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Abstract: This paper presents a machine learning-based figure of merit model for superjunction (SJ)
U-MOSFET (SSJ-UMOS) with a modulated drift region utilizing semi-insulating poly-crystalline
silicon (SIPOS) pillars. This SJ drift region modulation is achieved through SIPOS pillars beneath
the trench gate, focusing on optimizing the tradeoff between breakdown voltage (BV) and specific
ON-resistance (RON,sp). This analytical model considers the effects of electric field modulation,
charge-coupling, and majority carrier accumulation due to additional SIPOS pillars. Gaussian process
regression is employed for the figure of merit (FOM = BV2/RON,sp) prediction and hyperparameter
optimization, ensuring a reasonable and accurate model. A methodology is devised to determine the
optimal BV-RON,sp tradeoff, surpassing the SJ silicon limit. The paper also delves into a discussion
of optimal structural parameters for drift region, oxide thickness, and electric field modulation
coefficients within the analytical model. The validity of the proposed model is robustly confirmed
through comprehensive verification against TCAD simulation results.

Keywords: superjunction; UMOSFET; machine learning; Silicon limit

1. Introduction

Power MOSFETs play a crucial role in power management and energy conversion
systems. The superjunction (SJ) theory, utilizing a vertical P-N junction in the drift region,
has been widely adopted in the design of vertical discrete power MOSFETs rated from
300 V to 1000 V. This approach achieves notably low specific ON resistance (RON,sp) and
high breakdown voltage (BV), surpassing the conventional MOSFET silicon limit defined
by RON,sp = 8.3 × 10−9 BV2.5 [1]. To further optimize performance, integrating a deep
trench and an extended gate offers potential RON,sp reduction by minimizing device pitch
and inducing an accumulation layer [2–4]. However, this improvement is hindered by the
diminishing electric field (E-field) beneath the trench, and blocking voltage faces limitations
due to charge balance issues [5,6].

Several strategies have been proposed to tackle this issue. One approach suggests the
use of high-K (HK) dielectric in the drift region, as seen in prior studies [6–8]. However,
the distribution of the E-field in the drift region is significantly affected by the presence of
HK dielectric materials, making the complete optimization of the device’s overall E-field
challenging. Another method involves enhancing the BV in UMOS by combining high
aspect ratio trenches with high-resistance semi-insulating poly-crystalline silicon (SIPOS)
structures [9]. This innovative combination offers UMOS the potential to achieve high BV
while maintaining an ultra-low RON,sp.

Recent research has seen a surge in innovative approaches using machine learning
techniques for device modeling and optimization [10–16]. For example, Klemme [12]
developed a machine learning method for accurately predicting the transfer character-
istics of negative-capacitance FinFET devices. Wang [13] improved an artificial neural
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network (ANN) model for general transistors by enhancing data pre-processing. Xu [14]
introduced a machine-learning regression approach for single-electron transistors (SETs),
training a neural network to effectively model SET pulse currents. These studies collectively
illuminate the diverse applications of machine learning in device modeling and perfor-
mance optimization. Zhang [15] proposed a concise modeling method for collaborative
optimization and path searching in advanced design techniques using machine learning.
Mehta [16] demonstrated the possibility of predicting full transistor current–voltage (IV)
and capacitance–voltage (CV) curves using machines trained by technology computer-
aided design (TCAD) generated data. These studies collectively illuminate the diverse
applications of machine learning in device modeling and performance optimization.

This paper presents a physics-informed and machine learning-based model of the
SIPOS (S) pillar-modulated structure in superjunction (SJ) UMOS (SSJ-UMOS), as depicted
in Figure 1a,b. The explicit analytical model, grounded in Poisson’s solution, includes
the E-field modulation effect, potential distributions, and charge-coupling effects. The
model is constructed through a two-step process. Initially, it is derived using closed-form
analytical expressions, incorporating Poisson’s solution to capture the basic physical mech-
anism of the device. Subsequently, machine learning techniques, such as Gaussian process
regression (GPR), are employed for the figure of merit (FOM = BV2/RON,sp) prediction
and hyperparameter optimization, fine-tuning the model parameters for optimal perfor-
mance. This combined approach ensures an accurate representation of device behavior,
refining predictions of characteristics like the optimal BV-RON,sp tradeoff, and surpassing
the SJ silicon limit [17–19]. This hybrid modeling strategy synergizes analytical and ma-
chine learning methodologies, yielding a robust and precise device model. The analytical
approach of this model can guide the optimization design for MOSFET devices with SIPOS
E-field modulation.
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Figure 1. (a) Schematic cross-sectional view of SSJ-UMOS, (b) machine learning-based modeling 

methods. 
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Figure 1. (a) Schematic cross-sectional view of SSJ-UMOS, (b) machine learning-based
modeling methods.

2. Working Principle and Machine Learn Based Analytical Model
2.1. Charge-Coupling Effect of SIPOS Modulated Drift Region

Ref. [19] provides the revised optimum doping concentration (ND,SJ) for the N-pillar
of the conventional SJ as

ND,SJ = 2ECUεSi/qWN (1)

where WN is the width of the N-pillar, and ECU is the critical E-field for breakdown with a
uniform distribution. In contrast, the doping concentration in the drift region of the SSJ-
UMOS (ND,SSJ) is determined by the two-dimensional charge coupling of the SJ structure
and MIS structure SIPOS/oxide/Si. To achieve an effective charge-coupling effect, the
highly doped N-pillar region with the total charge QN,SSJ,total must be completely depleted
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by the P-pillar of SJ structure with the charge QSJ,P and the MIS structure of SIPOS/oxide/Si
with the charge QSIPOS,C, as the drain bias approaches the BV, given by

QN,SSJ,total = QP,SJ + QC,SIPOS (2)

When both the N-pillar and P-pillar are simultaneously depleted, and the E-field at
junction JSJ reaches ECU, indicating breakdown in the case of a uniform E-field distribution
as

Q P,SJ = qN′D,SJWN = qNA,SJWP = 2εSiECU (3)

where N′
D,SJ represents the equivalent doping concentration for depleting the P-pillar

within the N-pillar. QSIPOS,C denotes the charge of the equivalent plate capacitor for
the Si/oxide/SIPOS structure, equating to the partial charge with the equivalent doping
concentration of N”D,SJ in the N-pillar as

QC,SIPOS = ∆VεSiLD/tOX = qN′′
D,SJWN LD (4)

where ∆V represents the potential difference across the thin oxide layers between the
SIPOS pillar and the N-pillar. εOX and εSi denote the permittivity of the oxide and Silicon.
tOX is the oxide thickness. The total doping concentration of the N-pillar due to SIPOS
modulation of SSJ-UMOS structure can be obtained as

ND,SSJ = N′D,SJ + N′′
D,SJ = εSi(2tOXECU + ∆V)/qWNtOX (5)

2.2. Electric Field of SIPOS Modulated Drift Region

Assuming a reverse bias VR is applied, and the drift region is fully depleted, the
electrostatic potential ϕ must satisfy the following Poisson equation with appropriate
boundary conditions [20].

∇2ϕ =
∂2ϕ(x, y)

∂x2 +
∂2ϕ(x, y)

∂y2 = − χ

εS
, 0 ≤ y ≤ LD (6)

{
χ = qND,total , ε = εSi when −WN/2 ≤ x ≤ WN/2
χ = 0, ε = εox when WN/2 <x ≤ tOX + WN/2

(7)

Considering strong coupling and electric displacement continuity at the semiconductor–
dielectric interface, appropriate boundary conditions in the y-direction can be established as

∂ϕ(x,y)
∂x

∣∣∣
x=0

= ∂ϕ(0,y)
∂x = E(0, y),

−→
E(0, y) =

→
EL

∂ϕ(x,y)
∂x

∣∣∣
x=W

2

= E(WN
2 , y),

−→
E(WN

2 , y) =
−→

ESi-OX,SSJ +
−→

EL,SSJ

(8)

where E (0, y) represents the vertical E-field along the dotted line A-A′ (x = 0, Figure 2),

where the lateral E-field component is zero.
→
EL represents the vertical potential E-field

component generated under the drain bias of VR. At position x = WN/2, the E-field

comprises the vertical potential E-field component
−→

EL,SSJ and the lateral plate capacitive

potential E-field component
−→

ESi-OX,SSJ , expressed as
εSiESi-OX,SSJ = εOXEOX = εOX · ∆V/tOX
ESi-OX,SSJ = αECU , (0 < α < 1)
EL,SSJ = βECU , (0 < β < 1)

(9)

where ∆V is the potential difference across the thin oxide layers, between the voltage on
the N-pillar ϕSi(y) and the voltage on the SIPOS pillar ψSIPOS(y). α and β are coefficients of
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SSJ-UMOS with values between 0 and 1. The potential in the SIPOS layer is assumed to be
linearly distributed in the drift region based on the ohmic behavior of the SIPOS layer as{

∆V = ϕSi(y)− ψSIPOS(y) , ψSIPOS(y) = VD(y/LD)
ϕSi(y = 0) = 0 , ϕSi(y = LD) = VD

(10)

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 12 
 

 

SSJ-UMOS with values between 0 and 1. The potential in the SIPOS layer is assumed to be 

linearly distributed in the drift region based on the ohmic behavior of the SIPOS layer as 

( ) - ( ) ( ) ( / )

( 0) 0 ( )

 

   

Si SIPOS SIPOS D D

Si Si D D

V y y y V y L

y y L V

  

 

 = =


= = = =

,  

,
 (10) 

LD

tOX

WN

N
o

r
m

a
li

z
a

ti
o

n

W4x1
Predict Output

Confidence 

interval

Feature Input

Hyperparameters

Regression Output

FOM

=BV2/RON,sp

λ

ND

αbest

βbest

λbest

α

β

 

Figure 2. Schematic representation of the Gaussian process regression model. 

The potential function is approximated by a second-order Taylor expansion formula. 

By solving the 2-D Poisson’s equations with the boundary conditions (6)–(8), a general 

differential equation for the potential distribution function in the N-pillar drift region is 

obtained as 

2

2 2

(0, ) (0, )
, 0

eff

D

S Si

qNy y
y L

dy T

 



 
− = −    (11) 

where Ts is expressed as 

( )
2 4

N N Si
S OX

OX

W W
T t




= +  (12) 

Neff is the effective doping concentration of the N-drift region. Solving (11) with con-

straints (8)–(10) gives the potential distributions in the N-pillar as 

2 22
sinh( ) sinh( ) sinh( )

( , ) [1 ][ ]
2

sinh( ) sinh( )

D

eff S eff S S S S
D

D DS Si Si

S S

L yy y

qN T qN T T T Tx
x y V

L LT

T T


 

−
+

= − − +  (13) 

In the scenario where the E-field extends through the entire length of the drift region, 

the magnitude of the E-field in the y-direction E(y) along the middle line of the N-drift 

region is given by 

cosh( ) cosh( ) cosh( )

(0, )

sinh( ) sinh( ) sinh( )

D

eff SS S SD

D D DS Si

S S S

L yy y

qN TT T TV
E y

L L LT

T T T



− 
 
 = + −
 
 
 

 (14) 

For the SSJ-UMOS structure with Neff = ND,SSJ (5), ESSJ (y) is expressed as 

,/ ( )/2 2
( ) ( )S SJ D S

y T y L TCU OX CU OXD
SSJ S S

N OX S N OX

V E t V E tV
E y T e T e

W t T W t

− − +  +
= + −  (15) 

Combining (9) an optimum expression for TS can be derived under the criterion that 

the E-field at the junction JSJ and at the bottom of the trench are equal at the breakdown, 

for the condition as 
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The potential function is approximated by a second-order Taylor expansion formula.
By solving the 2-D Poisson’s equations with the boundary conditions (6)–(8), a general
differential equation for the potential distribution function in the N-pillar drift region is
obtained as

∂2ϕ(0, y)
dy2 − ∂ϕ(0, y)

TS
2 = −

qNe f f

εSi
, 0 ≤ y ≤ LD (11)

where Ts is expressed as

TS =

√
WN

2
(

WN
4

+
εSi

εOX
tOX) (12)

Neff is the effective doping concentration of the N-drift region. Solving (11) with
constraints (8)–(10) gives the potential distributions in the N-pillar as

ϕ(x, y) = [1 − x2

2TS
][

qNe f f T2
S

εSi
−

qNe f f T2
S

εSi

sinh( y
TS
) + sinh( LD−y

TS
)

sinh( LD
TS
)

+ VD
sinh( y

TS
)

sinh( LD
TS
)
] (13)

In the scenario where the E-field extends through the entire length of the drift region,
the magnitude of the E-field in the y-direction E(y) along the middle line of the N-drift
region is given by

E(0, y) =
VD
TS

cosh( y
TS
)

sinh( LD
TS
)
+

qNe f f TS

εSi

cosh( LD−y
TS

)

sinh( LD
TS
)

−
cosh( y

TS
)

sinh( LD
TS
)

 (14)

For the SSJ-UMOS structure with Neff = ND,SSJ (5), ESSJ (y) is expressed as

ESSJ(y) =
∆V + 2ECUtOX

WNtOX
TSe−y/TS,SJ + (

VD
TS

− ∆V + 2ECUtOX
WNtOX

TS)e(y−LD)/TS (15)
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Combining (9) an optimum expression for TS can be derived under the criterion that
the E-field at the junction JSJ and at the bottom of the trench are equal at the breakdown,
for the condition as {

E(y = 0) = E(y = LD) = ECU√
E2

L,SSJ + E2
Si-OX,SSJ = ECU

(16)

The BV of SSJ-UMOS is expressed as

BV = λECU LD, 0 < λ < 1 (17)

where λ is a coefficient with values between 0 and 1. Combined with the solution of (11),
(14), and (16), the optimum TS,OP is given by

TS,OP =

√
εSiBV
2qNe f f

(18)

Utilizing Equations (5), (12) and (18), we determine the optimal oxide thickness tOX,OP
for SIPOS SJ-UMOS as

tOX, OP =
εOX
εSi

[
BV

(2 + αεSi/εOX)ECU
− WN

4
] (19)

2.3. Figure of Merit BV-RON,sp Model for SSJ-UMOS

Combining the SJ and MIS structures enables the SSJ-UMOS to achieve ultra-low
RON,sp. The total drift region resistance is analyzed in two components: one from the
highly doped N-pillar drift region and the other from the carrier accumulation layer due
to positive gate bias on the MIS structure SIPOS/oxide/Si. The RSJ,sp contributed by the
N-pillar drift region is expressed as

RSJ,sp = ρLD
WCell
WN

=
1

qµN Ne f f
LD

WCell
WN

(20)

where WCell is half the width of the cell (WN + WP + WI). ρ is the resistivity of the
N-pillar drift region. µN is the electron mobility. When (5) and (20) are combined, the RSJ,sp
contributed by the N-pillar in SSJ-UMOS is expressed as

RSJ,sp =
WCell LD

µNεSi(2tOXECU + ∆V/tOX)
(21)

The schematic cross-section illustrates the SIPOS pillar modulated SJ drift region and
the carrier accumulation layer along the trench surface in the N-pillar drift region. Due
to the uniform resistivity of the SIPOS layer, the voltage across the SIPOS at position y is
denoted as V(y)

V(y) = [(VD − VG)/LD]y + VG (22)

The specific resistance RA,sp of the accumulation layer is obtained by integrating the
dRA,sp, is expressed as

RA,SP =
∫ LD

0

WCell
µNCOX(V(y)− Vth)

dy (23)

In the ON state, the threshold voltage (Vth) signifies the initiation of the accumulation
layer formation. Substituting (22) into (23), we obtain the integrated result for RA,sp as

RA,SP =
ln(VD − Vth)− ln(VG − Vth)

VD − VG

WCell,SJ

µNCOX
LD (24)
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As the total RON,sp contributed by the drift region and the accumulation layer is in
parallel, the overall RON,sp,SSJ for the SSJ-UMOS comprises two components, RSJ,sp and
RA,sp as

RON,sp,SSJ = RSJ,sp
∣∣∣∣RA,sp (25)

Combining (21), (24) and (25), the RON,sp,SSJ is obtained as RON,sp,SSJ =
WCell MLD

µN [COX+εSi M(2tOX ECU+∆V/tOX)]

M = ln(VD−Vth)−ln(VG−Vth)
VD−VG

(26)

When applying Baliga’s formula for the impact ionization coefficient, αSi, to a two-
dimensional charge-coupling silicon device, as referenced in [19], we derive an expression
for the critical electric field in scenarios characterized by a uniform electric field as{ ∫ LD

0 αSi dx = 1, αSi = 3.51 × 10−35ECU
7

ECU = 8.36 × 104LD
−1/7

(27)

When (9), (17), (26), and (27) are combined, the RON,sp,SSJ is given by

RON,sp,SSJ =
WCell M

µN [COX + εSi MECU(2tOX + αεSi/εOX)]

BV7/6

5.53 × 105λ7/6 (28)

The mobility µN is influenced by the silicon-oxide interface property. In practical
processes, the SSJ-UMOS resistance is increased due to side-wall mobility degradation. The
RON,sp,SSJ surpasses the superjunction UMOS Silicon limit mentioned in Ref. [19], which is
given by

RON,sp(Ideal SJ) =
3.27 × 10−12BV4/3WN

εSµN
(29)

2.4. Hyperparameters Optimization Based on Gaussian Process Regression Model
Figure 1b illustrates a phased approach for optimizing hyperparameters (α, β, λ) using

Gaussian processes. Figure 2 shows the schematic representation of the GPR. Following
device model establishment, we analyze the electrical mechanism and conducted Sentaurus
TCAD simulations to generate a dataset containing 1000 samples. Subsequently, GPR is
applied to construct a FOM = BV2/RON,sp prediction model and identify optimal hyper-
parameters. Structural parameters such as LD, ND, tOX, WN, closely linked to FOM, are
considered during hyperparameter optimization. GPR, a non-parametric Bayesian regres-
sion method, assumes the target variable FOM follows a multivariate Gaussian distribution,
avoiding specific assumptions about the fitting function F and treating FOM at any data
point x as a random variable. Combining (16), (27) and (28), the FOM calculation formula
is the target formula to be optimized for the GPR model, expressed as

FOM = BV2

RON,sp,SSJ
=

6.99×109µN λ2 LD
5/7

[
COX+MtOX [qWN ND,SSJ+αECU

ε2
Si

εOX
( 1

tOX
−1)]

]
WCell M ,

√
α2 + β2 ≤ 1 (30)

After establishing the device model, TCAD simulations are employed to generate
device data for different combinations of LD, ND,SSJ, tOX, WN. Subsequent data processing
leads to the dataset as

D =
{
(LDi , ND,SSJi , toxi , WNi , FOMi)

}N
i=1 (31)

where LDi, NDi, tOXi, WNi denote the features of the i-th data point, corresponding to the
target value FOMi, representing the FOM of the i-th device.
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The mean function m(x) represents the average behavior of the target value FOM given
the features LD, ND,SSJ, tOX, WN. The covariance kernel function k (x, x′) represents the
correlation between different data points x and x′ in the feature space as

FOM ∼ N (m(x), k(x, x′)) (32)

We then define the likelihood function based on the derived (32) to express the proba-
bility of observing the data given the parameters α, β, λ. In GPR, the likelihood function is
represented using a Gaussian distribution and expressed as

L(α, β, γ) = P(α, β, γ) =
N

∏
i=1

P(FOMi|LDi , NDi , tOXi , WNi , α, β, λ) (33)

For each data point, we employ a multivariate Gaussian distribution as the probability
distribution, calculating the mean and variance from the dataset. The likelihood function is
obtained through maximum likelihood estimation, and a gradient descent optimization
algorithm is applied to optimize the three hyperparameters α, β, and λ resulting in the final
values αbest, βbest, and λbest.

3. Results and Discussion
3.1. Off-State Characteristics

Numerical results obtained through TCAD simulations and analytical results from
the model are compared. To validate the model, simulation results are calibrated to break-
down characteristic (ID-VD) data extracted from fabricated SJ-VDMOS [21], as depicted in
Figure 3a. The TCAD simulation results, with a single set of self-consistent parameters,
align well with experimental data. Additionally, the OFF state characteristics of SJ-UMOS
and SSJ-UMOS are illustrated in Figure 3a. As the resistivity of the SIPOS layer equals
1.0 × 1010 Ω·cm, the leakage current of SSJ-UMOS increases from 10−12 to 10−10 A due
to the SIPOS field plate acting as a high-resistor parallel to the drift region. In the OFF
state, there is a uniform potential difference (∆V) between the SIPOS layer and the vertical
surface of the N-drift region for and SSJ-UMOS, as shown in Figure 3b.
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Figure 3. (a) Reverse leakage current versus VDS of SSJ-UMOS, SJ-UMOS, and simulation results
calibrated to breakdown characteristics (IDS-VDS) data from the fabricated SJ-VDMOS [21]. (b) Electric
potential difference (∆V) between the drift region and the SIPOS pillar of SSJ-UMOS.

Figure 4a shows the optimum effective doping concentration (Neff) predicted by ex-
pressions (5), (18), and (19) as a function of the WN with the BV as a parameter. Notably,
the optimum dose decreases with increasing WN. SSJ-UMOS exhibits a higher optimum
Neff than SJ-UMOS, attributed to the enhanced charge coupling effect of SIPOS pillars.
In Figure 4b, the dependence of BV and RON,sp on ND for SSJ-UMOS and SJ-UMOS is
illustrated. In SSJ-UMOS, SIPOS-assisted depletion of N-pillars reduces RON,sp and in-
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creases BV. Compared to SJ-UMOS, the BV of SSJ-UMOS decreases gradually when doping
concentration is imbalanced, owing to the E-field modulation of SIPOS pillars.
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dence of BV and RON,sp on ND for SSJ-UMOS and SJ-UMOS.

3.2. Gaussian Process Regression

The Gaussian process regression model exhibits exceptional performance in this study.
Key evaluation metrics, as shown in Table 1, include a mean squared error (MSE) of 953.56,
a root mean squared error (RMSE) of 30.88, and a mean absolute percentage error (MAPE)
of only 4.5%. These metrics unequivocally attest to the model’s exceptional predictive
accuracy.

Table 1. Model Fitting Evaluation Metrics.

Evaluation Metric Metric Value

MSE 953.56
RMSE 30.88
MAPE 4.5%

These results highlight the Gaussian process regression model’s reliability in fitting
and prediction, underscoring the crucial role of parameter optimization in enhancing model
performance. We utilized visual representations to showcase the model’s performance.
In Figure 5a, a confidence interval plot illustrates the model’s precision in predicting the
target variable and the associated uncertainty. The model demonstrates low uncertainty,
indicating high reliability in predictions, especially near the forecasted values. Figure 5b
presents the results of parameter sensitivity analysis, revealing optimal hyperparameters:
α = 0.8503, β = 0.5261, and λ = 0.7837. Notably, α significantly influences fitting results,
highlighting its sensitivity. This insight provides valuable guidance for further parameter
optimization, with the potential to improve both fitting quality and predictive accuracy.

Analytical expression (15) is applicable in SSJ-UMOS with modifications to Neff based
on Equations (5) and (7). In Figure 6a,b, numerical and analytical profiles of vertical
E-field and potential for SSJ-UMOS and SJ-UMOS in the middle of the N-pillar along the
y-direction (A-A’, Figure 1a) are presented. In comparison to SJ-UMOS without the SIPOS
layer, the high E-field peak (EPK) at the gate trench bottom is reduced and BV is improved
from 607 V to 725 V. Analytical results for SSJ-UMOS align with numerical results for
various TOX values. Optimizing the oxide layer thickness (TOX = 0.05 µm) in SSJ UMOS
effectively enhances device performance.
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Figure 6. Simulated and analytical (a) E-field, and (b) potential distributions of SIPOS SJ UMOS and
SIPOS UMOS (along the line A-A’).

Figure 7a,b present the optimum oxide thicknesses and N-pillar width for SSJ-UMOS
with various breakdown voltages, as predicted by the analytical model (18) and (19). The
trench oxide thickness increases for devices with larger blocking voltages, staying within
practical limits for device processing and fabrication. For a breakdown voltage of 1000 V,
the optimal trench oxide thickness is 0.05 µm with a mesa width of 1.0 µm for SSJ-UMOS,
aligning with the obtained numerical results.
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3.3. ON State and Dynamic CHARACTERISTIC

Figure 8a displays electron current density distributions in the drift region and output
characteristics of SSJ-UMOS and SJ-UMOS. The threshold voltage Vth of the two devices
are about 1.2 V. In SSJ-UMOS, drift region resistance (RD) is the parallel connection of the
accumulation layer resistance (RA). The maximum electron current density of SSJ UMOS
reaches 8.23 × 104 A/cm2, significantly higher than that of SJ UMOS. At a high drain
voltage, the second term M in (26) becomes dominant, leading to a strong dependence on
∆VG = VD − VG as shown in Figure 8b. Additionally, reducing the pitch Wcell can decrease
RON,sp,SSJ.
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Figure 9. (a) Switching waves of SIPOS SJ-UMOS and the conventional SJ-UMOS at the same VDD = 
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4. Conclusions 
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featuring a modulated drift region utilizing SIPOS pillars. The tradeoff characteristics be-

tween BV and RON,sp have been theoretically derived, breaking the SJ Silicon limit by ap-

plying three methods for the additional E-field modulation effect, charge coupling effect 

Figure 8. (a) Electron current density distribution and output characteristics for SSJ-UMOS and
SJ-UMOS. (b) Simulated and analytical RON,sp,SSJ at the different ∆VG and WCell for the SSJ-UMOS.

Figure 9a presents a dynamic performance comparison between SIPOS SJ-UMOS and
the conventional SJ-UMOS. The SIPOS pillars increase gate capacitance, generating a surface
deep-depletion layer in the drift region in the OFF state, leading to switching delays in SIPOS
SJ-UMOS. The turn-on speed is comparable between the two devices, while the turn-off speed
of SIPOS SJ-UMOS is slower than that of the conventional model. Nonetheless, MOSFETs with
SIPOS terminations have demonstrated resilience under harsh conditions, such as a gradient of
10 kV/µs. In Figure 9b, a comparison of the RON,sp and BV relationships is presented for the
three structures, including references [2,3,17,21–25]. Optimum tOX, WN, LD, and ND values for
SSJ-UMOS and S-UMOS are chosen for this analysis. For the RON,sp analysis of SSJ-UMOS, VDS
is set to 10 V at VGS of 5 V. The plot in Figure 9b clearly indicates that the SSJ-UMOS structure
outperforms other structures, surpassing the SJ silicon limit [19].
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theless, MOSFETs with SIPOS terminations have demonstrated resilience under harsh 

conditions, such as a gradient of 10 kV/μs. In Figure 9b, a comparison of the RON,sp and BV 

relationships is presented for the three structures, including references [2,3,17,21–25]. Op-

timum tOX, WN, LD, and ND values for SSJ-UMOS and S-UMOS are chosen for this analysis. 

For the RON,sp analysis of SSJ-UMOS, VDS is set to 10 V at VGS of 5 V. The plot in Figure 9b 

clearly indicates that the SSJ-UMOS structure outperforms other structures, surpassing 

the SJ silicon limit [19]. 
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Figure 9. (a) Switching waves of SIPOS SJ-UMOS and the conventional SJ-UMOS at the same
VDD = 100 V. (b) Comparison of theoretical predictions of RON,sp versus BV relationship of SSJ-UMOS,
SJ-UMOS and other published devices with the ideal silicon limit and the SJ silicon limit line in the
BV range of 10–1000 V.
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4. Conclusions

This paper introduces a machine learning-based figure of merit model of SSJ-UMOS
featuring a modulated drift region utilizing SIPOS pillars. The tradeoff characteristics
between BV and RON,sp have been theoretically derived, breaking the SJ Silicon limit by
applying three methods for the additional E-field modulation effect, charge coupling effect
and majority carrier accumulation, simultaneously. In the analytical model, the optimal
structure parameters of the drift region, oxide thickness, and E-field modulation coefficients
are also discussed in the analytical model. GPR is employed for an accurate figure of merit
prediction and hyperparameter optimization, which can give guidance for the design of
power MOSFETs with SIPOS. The proposed model’s validity is robustly confirmed through
comprehensive verification against TCAD simulation results.
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