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Abstract: This paper presents a dual‑band 8‑port multiple‑input multiple‑output (MIMO) antenna
specifically designed for fifth‑generation (5G) smartphones, featuring two open‑slot metal frames.
To enhance impedance matching and improve isolation between adjacent antenna elements, each
antenna element employed a coupling feed. All simulation results in this paper come from An‑
sys HFSS. The operational frequency bands of the proposed antenna spanned 3.36–4.2 GHz for
the lower band and 4.37–5.95 GHz for the higher band, covering 5G New Radio (NR) bands N78
(3.4–3.6 GHz) andN79 (4.4–4.9 GHz), aswell asWiFi 5 (5.15–5.85GHz). Notably, the antenna demon‑
strated outstanding isolation exceeding 16.5 dB within the specified operating bands. The excep‑
tional performance positions the proposed antenna as a promising candidate for integration into 5G
metal‑frame smartphones.

Keywords: dual‑band antenna; MIMO antenna; metal frame; smartphone; 5G antenna

1. Introduction
The advent of the fifth‑generation (5G) internet protocol has spurred a substantial de‑

mand for high‑speed mobile data services. Achieving high transmission efficiency, low
latency, and minimal energy consumption poses a significant challenge in current mo‑
bile communication systems. The 3rd Generation Partnership Project (3GPP) has identi‑
fied three sub‑6 GHz operating bands for 5G New Radio (NR): N77 (3.3–4.2 GHz), N78
(3.3–3.8 GHz), and N79 (4.4–5.0 GHz). In 2017, China allocated spectrum for 5G systems
in sub‑6 GHz, designating N78 (3.4–3.6 GHz) and N79 (4.8–4.9 GHz) as the operational
frequency bands.

On one hand, multiple‑input multiple‑output (MIMO) antenna technology excels in
enhancing system capacity and mitigating multipath interference effects. Various MIMO
antennas operating in the sub‑6 GHz spectrum have been documented [1–9]. Lower‑order
systems like 2 × 2 and 4 × 4 have gained popularity for fourth‑generation (4G) smart‑
phones in long‑term evolution (LTE) bands [3]. The efficacy of massive MIMO antennas
in achieving larger channel capacity and higher transmission rates for 5G systems is evi‑
dent, garnering attention from both the industry and academia. Noteworthy MIMO an‑
tenna designs include folded monopoles and gap‑coupled loop branches for dual‑band
operation [4], double‑branch monopoles with a T‑shaped decoupling stub for mutual cou‑
pling reduction [5], and an eight‑port triple‑bandMIMOantenna for 5Gmetal‑frame smart‑
phones [6]. Amultiband 10‑antenna array for sub‑6 GHzMIMOapplications and a 10‑port
MIMO antennawith two types of antennamodules are presented in [7,8], respectively. An
eighteen‑antenna system compatible with a massive MIMO/Diversity 5G smartphone is
proposed without external decoupling structures [9].

On the other hand, size constraints in multi‑band MIMO systems often lead to strong
mutual coupling effects between antenna elements. Decoupling methods such as decou‑
pling branches, defected ground structures (DGS), neutralization lines (NL), parasitic el‑
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ements, and metamaterials have been proposed to address these challenges. In this pa‑
per, a variety of defective ground structures are used for antenna design. The defected
ground structures of the microstrip line are implemented by making an artificial defect on
the ground and provide a resonance property in transfer characteristics [10]. This struc‑
ture can change the distribution of the effective dielectric constant of the antenna dielectric
substrate, thereby changing the distributed inductance and distributed capacitance of the
microstrip line based on the medium, thereby giving such microstrip lines band gap char‑
acteristics and slowwave characteristics. According to the circuit theory [11], parallel RLC
circuits work as a band‑stop filter. By applying the same concept to defected ground struc‑
tures in microstrip technology, the vertical slot of defected ground structures accumulates
charge and increases the effective capacitor of the microstrip line. Two defected areas on
both sides and one connecting slot correspond to the equivalently added inductance L and
capacitance C, respectively. The defected ground structures can provide additional effec‑
tive inductance of the transmission line. The increase in effective inductance from insertion
of the defected ground structures can provide a longer electrical length of transmission line
than that of a conventional line, which enables size reduction of the microwave and mil‑
limeter circuit. Compared with other structures, the defected ground structure has a sim‑
ple structure; it has the advantages of simple production, small size, and easy integration,
so it also has a certain competitiveness in the field of antenna applications [12].

Additionally, the metal frame is a distinctive feature of full‑screen smartphones, gain‑
ing attention in recent years [13–16]. An antenna element encompassing C‑shaped mi‑
crostrip patches, two rectangular radiating microstrips on a metal frame, and a rectan‑
gular slot on the ground plane has been proposed, covering 5G N77 (3.3–4.2 GHz), N78
(3.3–3.8 GHz), N79 (4.4–5.0 GHz), and LTE46 (5.15–5.93 GHz) bands [13]. A metal‑frame
smartphone antenna design with dimensions of 150 mm × 70 mm × 6 mm incorporates
an inverted‑F antenna and an asymmetric T‑slot on the circuit board edges, demonstrating
significant engineering application value [16].

One of the primary challenges in contemporary mobile antenna design lies in ensur‑
ing optimal performance when the device is held by the user. With the escalating demand
for broader frequency bands and the diminishing space allocated for antennas, achiev‑
ing satisfactory performance, even in ideal free‑space conditions, has become increasingly
challenging [17]. In [18], an analysis of fundamental theories pertaining to models of ob‑
jects (e.g., the human body) with high dielectric constants and significant losses offers a
theoretical framework for subsequent hand model applications. Similarly, numerous case
studies examining the interaction patterns between mobile phones and hands offer valu‑
able insights into designing strategies aimed at enhancing the radiation characteristics of
mobile phone antennas [19].

This paper introduces a 5G dual‑band MIMO antenna operating at 3.36–4.2 GHz and
4.37–5.95 GHz frequencies. Eight elements are printed on two side‑edge metal frames,
and two types of decoupling structures (DS1 and DS2) are employed to mitigate mutual
coupling. The proposed MIMO antenna undergoes manufacturing and testing, and mea‑
surement results, including S‑parameters, radiation efficiencies, radiation patterns, and
calculated envelope correlation coefficient (ECC), are discussed. The proposed antenna ef‑
fectively covers the 5G China bands N78 (3.4–3.6 GHz) and N79 (4.4–5.0 GHz), along with
WiFi 5 (5.15–5.85 GHz).

2. Proposed MIMO Antenna
2.1. Antenna Structure

The structure and physical dimensions of the proposed antenna are depicted in
Figure 1a. The MIMO antenna design incorporates three FR‑4 substrates, each exhibit‑
ing a relative permittivity of 4.4 and a loss tangent of 0.02. These substrates consist of a
central main substrate and two additional side‑edge substrates. The main substrate mea‑
sures 150 mm × 73.4 mm × 0.8 mm, while the side‑edge substrates have dimensions of
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150 mm × 7 mm × 0.8 mm. Precisely printed on the two side‑edge substrates are eight an‑
tenna elements, strategically positioned perpendicular to the main substrate.
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Figure 1. (a) Geometry of the proposed antenna array, (b) detailed structure of the radiator,
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2.2. Antenna Element
Each antenna element consists of a radiator, feeding line, and a defected ground plane.

The radiator takes the form of a Chinese character正‑shaped strip, which consists of three
horizontal rectangular microstrip lines and two longitudinal rectangular microstrip lines,
precisely printed on the inner surface of the side‑edge substrate. The defected ground
plane is composed of a rectangular strip connected to an inverted L‑shaped strip, and an‑
other rectangular strip attached to an inverted L‑shaped strip and a C‑shaped strip. The
feeding line is printed on the top surface of the main substrate, establishing a connection
with the radiator. Four antenna elements are printed on the inner surface of each side‑edge
substrate. To enhance isolation between these elements, two distinct decoupling structures
(DS1 and DS2) are employed, as depicted in Figure 1d. Among them, the decoupling struc‑
ture 1 consists of a T‑shaped slot and an I‑shaped slot, while the decoupling structure 2 is
composed of an inverted T‑shaped slot and an I‑shaped slot. These structures are etched on
the outer surface of the side‑edge substrates and the bottom surface of the main substrate,
effectively extending the coupling current path andminimizing interaction between differ‑
ent antenna elements. Viewed from different directions, the specific structure of the metal
frame is as shown in Figure 1e, which shows the positional relationship of the structures
mentioned above. Viewed from the inside of the antenna, the orthogonal structure of the
正‑shaped strip is located on the inner surface of the side dielectric substrate, which can
just cover the defected ground structure. These two structures are interconnected, jointly
forming the radiating unit of the antenna during operation. In the figure, the defective
ground plane of the antenna unit is located directly outside the正‑shaped strip. Looking
from the outside of the mobile phone, the defective ground plane, T‑shaped slot, and in‑
verted T‑shaped slot mentioned above are both located on the outer surface of the metal
frame. Although the above two structures have the same principle, their distinct locations
endow them with varied functions. The defected ground plane and the orthogonal struc‑
ture constitute the antenna element, which is used to generate the resonant frequency at
which the antenna operates, whereas the slots on the metal frame and the defective slots
of the metal ground plane form a decoupling structure to enhance isolation between each
antenna port.

Due to variations in the location and radiation environment of each antenna unit, the
reflection coefficient of each unit differs slightly, despite their identical size. With the
antenna elements sharing the same dimensions and structures and being symmetrically
placed alongside decoupling structures, the eight units can be categorized into two groups:
Ant. 1, Ant. 4, Ant. 5, and Ant. 8 form one category, while the remaining four antennas
compose another. Therefore, only the reflection coefficients of Ant. 1, Ant. 2, Ant. 3,
and Ant. 4 are given in Figure 2a. The antenna operates within the frequency range of
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2.55–4.2 GHz and 4.4–6 GHz, effectively covering 5G China Bands N78 (3.4–3.6 GHz), N79
(4.4–5.0 GHz), and WiFi 5 (5.15–5.85 GHz). In this paper, S18 denotes the transmission co‑
efficient between antenna elements 1 and 8, where S18 = S45, S12 = S34 = S56 = S78, S23 = S67,
and S14 = S58. Figure 2b showcases the antenna’s isolation, revealing that all ports main‑
tain isolation levels exceeding 16.5 dB, ensuring independence between antenna units and
preventing mutual interference.
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Figure 2. (a) Simulated reflection coefficients and (b) transmission coefficients of the proposed
antenna.

In general, to enhance isolation and achieve low correlation, external decoupling struc‑
tures are introduced between antenna elements. Designs with eight MIMO antennas often
utilize an additional slot in the ground plane to improve isolation. As the equivalent circuit
of this decoupling structure resembles a parallel RLC configuration, resonance will occur
at specific frequency, consequently influencing the surface current distribution within the
ground layer and altering the transmission line characteristics of the antenna unit. This
study demonstrates that the slot not only enhances mutual isolation between antenna el‑
ements but also serves as the ground clearance area to expand bandwidth. Figure 3a
presents simulation results of reflection coefficients with/without DS. The simulated S11
and S22 continue to cover desired bands even without DS. Figure 3b illustrates simulated
isolation curves S12 and S23with/without DS1 andDS2. The utilization of decoupling struc‑
tures effectively attenuates mutual coupling at 3.5 GHz, 4.9 GHz, and 5.5 GHz. In the de‑
sired frequency bands, the low isolation (11 dB) at 3.5 GHz improves distinctly with the in‑
troduction of DS1 between Ant. 1 and Ant. 2. Furthermore, with the incorporation of DS2,
the simulated S23 complies with the 15 dB requirement in the desired frequency bands.
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3. Design Process
The design methodology for the antenna element is outlined in Figure 4a. Simulated

reflection coefficients are presented in Figure 4b. The reflection coefficients for Case 1 and
Case 2 indicate that the low‑frequency resonance was generated by the inverted L‑shaped
strip atop the metal frame, while the high‑frequency resonance was influenced by the C‑
shaped strip on the right side of the metal frame. Moreover, Case 3 demonstrates that
the inverted L‑shaped strip connected to the left rectangular strip effectively controlled
the deviation between the two resonance points. Ultimately, the proposed antenna ele‑
ment covered the frequency range of 2.55–4.2 GHz in the lower band and 4.4–6 GHz in the
higher band.
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Figure 4. (a) Four cases of the antenna element during the evolution process, and (b) simulated
reflection coefficients.

Owing to disparities in radiation conditions and surface current distributions, key
dimensions within the antenna yielded diverse effects on the antenna’s frequency band.
The influence of these critical parameters on the frequency band was examined based on
actual simulation conditions. Non‑essential parameters that did not significantly impact
frequency variations were omitted and will not be discussed. To demonstrate the working
effects of the proposedMIMO antenna, variations were introduced in the strip parameters
L1 and L2 for each antenna element. Figure 5 displays the simulated S11 parameter as it
changed with different values of L1, L2, L4, and L5 while keeping other optimized param‑
eters constant. A comparison of various L1 and L2 values revealed their distinct influence
on low‑ and high‑frequency resonances, respectively. As illustrated in Figure 5a, signifi‑
cant changes occurred in the low‑frequency band of the antennawhen altering the value of
L1. Specifically, the frequency decreased as the length of the L‑shaped strip, L1, increased.
Conversely, modifying the length of the C‑shaped strip line, L2, led to notable fluctuations
in the high‑frequency band of the antenna, as depicted in Figure 5b. It is evident from
Figure 5c,d that L4 primarily affected the low‑frequency band, while L5 had a greater im‑
pact on the high‑frequency band. Overall, compared to the influence of L1 and L2 on the
antenna’s operating frequency, the effect of L4 and L5 on the frequency bandwas relatively
smaller when changing the same value. This observation is further supported by the vec‑
tor current distribution diagram shown below. Consequently, the resonant frequency of
the proposed antenna element can be independently adjusted, showcasing a unique char‑
acteristic that facilitates straightforward operation in engineering applications.
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To enhance our understanding of the operational principle of the antenna element, we
present the surface electric field at 3.5 GHz, 4.9 GHz, and 5.5 GHz in Figure 6. Initially, the
surface electric field demonstrated its peak intensity at the two inverted L‑shaped strips
on the side‑edge metal frame, with the current concentrated along the edge of the metal
frame at 3.5 GHz. Subsequently, at 4.9 GHz, a robust electric field path was distributed
along the bottom of the metal frame and the C‑shaped strip. Finally, in the 5.5 GHz band,
themaximum electric field valueswere observed at the top edge of themetal frame and the
C‑shaped strip. The current vector distribution of the antenna primarily concentrated on
path 1 at 3.5 GHz, as depicted in Figure 6a. Moreover, both path 2 and path 3 are illustrated
in Figure 6b,c, showcasing the direction of current flow in their respective operating bands.
These findings signify that a portion of the metal frame, along with the ground, functions
as the radiator of the antenna. Consequently, the resonances in the differential bands are
independently associated with the fundamental modes of the distinct current paths.
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4. Experimental Results and Discussion
4.1. S‑Parameters

The presented 8‑port antenna array was successfully manufactured and subjected
to measurements, with the top and bottom views showcased in Figure 7. Each element
was connected to a 50‑Ohm SMA connector, and the S‑parameters were obtained using
a Vector Network Analyzer (VNA) with model number N5224A produced by Keysight
Technologies (Santa Rosa, CA, USA). The essential parameters of MIMO antennas, such as
radiation pattern and efficiency, were evaluated in a standard microwave anechoic cham‑
ber. The detailed testing procedure is depicted in Figure 7b. Firstly, the calibration of
the vector network analysis test port was performed, demonstrating the calibration pro‑
cess utilizing a standard 50‑Ohm connector. Secondly, when examining the reflection co‑
efficient and transmission coefficient of ports 1 and 2, all ports were connected to other
standard matched loads, thus restoring the authentic operation of the antenna to the great‑
est extent. Finally, the specific process for measuring the radiation pattern, antenna effi‑
ciency, and other parameters of the antenna in the standard microwave anechoic chamber
is presented. Figure 8 showcases the remarkable agreement between simulation and mea‑
surement results. In Figure 8a, it is observed that the measured S11 was below −6 dB
within the designated frequency band (3.36–4.2 GHz and 4.37–5.95 GHz), while the mea‑
sured transmission coefficients (S12, S23, S14, and S18) all fell below −16.5 dB within the
desired frequency range. The −6 dB bandwidth met the standards for a mobile phone
antenna operating in sub‑6 GHz bands. The isolations between nonadjacent antennas sig‑
nificantly surpassed those between adjacent antennas, andwhile not depicted in the figure,
they were well within acceptable ranges. The measured S‑parameters affirm that the pro‑
posed 8‑port MIMO antenna effectively covered the 5G China band N78 (3.4–3.6 GHz),
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N79 (4.4–5.0 GHz), and WiFi 5 (5.15–5.85 GHz). The disparities between simulated and
measured outcomes could arise from differences in the SMA connector used for simula‑
tion compared to measurement, as well as welding factors and operational errors.
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4.2. Radiation Performance
To validate the radiation performances, the proposed antenna underwent measure‑

ments in a microwave anechoic chamber. Figure 9 illustrates the simulated and measured
theta‑polarized and phi‑polarized radiation patterns of the antenna at 3.5 GHz, 4.9 GHz,
and 5.5 GHz. The close alignment between simulated and measured results indicates
favorable radiation characteristics at the three representative frequencies (3.4–3.6 GHz,
4.4–5.0 GHz, and 5.15–5.85 GHz), highlighting promising radiation performance for mo‑
bile communications.
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4.3. MIMO Performance
An essential metric for evaluating MIMO antennas, the envelope correlation coeffi‑

cient (ECC), was calculated using Equation (1). It signifies the correlation among the re‑
ceived signal amplitudes across various antenna units, serving as a metric to gauge the
diversity and coupling performance of MIMOmulti‑antenna systems. In the operating 5G
China band N78 (3.4–3.6 GHz), the maximum ECC was 0.18, occurring between Ant. 1
and Ant. 4. For 5G NR N79 (4.4–5.0 GHz), the ECC between adjacent antenna elements
remained below 0.08, as illustrated in Figure 10. Additionally, all simulated ECCs forWiFi
5 (5.15–5.85 GHz) did not exceed 0.03. Based on the ECC test results, it was observed that
the tested ECC exhibited lower values in the three target frequency bands when compared
to the simulation results. The consistently low ECC values affirm the proposed 8‑port an‑
tenna’s exemplary diversity performance for a 5G MIMO system.

ρc(i, j) =

∣∣∣s4π[Fi(θ,φ)·F*j (θ,φ)
]
dΩ

∣∣∣2
s
4π

∣∣∣Fi(θ,φ)
∣∣∣2dΩ·

s
4π

∣∣∣Fj(θ,φ)
∣∣∣2dΩ

(1)
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4.4. Total Efficiency
The overall efficiency of an antenna typically indicates its capability to convert input

power into radiated power, directly impacting the transmission range and reliability of the
wireless communication system. Higher antenna efficiency results in more effective con‑
version of transmitted power into electromagnetic waves, thereby enhancing signal prop‑
agation range and coverage area. The measurement of an antenna is typically categorized
into active and passive testing. In active testing, the emphasis lies on assessing factors such
as the antenna’s radiation pattern, polarization, and impedance characteristics as it oper‑
ates in real time. Passive testing is primarily utilized to assess the radiation performance of
the antenna, and it focuses on measuring parameters such as antenna efficiency, gain, and
radiating pattern. The process of measuring antenna efficiency involves several steps. The
proposed antenna was positioned in a microwave anechoic chamber, to minimize external
interference. A signal was then transmitted to the antenna using a vector network analyzer.
The receivedpower and the output power of the signal sourceweremeticulouslymeasured
and compared. Antenna efficiency was subsequently calculated based on these measure‑
ments. It was crucial to maintain a reliable connection between the signal source and the
antenna to minimize signal loss and ensure precise measurements. Additionally, the pro‑
cess required equipment calibration and careful consideration of potential sources of error.
Overall, measuring antenna efficiency demands precision and meticulous attention to de‑
tail. As depicted in Figure 11, the total efficiency of both simulated and tested antennas
ranged from 41.5% to 86%. Notably, the total efficiencymeasured during testingwas lower
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than that of the simulated antenna, possibly attributed to errors in themicrowave anechoic
chamber and human operational inaccuracies.
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4.5. Effects of Hand
When designing wireless electronic products like mobile phone antennas and wear‑

able device antennas for signal transmission and reception, it is crucial to not only assess
antenna performance within the device’s physical structure but also account for the influ‑
ence of the human body on antenna performance. Ansys HFSS 15.0, an electromagnetic
simulation software, offers a human body structure model. Within this model, material
properties such as relative permittivity and bulk conductivity are predefined as global vari‑
ables, specifically denoting the average values of relative permittivity and volume conduc‑
tivity. Considering the impact of human body tissues on antenna performance due to their
lossy properties and high permittivity, Figure 12a,b depict the effects of hand phantoms
on the current distribution of the proposed MIMO antenna under single‑hand mode and
double‑handsmode. Simulated S‑parameters of the user’s hand are presented in Figure 13.
For the single‑hand mode (Figure 13a), the hand’s close proximity to Ant. 2 and Ant. 3
led to decreases in the simulated reflection coefficient for these antennas. In the double‑
hands mode (Figure 13c), Ant. 2, Ant. 3, Ant. 6, and Ant. 7 performance deteriorated
because they were mostly covered by fingers. Notably, Figure 13b,d demonstrate that all
isolations between different antenna elements remained higher than 16.5 dB. The remain‑
ing mobile phone antenna units, unaffected by finger coverage, effectively covered the
desired frequency bands while also maintaining satisfactory isolation between each port.
These results affirm that the antenna maintained good performance whether held by one
or two hands.

Table 1 provides a comprehensive comparison between the current design and pre‑
viously reported smartphone MIMO antennas. Notably, the proposed antenna exceled in
fulfilling the requirements of dual‑bandMIMO operations, showcasing commendable per‑
formance in terms of isolation, efficiency, and ECC. The majority of the referenced works
in Table 1 focus on single‑mode antennas covering either one or two sub‑6 GHz bands,
whereas the proposed antenna extends its coverage to three sub‑6 GHz bands. Further‑
more, when compared to the most referenced antennas integrated into metal‑frame smart‑
phones, the proposed antenna exhibited superior isolation, higher efficiency, and a broader
bandwidth. Despite the ECCs in the 3.5 GHz frequency band being slightly higher than
those found in the references, the ECC values of the proposed antenna still met the opera‑
tional demands of the MIMO system.
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Table 1. Comparison between the proposed 5G MIMO antenna and other relevant designs.

Reference Bandwidth (GHz) Isolation
(dB) ECC Total Efficiency

(%) MIMO Order Metal Frame

[1] 3.3–4.2, 4.4–5.0,
5.15–5.925 (−6 dB) >11 <0.1 40–71 8 yes

[4] 3.4–3.6, 4.8–5.1
(−6 dB) >10 <0.08 41–72, 40–85 8 yes

[5] 3.3–4.2, 4.8–5.0
(−6 dB) >10 <0.12 53.8–76.5, 40–85 8 yes

[13] 3.3–6 (−10 dB) >18 <0.08 69.85–90 8 yes

[20] 3.3–3.84, 4.61–4.91
(−10 dB) >15 <0.02 76–85, 66–82 4 no

[21] 3.4–3.8, 4.8–5.0
(−6 dB) >15.5 <0.07 42–83, 40–85 8 no

[22] 3.4–3.8, 5.15–5.925
(−6 dB) >11 <0.1 52.4–71.7,

48.9–75.4 10 no

Proposed
work

3.4–3.6, 4.4–5.0,
5.15–5.85 (−6 dB) >16.5 <0.18 72–82.4,

41.5–75.6 8 yes

5. Conclusions
In conclusion, a dual‑band, 8‑port MIMO antenna for 5G/WiFi 5 smartphones was

successfully designed, fabricated, and tested in this paper. The antenna exhibited favor‑
able performance, with acceptable ECCs for the MIMO systemwithin the operating bands
(3.4–3.6 GHz, 4.4–5.0 GHz, and 5.15–5.85 GHz) and isolation exceeding 16.8 dB. The an‑
tenna efficiencies surpassed 41.5% in the target frequency bands. The calculated ECCs
from measured electric field results were below 0.18 in the operating bands. Overall, the
proposed MIMO antenna array demonstrated significant promise for 5G massive MIMO
mobile communication systems.
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