 
in individual characteristics, manufacturing quality and environmental conditions. 

Figure 5. Cross section of LED assembly. 

 

In addition to light output power depreciation, another mode of failure is due to discolouration of 
the LEDs or LED die encapsulate. Before the light output of an LED depreciates to a certain level, the 
colour of the light changes with time. This is because of the surrounding environmental conditions 
such as moisture, temperature, etc. Hence the LED lighting systems require maintenance which 
requires labour and measuring instruments. PHM approach can be used to change the unschedule 
maintenance activity into an evidence based scheduled maintenance activity which will reduce the 
maintenance cost by a considerable amount.  

Monitoring the light output power and the wavelength of the light in real-time might be difficult as 
they require light and colour sensors respectively. Although the light sensors are available in the 
market, placing the sensors into the luminaries is difficult. This work is carried out based on current 
and temperature measurements to perform the prognostics and health monitoring, and considered only 
the failure mode related to light output power reduction. We use the 30% reduction of light output as 
the failure criteria, and any LED in operation that has lumens below this limit is defined as a failed LED.  

There is no life time model developed and reported in the literature so far for LEDs [32–34]. The 
main cause of the failure in the LEDs is the heat generated at the p-n junction [4]. Under the forward 
bias condition the p-n junction carries a current which is almost an exponential function of the applied 
voltage which means if there is an increase in the applied voltage, the current through the p-n junction 
increases exponentially. This characteristic is explained by the Shockley’s Equation [35]. An increase 
in the current will cause the temperature to increase dramatically which means the heat generated in 
the p-n junction increases. 

In the experiments detailed below, the current through the p-n junction and the p-n junction 
temperature can be defined as the performance indicators of the LED. Therefore, any accelerated test 
can use the current or the temperature as the stress parameter of the LED. LEDs are controlled by 
controlling constant current through the sense voltage (analogue diming) or pulse width modulated 
switching (digital diming) [30]. In this experiment the constant current required to operate the LED is 
controlled by controlling the forward voltage across the LED and the experiment is designed to test a 
single LED at a time. This experiment also designed to accelerate the failures based on current and the 
temperature. Therefore, the forward/applied voltage is used as an accelerating damage condition in the 
experiments. The acceleration of the applied voltage results in the elevation of both stress parameters 
(e.g., the current and the temperature). 
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4. Prognostics for LED’s using the Data Driven Approach  

The health of a product or system is defined as the extent of deviation or degradation from its 
expected typical operating performance [36]. This extent of deviation or degradation from the expected 
typical operating performance has to be determined accurately to assess the reliability of a product and 
predict its remaining useful life.  

In the case of High power LEDs which are semiconductor devices, overall reliability (i.e., an 
individual LED) depends on several factors such as properties of p-n junction, band gap energy, 
internal quantum efficiency (i.e., product of current injection efficiency and radiative efficiency), light 
extraction efficiency, cavities or defects in the active region, etc. Modeling these individual LED 
characteristics for the purpose of prognostics and health monitoring is difficult. Data-driven approach 
for PHM has been identified as a best candidate as they do not require system specific knowledge but 
require historical and failure data. Data-driven approach is also easy to implement in particular in a 
real-time environment. Focus of this paper is to apply data driven approach for the prognostics and 
health monitoring of the high power LEDs based on light output power degradation failure mode.  

Light output power degradation is caused by high temperature at the p-n junction due to the heat 
generated at the p-n junction. Heat generated depends on the current through the p-n junction. Injection 
current (current through the p-n junction) and the p-n junction temperature can be used as the 
performance indicators of the LEDs. Monitoring the current and temperature at the p-n junction and 
relating them to the drop in output lumens (i.e., power) will provide the ability to monitor the degradation 
of the LED in real time. To achieve this, two distance measure techniques have been assessed  
(1) Euclidean Distance and (2) Mahalanobis Distance.  

4.1. Euclidean Distance 

Euclidean distance (ED) is the physical distance between two data points and it is the most 
commonly used distance measure in many different fields. It is defined as the distance that examines 
the root of square differences between any data sets i.e., it can be in any dimension. For a data matrix 
X which contains n objects measured by p variables (i.e., n × p matrix), ED can be calculated in the 
vector space as follow [37]: 

T
iii XXXXED ))(( −−=  (1)  

Here 𝑿𝑿� is the mean vector. In the case of prognostics and health monitoring of high power LEDs, 
𝑪𝑪� and 𝑻𝑻� are the mean values of current through the p-n junction and p-n junction temperature under 
typical operating conditions. Ci and Ti are the new observation data. EDi will be computed for the new 
observation data as follows (i.e., two dimensional data) [37]:  

22 )()( TTCCED iii −+−=  (2)  

The ED value will give an estimate of LED’s deviation or the degradation from the typical healthy 
LED. Higher values for the ED will indicate anomalies in the performance and by monitoring the ED 
values prognostics of LED can be achieved.  
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4.2. Mahalanobis Distance 

Mahanobis distance (MD) is another physical distance measure [37,38]. Although similar to the 
Euclidean distance, the Mahalanobis distance takes into account the actual correlations of the data sets. 
Since the health of the system is defined as the deviation from expected typical operating performance, 
Mahalanobis distance is useful in determining the similarity/distance between the typical operating 
performance and monitored operating performance. This strategy has been applied successfully in 
different data-driven PHM approach [38–43]. For a data matrix X which contain n objects measured 
by p variables as above MD can be estimated in the vector space as follows [37,38]: 

T
iXii XXCovXXMD )()( 1 −−= −  (3)  

Here 𝑿𝑿� is the mean vector and Covx is the variance-covariance matrix of data matrix X. In the case of 
prognostics and health monitoring of LEDs, 𝑪𝑪� and 𝑻𝑻�are the mean values of current through the  
p-n junction and p-n junction temperature, and CovCT is the variance-covariance matrix of current and 
temperature under the typical operating conditions. Ci and Ti are the new observation data. Whenever 
new data becomes available MD can be calculated as follows for two dimensional data [37].  

T
iCTii TTCovCCMD )()( 1 −−= −  (4)  

R De Maesschalck et al., formulated MD formula for two dimensional data using the  
variance-covariance matrix given below [37]: 
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The MD value will give an estimate of LED’s deviation or the degradation from the typical healthy 
LED. Higher values for the MD will indicate anomalies in the performance and by monitoring the MD 
values prognostics of LED can be achieved.  

The advantage of the above techniques is that they transform multi-dimensional sensor readings into 
a single performance parameter. In addition, fault parameters can also be isolated in the event of faults 
or anomalies in the ED or MD estimates by monitoring the individual sensors data. This can be used to 
analyse the fault and find the root cause of the anomalies or fault. Using MD or ED techniques for the 
purpose of health monitoring and prognostics of LEDs require historical data to establish the threshold 
values representing when the LED is performing outside its safe limits. To generate this data we have 
used an accelerated voltage to stress the components to failure. As a result of this, the current and the 
temperature also increase.  

 



Micromachines 2012, 3 86 
 

 

5. LED Health Monitoring  

Measuring the light output of an LED in real-time (i.e., in the field) is difficult. Instead, 
performance indicators of the LEDs such as current through the p-n junction, and the p-n junction 
temperature, can be used to measure any deviations in performance and to realise any prognostics 
assessment. Current through the p-n junction is measured using power resistors (i.e., current sensor) as 
the ordinary resistors cannot handle the typical expected current through the LEDs which is 350 mA. It 
is impossible to measure the p-n junction temperature directly as it is impossible to reach the p-n 
junction. However, it is possible to estimate this value by measuring the temperature at a nearest point 
to the p-n junction, and then use the following one-dimensional heat conduction equation to estimate 
the junction temperature [2,3].  

IVRTT jbbj ××+= θ  (7)  

where Tj is the p-n junction temperature, Tb is the board temperature, Rθjb is the p-n junction to board 
thermal resistance coefficient, V is the input voltage and I is the input current. Thermal resistance 
coefficient depends on the power dissipation at the junction, ambient temperature, amount of heat sink 
and the orientation of the heath sink [2,3].  

For the purpose of real-time health monitoring and prognostics, we assume the average power 
dissipation of the LED remains constant and ambient temperature, amount of heat sink and orientation 
of the heat sink remain same. If the power dissipation, ambient temperature and heat sink remain same, 
board temperature and junction temperature will vary linearly [3]. In addition a large heat sink is used 
in the experiment and hence the junction temperature can be estimated with the board temperature [3]. 
For the Philips Luxeon Star the thermal resistance co-efficient is 20C/W [31] which can be assumed as 
a constant. This allows us to monitor the board temperature and use this temperature to train the data 
driven approach instead of the p-n junction temperature. 

The real-time health monitoring and prognostics approach adopted in this study is based on the 
output from both thermocouple data and current sensor data. This data is then fed into the data driven 
techniques to predict the anomalies in LED performance. Appropriate extrapolation techniques are 
used to predict the remaining useful life and discussed in the Section 9. The test data was obtained 
using a National Instruments’ (NI) PXI real-time platform which gathered data for a High Power 
Luxeon Star LED under accelerated voltage conditions.  

6. Experiment Setup  

There are standard developed by the Illuminating Engineering Society of North America (IESNA) 
to test the LED lighting systems for the purpose of qualifications. IESNA LM-79-08 was developed as 
a standard to measure electrical and photometric characteristics solid state lighting products such as 
LED luminaries and integrated LED lamps. IESNA LM-80-08 was developed as a standard to test the 
solid state light source such as LED packages, arrays and modules (not luminaries) for lumen maintenance. 
Purpose of these standards is to allow all the manufacturers to follow a common measuring procedure 
so that the users can compare the performance of the different product in the market. This is also a 
requirement of the Energy Star which is international standard for energy efficient products [33,34].  
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The Alliance for Solid State Illumination Systems and Technology (ASSIT) has also developed 
standard for life test of the LED based on 50% light output degradation (L-50) and 30% light output 
degradation (L-70) [5,6]. Manufactures are performing tests and producing the result based on these 
standard and tests. These standard and testing procedures will provide the data for comparing the life 
expectancy of the different solid state lighting product but does not provide detailed information on the 
failure modes and mechanisms hence it will not help to estimate the life time of an LED in the  
field [30]. When the LEDs are deployed in the field, there are many known and unknown factors 
which affect the performance of the LED lighting systems and increase the possibility of the 
catastrophic failures. The experiment below is designed to capture such failures caused by voltage and 
current fluctuations, driver break down, temperature increases, etc.  

Figure 6(a) shows a Luxeon star LED from Philips Lumileds lighting and Figure 6(b) shows a fitted 
LED on a holder that represents the LED test set up. 
 

Figure 6. (a) Luxeon star LED from Philips; (b) Luxeon star LED with holder. 

  
(a) (b) 

Figure 7 details the experimental test setup, which consists of a data acquisition system (National 
Instruments PXI), a voltage regulator and sensors, and a single High Power Philips Luxeon Star LED. 
For purpose of light measurement the LED is placed within a semi spherical enclosure which also 
contains a photodiode light sensor. 

Figure 7. Test bench–Experiment setup with National Instruments’ PXI Systems. 
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The National Instruments PXI platform can be connected to both analog and digital input modules 
providing the ability to measure voltage levels for different types of signals. For this experiment we 
use a 24-bit universal analog input module (NI 9219) to measure the applied voltage, and the voltage 
across the three sensors (current, temperature, and light).  

The applied voltage is measured by connecting the anode and cathode terminals of the LED. This 
together with the three sensors (current, light, temperature) are all connected to the data acquisition 
platform. Voltage is measured for all three sensors, for example to measure light output we use a 
photodiode which converts light into voltage and is calibrated to convert the light into voltage in a 
proportional manner. To measure temperature we use a thermocouple which generates very small 
voltage (mV) related to the temperature on the board. For current we measure the voltage across the 
power resistor and this is converted into current. Figure 8 shows all three sensors used in this experiment. 

Figure 8. (a) Photodiode TSL250R-LF; (b) NI readymade J type thermocouple;  
(c) Current sensor (Power resistor, MHP 100-0.25 Ω). 

 

7. Data Acquisition for Training the Algorithms 

Data is obtained under both normal conditions and accelerated stress condition. The sensor data 
obtained under normal conditions is used to predict the mean values of voltage for the three sensors 
(current, temperature and light). The data obtained from the accelerated stress test is used to identify 
the threshold values for the ED and MD algorithms, above which the LED will start to degrade. 

7.1. Data Acquisition–Normal Operating Conditions 

Sensor data is obtained when the LED is operating under normal conditions. This data is then 
analysed to identify the mean values for the sensors when the LED is operating normally. In addition 
to this the MD and ED values are also calculated under these conditions. Table 1 details the mean 
values of the data collected for all three sensors, when the applied voltage is 3.42 V. Figure 9 shows 
the collected data and the calculated values for both of the data driven techniques (MD and ED). 

Table 1. Mean Sensor readings when LED is operating normally. 

Parameters Sensor Values Real Values 
Applied Voltage 3.42 V 3.42 V 

Light Output 1.18 V Not Available 
Board Temperature 2.2 mV 42.7 °C 

Current 0.09 V 0.35 A 

 
  

(a) (c) (b) 
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Figure 9. Sensor data for normal operating conditions. 

 

What is interesting in the above is the sensitivity of the MD method to small changes in the sensor 
readings. Table 2 below shows the ED and MD values (mean, maximum and minimum) for normal 
operating conditions. Under these conditions an LED typical life time will be on average 50,000 h. 
High values for ED and MD are observed at the initial stage as the temperature is increasing with time 
until it reaches a stabe value (i.e., in this case actual temperature is increasing from the room 
temperature to 42° C which is normal operating board temperature) while the current quickly reached 
its stable value. In this case maximum value for MD is observed at the initial stage of the experiment.  

Table 2. Mean, maximum and minimum values for ED and MD under typical operating conditions. 

Distance Measure Minimum Maximum Mean Value 
Euclidean Distance (ED) 0.046 0.44 0.16 

Mahalanobis Distance (MD) 0.47 3.80 2.16 

7.2. Data Acquisition–Accelerated Life Test  

A run-to-fail accelerated voltage test is designed to provide data to identify the threshold values for 
both MD and ED algorithms. In this test the applied voltage is increased in steps from the initial of 
3.29 V to a maximum of 3.99 V. This maximum is also the typical maximum forward voltage of the 
LED. Note that the normal operational voltage that is required for the LED is 3.42 V. Data from the 
sensors are then analysed to identify the threshold values for ED and MD.  

Figure 10 shows the voltage applied to a single LED and the readings from the current, light and 
temperature sensors. In addition to this the graph shows the value of light threshold which represents a 
30% drop in the light output from what its value would be when operating normally (e.g., with an 
applied voltage of 3.42 V). Hence if the light reading goes below this value then we have a reduction 
in light output over 30% and hence a failure. 
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Figure 10. Sensor data from accelerated life test. 

 

We can calculate the ED values using the data above from the temperature and current sensors. The 
light readings are only used to observe the reduction of light from the LED and hence when it fails due 
to a drop of 30% or more. Figure 11 shows the predicted ED values, the applied voltage and the data 
from the light sensor and its threshold value. We would expect the light output to increase as the 
voltage increases. Hence, to calculate the threshold value for the ED parameter we identify the point at 
which the light output starts to decrease continuously. This threshold value represents the point in time 
at which the LED starts to degrade. For the data set shown in Figure 10 the threshold value for ED is 
2.5. So, any value for ED which goes above this threshold value identifies that degradation in light 
output is taking place. Hence by monitoring the ED parameter we can diagnose when light output is 
degrading based on the monitored data from both a temperature and current sensor.  

Figure 11. Euclidean Distance analysis for sensor data. 
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Figure 12 shows a similar analysis for the Mahalanobis Distance (MD) algorithm, again using same 
data set as shown in Figure 10. For the MD method the light output is observed to decrease 
continuously from the MD value of 17, onwards. Hence the threshold value for MD is 17, above which 
the light output is degrading. So, as with the MD method, by monitoring changes in current and 
temperature, we can use the MD calculation and its threshold value to diagnose when light output 
degradation starts. 

Figure 12. Mahalanobis Distance analysis for sensor data. 

 

The above was undertaken on seven different LED’s where the threshold values were calculated 
separately for each. For ED and MD the calculated threshold values were similar. For the following 
validation cases we have used the minimum predicted threshold values which are ED = 2.5 and MD = 17.  

8. Validation of Diagnostics Capability 

Data shown in the Figure 13 is used to demonstrate both data driven techniques in terms of their 
diagnostics capability. This data is again collected from an accelerated stress test, where the applied 
voltage is increased over time beyond its normal operating value. The LED used for this test was again 
a Philipis Luxeon Star, but a different one from the batch of ten used to derive the threshold values. In 
this accelerated test the applied voltage is increased every 30 min by 0.2 V. This is a different voltage 
profile to that used for the generating data for the predicting the threshold values. Clearly we can see 
when the light output has degraded by 30% which is after 485 min. We can also observe when the light 
begins to degrade which is after approximately 145 min.  

Figure 14 demonstrates the ED technique for the data shown in Figure 13. It shows that using the 
defined treshold value of 2.5 an early warning for having a LED operating at conditions that lead to 
failure is given. ED is gradually increasing after it’s maximum healthy value of 0.44 (Table 2) as the 
applied voltage is increased gradually. In this case ED equals 2.5 predicts start of the degradation in 
the light output at time approximately 145 mins and it takes another 340 min to degrade completely to 
reach the light failure threshold value of 0.83 V (i.e., 70% light degradation from typical value).   
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Figure 13. Sensor data from accelerated life test. 

 

Figure 14. Demonstration of Euclidean Distance. 

 

Figure 15 demonstrates MD analysis of the test data set shown in the Figure 13. It shows that the 
early degradation in the light output can be predicted using MD. When MD reaches its threshold 
values of 17, light output starts to degrade. This is the point of giving an early warning. 

Although both ED and MD detect the degradation in the light output, ED curve demonstrates a 
more accurate result compared with the MD curve. At time 443 min there is an increase in ED which 
corresponds to the temperature increases even though the current continuously decreases. But the MD 
curve illustrates opposite behavior because of the correlation between current and temperature.  

Parameters which cause the degradation can be identified by monitoring the individual sensor 
reading (i.e., current or temperature) and their variation from the typical values. This can be done soon 
after anomalies detected in the ED and MD values. This information can be used further to analyse and 
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identify the corresponding failure mechanism and root cause of the degradation. Such study is not 
undertaken as part of this work as the main focus is on the data driven techniques and their 
diagnosis/prognostics capability. 

Figure 15. Demonstration of Mahalanobis Distance.  

 

9. Validation of Prognostics Capability 

The values for ED and MD can be used also to make predictions for the remaining useful life of 
LEDs. During light degradation both current and temperature values that are monitored decrease with 
time when the applied voltage to the LED does not change. This observation is made during the 
experiment. This will correspond to ED and MD parameters also decreasing over time (i.e., reach a 
peak value and start to decrease). The observed maximum values (peak) for ED and MD vary for 
different LED and they indicate the different individual characteristics of the LEDs. In the case of the 
LED lighting systems, the extent of deviation or degradation (i.e., ED or MD) will not continuously 
increase until LED completely fails (i.e., output drops to 70%). As light output degrades to 70%, 
current will also decrease and this implies that the ED or MD should decrease to certain level. 
Continuous constant rate of degradation in the light output can be observed in the rate of reduction in 
the ED and MD.  

The gradient of the ED and MD curves can be used to forecast the Time-to-Failure (TTF). ED and 
MD values that correspond to the failure of LEDs, i.e., when light output drops below 70% from the 
typical value, are defined using experimental data and referred as ED failure limit and MD failure limit 
respectively. Almost linear reduction in the ED and MD is observed during the tests when the LED 
undergoes degradation process. Linear extrapolation of the ED and MD decreasing trend when light 
degrades, above the respective threshold limit, can be applied and used with the ED and MD failure 
limits to calculate the remaining useful life (RUL). This prediction for the RUL can be undertaken at 
any particular time point if the ED and MD curves are above the threshold value (indicating 
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degradation takes place) and the trend is decreasing. As new data becomes available over time, and ED 
and MD are re-calculated, their trends are adjusted and RUL predictions re-calculated.  

9.1. Estimation of ED and MD Failure Limits 

Test data obtained using seven LED devices are used to observe the respective values of ED and 
MD at the time when the power light output drops below 70% from the initial value (i.e., LED failure). 
Each LED was tested under slightly different accelerated voltage test where the peak value of the 
applied voltage was set to be in the range 3.6 to 3.99 V. The aim is to obtain data for the relationship 
between the extreme ED and MD values (denoted EDMax and MDMax respectively) computed at the 
applied voltage peaks and the respective ED and MD failure limits (denoted FLED and FLMD 
respectively). It is observed that the values of ED and MD at LED failure, i.e., FLED and FLMD, are 
dependent on the elevated applied voltage level, respectively on the associated peak value of ED and 
MD at that voltage level (i.e., EDMax and MDMax). To capture the existing relationships between the 
peak values of ED and MD, and the related ED and MD failure limits, power law approximations from 
the available datasets are derived as follows:  

8086.0
MaxED )ED(0912.1 ×=FL  (8)  

6746.0
MaxMD )MD(3105.2 ×=FL  (9)  

9.2. Real-Time Sequential Estimation of RUL  

Since the data is collected periodically, RUL is estimated sequentially by estimating the mean trend 
of the ED and MD curves over time period when they exhibit decreasing trend and are over the 
respective early warning threshold. If EDt and MDt denote the ED and MD values obtained at the 
discrete time step t, then mean trend mt of ED is calculated sequentially using the following equation:  

)EDED(11
1-tt1 −+

−
= − t

m
t

tm tt  (10)  

where mt is the mean trend at a given time step t and the time step t = 0, 1, 2… n, starting with t = 0 at 
the time when EDMax and MDMax are detected. In this study, the time steps are defined over intervals of 
one minute, i.e., the mean trend for ED and MD is calculated every minute following the observation 
of a decreasing trend of the ED and MD curves when ED and MD are above their respective  
threshold values.  

Similarly, mean trend in the case of MD distance measure is defined as follows: 

)MDMD(11
1-tt1 −+

−
= − t

m
t

tm tt  (11)  

Once the mean trends above are available, they can be used to predict the future time point when the 
trends of the ED and MD intercept the respective failure limits. This extrapolation of the trend 
provides a prediction for the remaining useful life. Using the approximations for computing the failure 
limits (Equations (6) and (7)), and Equations (8) and (9), the RUL can be estimated from Equations 
(10) and (11) using ED and MD values respectively: 
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9.3. Failure Prediction Example  

To demonstrate the predictions for RUL, and for the Time-to-Failure of an LED respectively, the 
LED test data used in Section 8 (see Figure 13) is used again. Figures 16 and 17 illustrate the change 
with time of ED and MD parameters for the studied LED and also show the failure limits. In this case 
the EDMax and MDMax values used in the prognostics calculations are 3.28 and 28.81 respectively. The 
respective failure limits are: (i) FLED = 2.85 and (ii) FLMD = 21.7. The failure limits are obtained from 
the approximations shown in Equations (6) and (7). 

Figure 16. ED history and the ED failure limit for LED test data in the Figure 13. 

 

Table 3 shows a summary of prediction results for failure time at five different time points based on 
both ED and MD curves and using Equations (10) and (11). For exampe, the predictions for failure 
time of the LED made at time 400 min estimate failure times 473 min (RUL = 73 min) and  
457 min (RUL = 57) from ED and MD data respectivly. The actual failure time for this LED is 481 min. 
It is evident from Table 3 that with time the predictions become more accurate as more data is used in 
the caluclation of the mean trends of ED and MD. In this case the results using ED data curve provide 
better predictions with time. On the other hand, the predictions based on the MD produce some 
fluctuation because the MD is very sensitive to the correlation between the current and temeprature 
data used to calculate the MD.  
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Figure 17. MD history and the MD failure limit for LED test data in the Figure 13. 

 

Table 3. Time-to-Failure (TTF) estimation from ED and MD parameters. 

Time at which TTF 
prediction is made (min) 

Failure Time from 
ED (min) 

Failure Time from 
MD (min) 

True Failure  
Time (min) 

300 434 373 481 
350 458 425 481 
400 473 457 481 
450 484 475 481 

Data collected from 7 LEDs are used to find the threshold value and establish the relationship 
between EDMax and FLED, and MDMax and FLMD. EDMax and MDMax are calculated for specific LED 
based on current and temperature sensor readings. FLED and FLMD are calculated from the established 
relationships between EDMax and FLED, and MDMax and FLMD, and calculated EDMax and MDMax. 
Obtained different values for EDMax, MDMax, FLED and FLMD indicate how differently same type of 
LED perform under the same accelerated conditions. This is because of the individual characteristics 
of the LEDs. EDMax and MDMax are used to detect the start of degradation in the light output. FLED and 
FLMD are used to detect the 30% reduction in the light output power. Reliability of this approach can 
be improved by undertaking more tests, incorporating the data collected from tests to establish better 
relationship between the maximum values (EDMax and MDMax) and failure limits (FLED and FLMD) and 
establishing more reliable value for threshold value. 

10. Conclusions 

This paper has discussed data driven PHM approach for real-time health monitoring and prognostics 
of high power LEDs using temperature and current data from sensors. The results from the undertaken 
experiments show that data driven techniques for PHM can be used to detect accurately when unusual 
changes in the expected performance of an LED start to take place, and can successfully provide an 
early warning if light output degrades and approaches the failure limit. In addition to the diagnostics 



Micromachines 2012, 3 97 
 

 

capabilities of the data driven approach, this paper also demonstrated how remaining useful life of an 
LED can be predicted. The accuracy of the prognostics calculations improve with time as more data to 
perform the sequential estimation of the ED and MD trends becomes available. In addition, embedding 
the temperature sensors very close to the junction will improve the temperature measurement in all 
situations hence the approach will become more accurate. The ED technique is found to be more 
suitable for this application as it involves less mathematical operations and require less computational 
time compared to the MD technique. The undertaken tests have indicated that the ED curves are 
generally less sensitive to noise in the monitored parameters and when test conditions (i.e., applied 
voltage) change.  

Further study is required to generalize this result for harsh operating conditions which are not 
considered in this work such as high and low room temperatures which will affect the board 
temperature etc. This will require controlling the current and temperature independently. Further 
experiments are also necessary to integrate other parameters which affect the LED life, into a 
generalized approach of LED health monitoring under harsh operating conditions.  

Studied data driven prognostics algorithms can be implemented in any LED lighting systems along 
with the LED driver to monitor the reliability and report the risk of failure in advance. Future research 
in this real-time data driven prognostics systems will focus on the development and deployment of an 
intelligent LED driver to monitor and improve the remaining useful life of LEDs. Embedding 
temperature and current sensors into an LED package will make this implementation possible and will 
also make the temperature measurement more accurate.  

Future work will focus also on improving the accuracy of studied data driven approach, for example 
by including appropriate physics-of-failure (PoF) models. Future research in these real-time PHM 
systems will aim at the development of hybrid or fusion approach for real-time health monitoring and 
prognostics of LEDs. This can be accomplished by integrating the modeling of temperature and current 
profiles using p-n junction characteristic models with sensor data on LED parameters. The main 
challenge here will be to develop fast PoF models that can run in real time and in parallel with the data 
driven computations. A specific topic that requires further studies is the failure related to 
discolouration of the LED die or LED encapsulate. 

The data driven PHM presented in this paper can be applied to other semiconductor devices such as 
microprocessors to monitor the real-time health and do the prognostics by embedding suitable sensors 
(i.e., temperature, accelerometer, vibration, humidity etc.) into those semiconductor devices. This will 
allow the semiconductor devices to have embedded health and usage monitoring capabilities and 
execute these in real-time.  
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