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Abstract: In this paper, we investigate the effects of negative bias instability (NBTI) and self-heating
effect (SHE) on threshold voltage in NSFETs. To explore accurately the interaction between SHE and
NBTI, we established an NBTI simulation framework based on trap microdynamics and considered
the influence of the self-heating effect. The results show that NBTI weakens the SHE effect, while
SHE exacerbates the NBTI effect. Since the width of the nanosheet in NSFET has a significant control
effect on the electric field distribution, we also studied the effect of the width of the nanosheet on
the NBTI and self-heating effect. The results show that increasing the width of the nanosheet will
reduce the NBTI effect but will enhance the SHE effect. In addition, we extended our research to the
SRAM cell circuit, and the results show that the NBTI effect will reduce the static noise margin (SNM)
of the SRAM cell, and the NBTI effect affected by self-heating will make the SNM decrease more
significantly. In addition, our research results also indicate that increasing the nanosheet width can
help slow down the NBTI effect and the negative impact of NBTI on SRAM performance affected by
the self-heating effect.

Keywords: NSFET; negative bias instability (NBTI); self-heating effect (SHE); nanosheet width;
reliability; technology computer-aided design (TCAD)

1. Introduction

With the development of Moore’s law, MOSFETs’ size reduction is becoming the most
critical issue in the integrated circuit industry [1–4]. Short-channel effects (SCEs) and
reliability are the main factors limiting size reduction [5,6]. To overcome SCEs, multi-gate
devices have replaced traditional planar MOSFETs due to their better gate controllability,
such as FinFETs used in the 22 nm CMOS technology node and beyond [7]. However, due
to technical difficulties and the intensification of SCEs, nanosheet field-effect transistors
(NSFETs) with their GAA structure, providing better gate control capabilities and more
flexible current regulation capabilities due to the adjustable width, have replaced FinFETs
as the ideal transistor for the 5 nm node and beyond [8,9].

Current research on NSFETs mainly focuses on improving electrical and radio fre-
quency characteristics by optimizing the device structure [10,11]. Recently, researchers have
begun to pay attention to the impact of reliability issues on NSFETs [12,13]. In particular,
the NBTI effect is the most severe impact on MOSFET devices [14]. Until now, many papers
have studied the NBTI effect of NSFETs [15–17].

An NSFET is a GAA structure with poor heat dissipation compared to bulk-FinFET
devices with bulk silicon substrates [18]. Furthermore, to improve the mobility of P-type
NSFETs, NSFET devices with advanced technology often use SiGe in the source and drain,
but the thermal conductivity of SiGe is low, which aggravates the self-heating effect in
NSFETs [19–21].
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For P-type NSFETs, the intensification of the self-heating effect not only alters the
device’s electrical characteristics but also significantly impacts the NBTI effect in PMOS
devices [22,23]. Researchers have recently conducted relevant studies on the coupling
effect of NBTI and SHE. Recently, researchers have studied the impact of NBTI and SHE in
FinFETs [24], and some researchers have adopted a relatively simple BTI model to study the
effects of NBTI and SHE on NW FETs. Although they did not start from a trap dynamics
perspective, their study still provides valuable insights [25]. Although some people have
studied how to decouple NBTI and HCI effects under the influence of self-heating effects,
they have yet to explore the interrelationship between NBTI and self-heating effects in
detail [26]. Considering the importance of NSFETs and the severe impact of the self-heating
effect on NBTI in P-type NSFETs, it is necessary to conduct in-depth research on this issue.

In addition, in the NSFET structure, the electric field distribution is not uniform [27],
which leads to the aggravation of the influence on the NBTI effect [16]. Considering these
factors, based on previous studies, the relationship between the structural parameters of
NSFETs and the NBTI effect also needs to be analyzed deeply. Furthermore, according to
the International Technology Roadmap for Semiconductors (ITRS) report, there is a very
strong demand for stable thermal/electrical reliability for circuit features such as SRAM
and ring oscillators (ROs) [28]. Since SRAM usually comprises multiple CMOS transistors,
SRAMs made from stacked NSFETs may have thermal issues [29].

In this paper, to study accurately the impact of SHE on the NBTI effect of NSFETs, we
built a simulation framework for NBTI in TCAD based on trap microscopic dynamics while
considering the influence of the self-heating effect. In addition, the width of the nanosheet
is adjusted to improve the uniformity of the electric field distribution to mitigate the NBTI
effect and its interaction with the self-heating effect. We also extend our study to SRAM
cell circuits to analyze the impact of device reliability on the stability of SRAM circuits.

The paper is summarized as follows: Section 2 describes the device structure, the
simulation setup, and the NBTI simulation framework. Section 3 discusses the interaction
between NBTI and self-heating effects in NSFETs and their impact on NSFET-based SRAM
circuits. Finally, in Section 4, conclusions and important points are presented.

2. Device Structure and Simulation Setup
2.1. Device Structure

Figure 1 shows the three-dimensional structure and cross-section of the NSFET device.
The design of this NSFET device follows the 2015 International Technology Roadmap for
Semiconductors (ITRS) [30]. The gate length (Lg) is 12 nm, the extension length (Lext) is
5 nm, the channel width (Tw) is 25 nm, and the entire channel thickness (Tch) is 5 nm, with
an S/D length of 12 nm. Regarding the oxide layer, the SiO2 thickness (κ ≈ 3.9) is 0.6 nm,
the HfO2 thickness (κ ≈ 22) is 1.69 nm, and the equivalent oxide layer thickness (EOT) is
0.9 nm. In the S/D region, the boron doping concentration is 1 × 1020, while in the channel
region, the phosphorus doping concentration is 1 × 1016. All these structure parameters
are specified in Table 1.

Table 1. Device parameter for the 5 nm node NSFET.

Symbol Implication Value

Lg Gate length 12 nm

Lext Extension length 5 nm

Ls/d S/D length, 12 nm

Tch Channel height 5 nm

Tw Channel width 25 nm

Nc Channel doping concentration 1 × 1016 cm−3

Nd Drain doping concentration 1 × 1020 cm−3
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Table 1. Cont.

Symbol Implication Value

Ns Source doping concentration 1 × 1020 cm−3

Eot Equivalent oxide thickness 0.9 nm

Vth0 Initial Vth before NBTI effect −0.3792 V
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ployed the Lombardi model to account for mobility degradation caused by impurity 
scattering and intercarrier scattering. Due to the influence of the thickness of the sheet, 
the thin-layer mobility model is used. Additionally, to consider the quantum effects re-
lated to carrier density and density gradient, we incorporated Fermi–Dirac statistics and 
quantum potentials. The band narrowing model and the Shockley–Read–Hall (SRH) 
composite model were also included. To simulate the tunneling process, we utilized the 
Hurkx BTBT model. Figure 2 shows the calibration results of the transfer characteristics 
of NSFETs with all-silicon channels, which are consistent with the experimental data. It 
should be noted that the experimental data are extracted from [31]. 

Figure 1. From left to right: the 3-D structure of the 5 nm node three-stack nanosheet FET, cross-view X,
and cross-view Y with channel details.

2.2. TCAD Simulation

We simulated the NSFET using the TCAD (Sentaurus TCAD 2021) [16]. We employed
the Lombardi model to account for mobility degradation caused by impurity scattering
and intercarrier scattering. Due to the influence of the thickness of the sheet, the thin-
layer mobility model is used. Additionally, to consider the quantum effects related to
carrier density and density gradient, we incorporated Fermi–Dirac statistics and quantum
potentials. The band narrowing model and the Shockley–Read–Hall (SRH) composite
model were also included. To simulate the tunneling process, we utilized the Hurkx BTBT
model. Figure 2 shows the calibration results of the transfer characteristics of NSFETs with
all-silicon channels, which are consistent with the experimental data. It should be noted
that the experimental data are extracted from [31].
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2.3. NBTI Simulation Framework

In order to describe the degradation of NBTI accurately, we made appropriate simpli-
fications based on [32], ignored VOT that was not obvious under conventional stress, and
calibrated the simplified BAT framework [10], which allowed us to simulate the NBTI effect
of NSFET. Device degradation is divided into two unrelated parts: interface traps, expressed
as ∆Vit, and hole traps, expressed as ∆Vht. The generation of interface traps is described by
the multi-state configuration (MSC)–hydrogen transport degradation model [33], and we
constructed a dual-interface RD model [32] based on this model. We set up two state transi-
tions at the Si/SiO2 interface and SiO2/HfO2 interface to simulate the generation of traps.
However, not all traps generated contribute to device degradation. Only interface traps
above the Fermi level contribute to degradation. Therefore, we use the TTOM model to
calculate the occupancy probability of interface traps to obtain the value of ∆VIT [32]. Hole
trapping is simulated by the ABDWT model, which was first proposed in [34] and covered
in recent reports [35,36]. Overall, ∆VT is calculated from two uncorrelated components,
∆VIT and ∆VHT. As shown in Figure 3, we verified the accuracy of this framework through
the experimental data [37]. Since ∆VIT dominates ∆VT under actual stress conditions, only
∆VIT is considered in the following degradation simulations [38].
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3. Results and Discussion
3.1. NBTI under the Influence of Self-Heating Effect

Figure 4a shows the change in the transfer characteristic curve of NSFETs with degra-
dation time under the influence of the NBTI effect. It can be seen from the figure that
as the degradation time increases, the drain current decreases, and the threshold voltage
becomes larger. Figure 4b shows that the output characteristic curve of NSFET is affected
by the NBTI effect. It can also be concluded from the figure that the drain current decreases
with increasing degradation time. Table 2 shows the changes in the threshold voltage of
NSFET before and after being affected by the NBTI effect. We can see from the table that
the threshold voltage increases with the increase in degradation time.

Table 2. NSFET threshold voltage changes with degradation time.

Aging Time Initial NBTI Aging

0.001 s −0.3729 V −0.3746

0.01 s −0.3729 V −0.3784

0.1 s −0.3729 V −0.3862

1 s −0.3729 V −0.4126

10 s −0.3729 V −0.4467
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Table 2. Cont.

Aging Time Initial NBTI Aging

100 s −0.3729 V −0.4629

1000 s −0.3729 V −0.4726
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Figure 4. The transfer characteristic (a) curve and output characteristic curve (b) of NSFET change
with the change in degradation time.

Figure 5a compares the pure NBTI and NBTI effects under the self-heating effect of
the NSFET. It is evident from the figure that self-heating will exacerbate the NBTI effect.
Figure 5b shows the changes in the interface trap of the NSFET with and without the
influence of self-heating as the degradation time increases. It can be observed from the
figure that as the degradation time increases, the number of interface traps of the NSFET
also increases. Under the joint influence of self-heating and NBTI effects, the number of
interface traps in the NSFET is greater than that of NBTI alone. This is because the self-
heating effect causes the temperature in the channel to increase, and the carriers gain more
energy during transport. As a result, more carriers cross the interface barrier to form traps,
generating more dangling bonds, further aggravating device degradation and causing the
NBTI effect to become more serious.

Micromachines 2024, 15, x 6 of 14 
 

 

  
(a) (b) 

Figure 5. Under the influence of the self-heating effect, the threshold voltage degradation of the 
NSFET by NBTI is compared with that of the NSFET only affected by NBTI (a); interface traps of 
NSFET with or without self-heating (b). 

Figure 6 shows the impact of the self-heating effect on hole traps, which reflects the 
change in ΔVHT value. It can be seen from the figure that under the influence of the self-
heating effect, the number of hole traps increases and ΔVHT increases, which in turn leads 
to an increase in the degradation of ΔVT. 

  
Figure 6. Changes in hole traps under self-heating effect. 

Figure 7 shows the three-dimensional thermal distribution diagram of the NSFET 
under the influence of the NBTI effect. It can be observed from the figure that the heat 
generated by the device due to the self-heating effect is mainly distributed near the drain. 
This is mainly because carriers obtain energy through the electric field when transporting 
in the channel. Near the drain, the carriers move for the longest time, so the energy is 
higher, resulting in more thermal effects. In addition, we can also see that the thermal 
effect of the device gradually weakens as the degradation time increases. As the degrada-
tion time increases, more Si-H bonds will be broken under the action of holes, generating 
more dangling bonds and further aggravating the NBTI effect of the device. However, the 
number of carriers that react with Si-H bonds increases, and the number of carriers that 
reach the drain and exhibit thermal effects decreases. Hence, the self-heating effect of the 
device becomes less noticeable. Therefore, the NBTI effect weakens the self-heating effect. 
We can also conclude in Figure 8 that as the degradation time increases, the lattice tem-
perature of the NSFET decreases. 
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NSFET by NBTI is compared with that of the NSFET only affected by NBTI (a); interface traps of
NSFET with or without self-heating (b).

Figure 6 shows the impact of the self-heating effect on hole traps, which reflects the
change in ∆VHT value. It can be seen from the figure that under the influence of the
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self-heating effect, the number of hole traps increases and ∆VHT increases, which in turn
leads to an increase in the degradation of ∆VT.
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Figure 6. Changes in hole traps under self-heating effect.

Figure 7 shows the three-dimensional thermal distribution diagram of the NSFET
under the influence of the NBTI effect. It can be observed from the figure that the heat
generated by the device due to the self-heating effect is mainly distributed near the drain.
This is mainly because carriers obtain energy through the electric field when transporting
in the channel. Near the drain, the carriers move for the longest time, so the energy is
higher, resulting in more thermal effects. In addition, we can also see that the thermal effect
of the device gradually weakens as the degradation time increases. As the degradation
time increases, more Si-H bonds will be broken under the action of holes, generating
more dangling bonds and further aggravating the NBTI effect of the device. However,
the number of carriers that react with Si-H bonds increases, and the number of carriers
that reach the drain and exhibit thermal effects decreases. Hence, the self-heating effect
of the device becomes less noticeable. Therefore, the NBTI effect weakens the self-heating
effect. We can also conclude in Figure 8 that as the degradation time increases, the lattice
temperature of the NSFET decreases.

Figure 7. Schematic of NSFET under SHE, showing the lattice temperature is higher near the drain
side than near the source side. Stress time = 0.001 s (a), stress time = 10 s (b), stress time = 10,000 s (c).

These simulation results show that in nanoscale P-NSFETs, the self-heating effect will
intensify the NBTI effect, and the NBTI effect will weaken the self-heating effect. This
means that the interplay of these two effects needs to be balanced when designing and
optimizing such nanodevices. By controlling the temperature and voltage of the device,
the impact of NBTI can be effectively reduced while minimizing the negative impact of
self-heating on device performance.
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3.2. Effect of Nanosheet Width on NBTI and SHE

In NSFETs, compared to planar FETs, the electric field distribution in the channel area is
not uniform because the channel is a thin sheet structure and the gate surrounds the channel.
Therefore, there is an electric field enhancement effect in the channel of NSFETs, especially in
the corner region. The electric field enhancement effect improves the gate control performance
of the device to a certain extent [31], but it also aggravates the impact of the BTI effect. This
means that in the same layer of the nanosheet, the distribution of the electric field is uneven,
causing the BTI effect to have varying degrees of impact at different locations.

Figure 9a compares the changes in the interface traps of the NSFET with different
nanosheet widths as the degradation time increases. We can see from the figure that as the
degradation time increases, the NSFET with a wider nanosheet width has fewer interface
traps than the NSFET with a narrower width. Figure 9b shows the NBTI degradation of the
NSFET at different nanosheet widths. It can be observed from the figure that as the width
of the nanosheet increases, the amount of NBTI degradation of the NSFET decreases. This
demonstrates that the width of the nanosheet has a certain influence on the extent of NBTI
degradation. This is because wider nanosheets are more conducive to uniform electric field
distribution, and the electric field at the rolled corners is not exceptionally concentrated.
The NBTI effect depends on the strength of the electric field. Reducing the electric field
will alleviate the NBTI effect to a certain extent. Therefore, increasing the width of the
nanosheet will weaken the NBTI effect of the NSFET.
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Figure 10A,B show the three-dimensional lattice temperature distribution of the device
when the nanosheet width is 24 nm and 50 nm. It can be observed that as the nanosheet
width increases, the heat distribution range of the NSFET expands. Figure 10C,D show the



Micromachines 2024, 15, 420 8 of 13

energy distribution at the channel. We can also conclude from the figures that the increase
in width will increase the self-heating effect of the NSFET. The results show that increasing
the nanosheet’s width will increase the device’s self-heating effect. The main reason is that
as the width of the nanosheet increases, the number of carriers in the channel also increases,
which causes more carriers to gain energy and collide with the lattice, which in turn causes
the energy of the lattice to rise more, further aggravating the device’s self-heating effect.
Figure 11 shows the lattice temperature of NSFET as a function of degradation time at
different nanosheet widths. It can be seen from the figure that wider nanosheets have more
significant lattice temperatures.

Figure 10. Schematic of NSFET with different nanosheet widths, showing lattice temperature.
Width = 24 nm (A), width = 50 nm (B). Lattice temperature at the channel, width = 24 nm (C),
width = 50 nm (D).
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Figure 12a shows the change in the number of interface traps as the degradation time
increases for NSFETs with different nanosheet widths under the coupling influence of the
self-heating effect and NBTI. We can see from the figure that under the same degradation
time, the coupling effect of self-heating and NBTI has less impact on the interface traps
of the NSFET with wider nanosheet width. Figure 12b shows the coupling effect of self-
heating and NBTI on the threshold voltage degradation of the NSFET under different
nanosheet widths. It can be observed from the figure that as the width of the nanosheet
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increases, the degradation caused by the coupling effect of the NSFET decreases. The
results in Figures 9 and 11 show that as the nanosheet width increases, the NBTI effect
weakens while the self-heating effect increases. A comprehensive analysis of Figure 12
shows that in increasing the nanosheet’s width, the impact of the NBTI effect on the device
is more significant than the impact of the self-heating effect on the device.
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3.3. Influence of NBTI and SHE on SRAM

In order to study the impact of NBTI and self-heating effects on SRAM performance,
we built an NSFET-based SRAM circuit in Sentaurus TCAD. Figure 13 shows the structure
of a 6T SRAM cell.
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Stability is crucial in SRAM design. Usually, we use SNM (static noise margin) to
evaluate the stability of the SRAM. SNM defines the maximum noise level an SRAM cell
can tolerate while keeping its stored data error-free. Generally speaking, we measure the
SNM of SRAM through the butterfly curve [39]. Depending on the working state of the
device, the static noise margin of the SRAM unit circuit is divided into hold static noise
margin (HSNM), read static noise margin (RSNM), and write static noise margin (WSNM).
In SRAM, read operations are usually more frequent than write operations. The RSNM
value is the smallest for the six-tube SRAM structure, so the RSNM value is often used as
the static noise margin of the six-tube SRAM cell structure [40].

Figure 14 shows the butterfly curve of NSFET-based SRAM. It can be observed from
the figure that as the degradation time increases, the SNM of SRAM gradually decreases.
Under the influence of the NBTI effect, the two voltage output characteristic curves in the
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butterfly curve shift when the level flips, causing the level information of the corresponding
storage node to be more susceptible to noise and flipping. This is because in 6T SRAM
cells, PMOS acts as a pull-up transistor, and its threshold voltage is reduced due to the
influence of NBTI, making it harder to turn on. At the same time, NMOS, as the pull-down
transistor of 6T SRAM, is unaffected. When the potential of the Q point changes from logic
1 to logic 0, the PMOS turns on relatively late to charge the QB node, while the NMOS
typically remains turned on. Therefore, as the degradation time increases, the butterfly
curve in SRAM flips earlier.
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NSFET-based SRAM under NBTI effect (b).

Figure 15 shows the butterfly curve of an NSFET-based SRAM cell under the influence
of the self-heating effect and NBTI. It can be observed from the figure that under the same
degradation time, the self-heating and NBTI coupling effects produce a more significant
shift in the butterfly curve of the SRAM cell. According to the analysis in Section 3.2,
self-heating and NBTI coupling effects cause more significant degradation in the threshold
voltage of P-type NSFETs. Therefore, the P-type NSFET, the pull-up transmission gate of
the SRAM, is less likely to be turned on, resulting in a more significant shift in the voltage
output characteristic curve.
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Figure 16a shows the butterfly curve of SRAM based on NSFETs with different
nanosheet widths under the influence of the NBTI effect. It can be seen that the but-
terfly curve shift of the SRAM constructed from NSFETs with a wider nanosheet width is
smaller. Figure 16b shows the SNM degradation of NSFET-based SRAM with different-width
nanosheets. The result shows that SRAM based on NSFETs with a wider nanosheet width has
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higher SNM and smaller SNM degradation. This is also because the wider nanosheet width
helps the electric field to be distributed more evenly, thereby mitigating the impact of the BTI
effect on the rolled corner area to a certain extent. However, this also increases the SRAM cell
area, requiring designers to trade between integration and reliability.
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4. Conclusions

In nanoscale P-NSFET technology, SHE significantly increases the impact of NBTI,
but as the NBTI degradation time increases, the self-heating effect weakens. In addition,
due to the uneven electric field distribution in the nanosheets, there is an electric field
enhancement effect in the rolled corner area, which leads to increased NBTI degradation
of the device. Increasing the width of the nanosheet can reduce the proportion of the
rolled corner area in the nanosheet, making the electric field distribution more uniform,
thereby weakening the impact of NBTI on the device. We also extend our research to
6T SRAM cell circuits. As the NBTI degradation time increases, the NBTI effect will reduce
the SNM of SRAM, and the coupling effect of NBTI and self-heating will aggravate the
SNM degradation. At the same time, we demonstrated that increasing the nanosheet width
weakens the degradation of SNM. However, increasing the nanosheet’s width will increase
the SRAM cell’s area, which requires designers to make a trade-off between the integration
and reliability of the unit circuit.
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