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Abstract: Flexible devices have extensive applications in areas including wearable sensors, healthcare,
smart packaging, energy, automotive and aerospace sectors, and other related fields. Droplet printing
technology can be utilized to print flexible electronic components with micro/nanostructures on
various scales, exhibiting good compatibility and wide material applicability for device production.
This paper provides a comprehensive review of the current research status of droplet printing
technologies and their applications across various domains, aiming to offer a valuable reference for
researchers in related areas.
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1. Introduction

Droplet arrays have garnered widespread attention in recent years within the fields of
materials science, biology, and chemistry by precisely controlling the formation, arrange-
ment, and manipulation of droplets [1–7]. The development of droplet array preparation
technology has been facilitated by the rapid progress in microfluidic technology and a
profound understanding of liquid behavior at the microscale [8,9]. Over the past decade,
droplet array preparation has demonstrated substantial potential in fields such as optoelec-
tronic displays [10,11], sensing and detection [12], and materials synthesis. For instance, in
the field of biology, droplet arrays have been applied to study interactions between cells
and biomolecules [13]. In materials science, droplet array preparation allows for precise
control over small volumes of materials [14], including liquid metals [15], polymers [16],
and organic semiconductors [17,18], enabling the fabrication of materials with specific prop-
erties. In the domain of chemistry, droplet array preparation contributes to the exploration
of fundamental principles, such as chemical reaction kinetics [19].

The formation and control of droplets is the core of droplet preparation technologies.
Currently, the predominant methods for droplet generation include dripping, jetting, and
templating. Dripping involves regulating the generation of droplets by adjusting the
velocity of the capillary tip and the surface tension between the droplet and substrate [20].
Jetting utilizes high-speed liquid streams to form droplets in the air, while templating
utilizes prefabricated microhole templates to arrange droplets in an orderly manner. Each
of these methods presents advantages and limitations in the preparation of droplet arrays,
allowing researchers to select suitable methods based on specific requirements.
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The scope of applications for droplet array preparation continues to broaden. Re-
searchers are not only exploring efficient and controllable methods for droplet generation,
but are also focusing on optimizing the performance of droplet arrays in practical appli-
cations. For instance, in the field of biosensing [21,22], optimization of the preparation
process for droplet arrays can enhance the binding efficiency of droplets with biomolecules,
thereby achieving sensitive and rapid detection. In materials science, droplet arrays can
be utilized to fabricate ordered structures of inorganic materials [23,24] or organic opto-
electronic materials [25–28] that can subsequently be used to investigate the relationship
between their macroscopic properties and microscopic structures.

This review compares different printing technologies and discusses the control tech-
niques and areas of application for precise droplet printing.

2. Typical Generation Mechanisms of Droplet Printing
2.1. Inkjet Printing

Inkjet printing technology is currently the most widely used non-contact electronic
printing method. This technique is realized by the ejection of ink droplets onto a collection
plate through a series of nozzles. Inkjet printing consists of two different ejection modes:
continuous inkjet (CIJ) and drop-on-demand (DOD). A diagram illustrating the principle of
continuous inkjet printing is shown in Figure 1a. In continuous inkjet printing, a continuous
cylindrical ink jet is ejected from the nozzles, after which the stream is broken up into ink
droplets by a stimulating jet, where the size and spacing of the ink droplets can be controlled.
Printing information is formed by controlling the charges on the nozzles to generate ink
droplets with and without charges. The spatial electric field alters the flight path of the ink
droplets, directing the ink droplets onto the collection plate to create character/graphic
records. Ink droplets not used for printing are recollected through a conduit.
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Figure 1. Schematic diagram of typical inkjet printing methods: (a) Schematic diagram of continuous
inkjet printing. (b) Schematic diagram of piezoelectric inkjet printing. (c) Schematic diagram of
thermal inkjet printing.

In contrast to CIJ, in DOD printing, ink droplets are expelled only when needed, with
the ejection of droplets from each nozzle governed by a triggering signal controlled by an
actuator within the nozzle. In this way, it can be divided into different modes according
to the driving source. Piezoelectric inkjet printing and thermal inkjet printing are the
most common inkjet printing methods and are depicted in Figure 1b,c. In piezoelectric
inkjet printing technology, a transducer is installed on the nozzle to control the contrac-
tion and stretching of the piezoelectric element through changes in microvoltage, which
offers advantages in terms of accuracy, speed, and versatility. However, it also presents
certain drawbacks such as cost, limitations on the types of fluids used, and maintenance
requirements. In thermal inkjet printing, a resistance heater is used to rapidly heat the ink
in the capillary tube to its boiling point so it evaporates, resulting in tiny steam bubbles.
After the steam bubbles expand and rupture, droplets are formed at the top of the capillary
tube and sprayed out. However, its operational principle make the nozzle susceptible to
impurities and deposits, resulting in clogging and affecting print quality. Additionally, the
print lifespan of thermal inkjet heads is constrained by the material and heat resistance of
the nozzles, leading to a relatively shorter print lifespan.
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2.2. Electrohydrodynamic Printing

Different from traditional piezoelectric and thermal inkjet printing, as well as other
printing methods, electrohydrodynamic printing involves applying a specific voltage
on the nozzle such that a high-voltage electric field is generated between the nozzle
and the substrate. Through the action of electric field forces, the surface tension of the
droplet at the apex of the nozzle is overcome. Then, the droplets are ejected from the
nozzle to deposit at predefined positions, forming the desired pattern with high resolution
on the targeted substrate, as shown in Figure 2. Electrohydrodynamic printing can be
applied in the manufacture of thin-film transistors [29–31], protein microarrays [32], DNA
microarrays [33], block copolymer thin films with self-assembly effects [16], optical devices,
conductive electrodes [34–37] etc., and can be used in technologies such as cell culture,
quantum dot displays [38,39], and 3D structural printing.
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Several research groups have been engaged in the investigation of droplet printing
technologies, and a large number of functional materials with various properties were
printed into different structures to meet specific application requirements. Typical methods
for droplet printing are listed in Table 1.

Table 1. Typical methods for droplet printing.

Process Methods Material Printing Structures References

Continuous inkjet printing Conductive ink Uniform droplet point [41]

Continuous inkjet printing Polyacrylate ink 3D microcircular electrode
array [42]

Continuous inkjet printing Perovskite materials High-precision perovskite
thin films [43]

Continuous inkjet printing
Distilled water, n-Octane,

n-Tetradecane, and
n-Hexadecane

Uniform droplet point [44]

Thermal inkjet printing Fibrin Micron-sized fibrin
channels [45]
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Table 1. Cont.

Process Methods Material Printing Structures References

Acoustophoretic printing Newtonian fluids Microarrays [46]

Embedded bio-printing Biological ink
Highly viscoelastic
droplets with good

circularity
[47]

Piezoelectric inkjet printing PEDOT:PSS/DMSO/water) Accurate ink drop point [48]
Piezoelectric inkjet printing Conductive ink Stable droplet array [49]
Piezoelectric inkjet printing Conductive ink Uniform droplet point [50]

Electromagnetic inkjet
printing Yttria-stabilized zirconia Electrolyte layers [51]

Electrohydrodynamic
printing PEDOT:PSS Stable large-area droplets [52]

Electrohydrodynamic
printing Conductive ink High-resolution uniform

droplets [42]

Electrohydrodynamic
printing Ag, CdSe/ZnS

Nanogrids and nanowalls
of quantum dots and their

composite materials
[53]

Electrohydrodynamic
inkjet printing Conductive ink Uniform droplet point [54]

3. Liquid Modification for Printing Materials

In droplet printing technologies, the performance of devices is determined by the
functional inks used. The use of organic and inorganic printing materials significantly
expands the applications of droplet preparation. Characteristics such as ink viscosity,
conductivity/surface charge density, and surface tension greatly influence inkjet forma-
tion, interfacial interactions between the ink and the collection plate, and droplet drying.
Therefore, using different ink materials greatly assists in achieving high-precision droplet
positioning and shaping.

Guo et al. [54] used non-polar solvents to regulate inkjet printing technology, achieving
inkjet-printed nano-particle self-assembled continuous lines with adjustable morphology,
high resolution of printed microarrays, and continuous line widths of <5 µm and 10 µm.
Chen [55] mixed graphene and PDMS to obtain printable inks, with graphene also used to
manipulate rheological behavior to meet the requirements of extrusion-based printing, as
shown in Figure 3a. Nelson [56] designed an embedded droplet printing system using the
special properties of yielding stress fluids, achieving highly precise control at microscale for
customization of fluid droplet generation and handling, as shown in Figure 3b. Aria [57]
reported that adding active oligomeric surfactants to the solution results in more uniform
diffusion of impacting droplets. Splashing during printing is suppressed, and diffusion
is very uniform; this approach thus holds great potential for high-resolution printing
requirements, as shown in Figure 3c. Song [58] introduced a method to pattern quantum
dot arrays by controlling the evaporation and diffusion of microdroplets on the substrate;
this method was used for preparing high-resolution full-color quantum dot arrays, thus
achieving non-invasive direct patterning of quantum dots, as shown in Figure 3d. Zhu [47]
used a mixture of mineral oil and red dye as ink and achieved efficient printing by adjusting
flow rate and ink concentration, as shown in Figure 3e. Rivers [52] developed a method
for preparing stable large-area droplet-demand conductive polymer inks for 3D printing
of electronic products, using a bio-renewable co-solvent to address the poor stability and
large-area droplet-demand issues associated with conductive polymer inks, as shown
in Figure 3f.
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programmed-patterning (NIPP). Reproduced with permission from [58], published by the American
Chemical Society, 2022. (e) Trajectory of ink droplets in the separation phase. Reproduced with
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4. Control Methods for Droplet Printing
4.1. Generation Control for Droplet Printing

In order to achieve precise control over the deposition of droplets, it is necessary to
experimentally compare the effects of various factors on droplet deposition. Understanding
the influence of multiple factors on the deposition process is essential. Therefore, this
section primarily focuses on summarizing and reviewing the research progress related to
the deposition mechanisms of ink droplets, patterned deposition, deposition positioning
control, and the engineering applications of droplet printing technologies.

4.1.1. Assisted-Field Control

A multi-physics field was applied in the droplet printing process, often leading to
inaccurate droplet deposition and the formation of satellite droplets during the produc-
tion, flight, and oscillation of droplets in the space between the nozzle and the collection
plate. Therefore, achieving precise positioning and control of charged droplets is crucial.
Various assisted fields have been introduced into droplet printing technologies, including
assisted electrical fields, assisted gas fields, assisted magnetic fields and assisted laser
fields. Through appropriate modification of the spatial field distribution, the formation and
deposition accuracy of droplets can be promoted.
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Peng [42] proposed a method to rapidly fabricate 3D microelectrode arrays by combin-
ing inkjet printing and laser ablation technology, enabling simple, fast, and cost-effective
production of 3D microring electrode arrays. Fang [59] designed a method for inkjet print-
ing that relies on the assistance of hydrophilic microscaffolds, enabling precise patterning of
C8-BTBT thin films with large single-crystal domains by strictly controlling the deposition
position of LC materials during inkjet printing, as shown in Figure 4a. Chen [53] designed a
method that uses the abnormal electric-field distribution generated by inter-nozzle crosstalk
of adjacent printing nozzles to control the transport and arrangement of ink droplets. The
unusual electric-field distribution generated by crosstalk between adjacent dispenser holes
can be used to intricately control the microjet path of the ink, thereby enabling on-demand
control of shape, position, and material composition in the 3D printing of nanostructures.
Compared to traditional serial methods, this parallel method significantly improves pro-
ductivity while achieving nanoscale printing of multiple materials, as shown in Figure 4b.
Chai [60] introduced a method for capturing and manipulating small objects using sound
waves generated by piezoelectric materials. Piezoelectric actuators produce sound waves
at different frequencies under varying voltages, such that control over the frequency and
amplitude of the sound waves can be used to successfully capture and manipulate small
droplets of varying sizes and shapes. Chai [60,61] utilized the interaction between a mag-
netic field generated by an electromagnetic coil and sound waves to capture small objects,
designing an electromagnetic-driven acoustic capture device that, by altering the coil’s
current and frequency, achieves capture and manipulation of small objects. This method
boasts high capture efficiency and precision, as shown in Figure 4c.
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thin-films preparation process with a hydrophilic external field scaffold. Reproduced with permission
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printing based on sonic field control. Reproduced with permission from [53], published by John Wiley
and Sons, 2020. (c) Schematic diagram of droplet printing by magnetic and acoustic field control.
Reproduced with permission from [60], published by John Wiley and Sons, 2023.

4.1.2. Electrical Excitation

In traditional inkjet printing methods, the droplet is triggered by an excitation signal
at a specific frequency. However, due to the hysteresis of liquid rheology that arises from
the action of surface tension and viscous forces, the accurate control of droplet generation
remains a problem to be solved. Several works have reported acceleration of the fluid
response by application of an external electrical excitation.

Lohse [61] introduced a method for on-demand inkjet printing using piezoelectric
droplets whereby the deformation of piezoelectric ceramic materials results in a change
in ink volume within the pressure chamber, thereby generating pressure waves propagat-
ing towards the nozzle and allowing droplet formation at the nozzle. When the droplet
forms, the pressure must be sufficient to expel the droplet toward the recording medium.
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Zhao [48] extensively discussed the influence of excitation waveforms such as pulse-width
modulation, frequency modulation, amplitude modulation, and sinusoidal excitation on
the performance of conductive polymer inks in inkjet printing. Optimizing different exci-
tation waveforms can improve printing quality, speed, and stability, providing valuable
references for practical applications, as shown in Figure 5a. Yang [49] optimized the drive
waveform using a multi-pulse interleaving modulation method, leveraging the orthogonal
interleaving effect inside the nozzle as a control variable. This adjustment of the driving
voltage waveform achieved high-precision droplet printing, as shown in Figure 5b. Li [62]
described a method for suppressing residual oscillations through waveform optimization to
achieve stable on-demand droplet printing. Through the adjustment of voltage, frequency,
and other printing parameters, the amplitude of meniscus vibration was reduced, signifi-
cantly enhancing the stability and uniformity of droplet printing, as shown in Figure 5c.
Chen [40] introduced a novel electrohydrodynamic microdroplet rapid-switching-control
technology. By the application of alternating induced voltage, the suspended droplet
interface is swiftly breached, resulting in a significant reduction of the impulsive current
from 527.2 to 50.14 nA and thus markedly mitigating its adverse impact on jet stability.
Additionally, controllable and large-scale formation of microdroplets is achieved, with each
droplet’s structure being independently regulated, as shown in Figure 5d.
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4.1.3. Printing Quality Modeling

With the rapid development of artificial intelligence, there is a trend of innovation
in droplet printing. Printing information including the jet image, the electric current, the
liquid rheology, the structure morphology are detected and entered into the intelligence
control system to predict the droplet printing behavior. In this way, the requirement
for operational skill is largely reduced, contributing to the accelerated development of
industrial applications for droplet printing technologies.



Micromachines 2024, 15, 333 8 of 18

Zheng [63–66] developed a closed-loop feedback system based on current detection
and image recognition to enhance jet stability and microstructure-deposition accuracy. This
research provides a promising approach for designing optimized control algorithms and
implementing closed-loop control systems, thereby contributing to improved jet stability
and the expedited application of electrohydrodynamic direct-writing (EDW) technology,
as shown in Figure 6a. Soon Wook Kwon [41] improved the predictive accuracy of the
material printing process by introducing physical constraints into neural networks, as
shown in Figure 6b. Huang et al. [50] studied the evolution behavior and process dynamics
of ink droplets in the inkjet printing process using unsupervised learning methods. By
using video data instead of images to study droplet evolution during inkjet printing, the
experimental results demonstrated the high accuracy of the proposed method in predicting
droplet evolution and understanding the dynamics of the inkjet printing process, as shown
in Figure 6c. Segura [67] studied the evolution of droplet behavior with different materials
and process parameters through tensor time-series analysis of experimental data. The
author successfully predicted the evolution behavior of droplets with different materials
and process conditions using this method, as shown in Figure 6d. Siemenn [17] proposed
a method for optimizing the droplet-generation process using Bayesian optimization
algorithms, effectively improving the efficiency and accuracy of the droplet-generation
process and thereby enhancing the performance of droplet arrays, as shown in Figure 6e.
Mea [68] utilized a glass capillary microfluidic device to achieve programmed entrapment
of droplets. Through this method, the properties of elastomers could be dynamically
adjusted in real time during the printing process, allowing extruded ink to be regulated by
using droplet entrapments during printing and enabling on-demand tuning of 3D printed
elastomers. Bucciarelli [69] reported a study using a statistical method, namely design of
experiments (DOE), to optimize the inkjet printing parameters for a nanoparticle-based
silver (Ag) ink. This method showed the interplay between the waveform parameters, and
the definition of optimal drop reproducibility, the achievement of the optimal resolution.
These equations can be used as a tool to directly tune the properties of the printed dot by
modifying the waveform parameters.
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4.2. Deposition Control for Droplet Printing

During the droplet printing process, control of the morphology of the deposited
droplets is of great significance, as it directly affects the resolution and performance of
the desired patterns. When the generated droplets reach the substrate, the interaction
effect easily leads to phenomena such as the coffee-ring effect, spread, or splashing, which
are affected by the properties and morphology of the target substrates. Therefore, the
performances of the substrates have been investigated in relation to control of the droplet
deposition process, with the aim of obtaining high-resolution droplets.

4.2.1. Substrate Modification

The properties of substrates, including the substrate chemical composition, the surface
temperature, and the surface roughness, are all important factors that determine the curing
behavior of the ink and the flexibility of the equipment. Several strategies have been reported
that can adjust the shape of solution droplets by modifying the properties of the substrate.

Guo [70] used zinc acetate dihydrate as a raw material for preparing particle-free ZnO
functional ink. After inkjet printing on the PI flexible substrate and curing at 300 ◦C for
30 min, the pattern surface is smooth and clear and the outline is clear. Dan [71] claimed
that the coffee-ring effect could be effectively reversed via cooling down the temperature
of substrate. Guodan [54] promoted droplet retraction and controlled droplet coalescence
and drying by using a polydimethylsiloxane (PDMS)-coated glass substrate, achieving
high-resolution inkjet printing of microarrays, as shown in Figure 7a. Sun [72] reported
that the simple pre-deposition of an ethanol layer enabled a series of procedures, including
homogenization, solvent exchange, post-stretching, and air drying, thereby uniformly de-
positing densely structured graphene nanosheets and effectively limiting and eliminating
the coffee-ring effect during inkjet printing, as shown in Figure 7b. Inkley [73] successfully
used triethylene glycol for pre-wetting the powder bed before printing, significantly ex-
panding the range of droplet spacing to produce continuous lines, as shown in Figure 7c.
Duan [74] significantly altered the fluid drying kinetics by adding surfactants during so-
lution printing and increasing the contact-line friction between the aqueous solution and
the underlying non-wetting organic crystalline film. As a result, centimeter-level highly-
arranged arrays of organic crystals were successfully prepared on different substrates, as
shown in Figure 7d. Liu [75] reacted large-scale droplet arrays with controlled curvature
by selectively modifying the surface using tunable oxygen plasma, promoting precise
patterns by adjusting chemical contrast; they also used droplet dosage modification to
achieve precise adjustment, as shown in Figure 7e. Feng [76] proposed and verified an
efficient, high-throughput method for the rapid preparation of uniform droplet arrays
induced by an electric field in multiple emulsion droplets within micropores. Polydis-
perse emulsions were prepared through mechanical stirring and then filling them into
hydrophobic micropores through screen printing. As a result, driven by an alternating
electric field, emulsion droplets restricted to the same micropore migrated and coalesced
pair-wise into large droplets in individual micropores, forming regularly arranged droplets
in the micropore array, as shown in Figure 7f. Kahng [77] reported a method to control
single droplet behavior through strong capillary forces between the tip and the substrate,
further improving printing accuracy.

4.2.2. Substrate Pre-Patterning

In addition to the property modification of substrates, several research groups have
been engaged in the design of pre-patterned substrates that can be used to guide the
deposition morphology of printed droplets.

Hou et al. [78] also reported a printing strategy developed by directly manipulating
droplet behavior on modified substrates, preparing hydrophilic and hydrophobic patterns,
and then transferring intelligent material-based droplets onto the patterns, achieving
patterned droplet printing, as shown in Figure 7g. Jiao [79] developed a method to generate
mutually independent and almost non-volatile capsule droplet arrays using an innovative
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mosaic pattern surface, achieving in the array an evaporation inhibition 1712 times that of
naked droplets and obtaining mutually independent droplet arrays, as shown in Figure 7h.
Gu [43] proposed a method to achieve good control of the nucleation and crystal growth
of perovskite thin films by introducing a soluble polyethylene oxide (PEO) layer during
inkjet printing, allowing large-scale printing of perovskite thin films with high-resolution
patterning, providing the possibility of developing flexible photodetectors, as shown
in Figure 7i.
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cyclohexane, xylene, and PDMS film before contact. Reproduced with permission from [54], published
by John Wiley and Sons, 2023. (b) Schematic diagram of electrode manufacturing in inkjet printing.
Reproduced with permission from [72], published by Elsevier, 2022. (c) Schematic diagram of
pre-wetting powder bed printing. Reproduced with permission from [73], published by Elsevier,
2023. (d) Schematic diagram of the printing and patterning process using large-area organic high-
crystal arrays. Reproduced with permission from [74], published by John Wiley and Sons, 2020.
(e) MLA manufacturing process based on selective wetting. Reproduced with permission from [75]
under the Creative Commons CC BY license. (f) ECDA chip-manufacturing process schematic:
photolithography of micropores on ITO glass coated with Hyflon, emulsion filling, chip assembly
and sealing, and micropore-constrained droplet electropolymerization. Reproduced with permission
from [76], published by John Wiley and Sons, 2023. (g) Photography image of the PC sensor with
different colors of PC dots. Reproduced with permission from [78], published by John Wiley and Sons,
2015. (h) Manufacturing method for mosaic and patterned surfaces. Reproduced with permission
from [79], published by John Wiley and Sons, 2023. (i) Schematic diagram of controlled printing of
large compact perovskite thin films. Reproduced with permission from [43], published by Springer
Nature, 2021.

5. Application

Droplet printing technology has a wide range of applications in many fields, including
biomedical, electronics, materials science [20], and nanotechnology. Especially in the field
of micro flexible electronic advices [18], droplet printing technology has unique advantages
in preparing micro-level structures [80], making it suitable for fields such as optoelectronic
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displays [81] and micro/nano system integration. The microsystem compatibility of this
technology makes it an ideal choice for manufacturing various microdevices such as
microsensors, microreactors, and flexible sensors [21,39].

5.1. Photoelectric Display

The use of droplet printing technology for the preparation of quantum dot films
addresses the limitation of traditional printing methods in achieving fine patterns. The
exceptional tunability of perovskite materials has garnered widespread attention in the
field of optoelectronic displays. This approach enables the formation of required patterns
without the need for templates and metal shadow masks.

Chen [81] utilized the coaxial electrohydrodynamic printing technique, integrating
real-time microcurrent signals with the behavior characteristics of core-shell droplets. This
approach not only resulted in an understanding of the interfacial behavior of the droplets
to be analyzed at the nozzle, but also clarified the process of microcurrent-induced droplet
formation during core-shell processing. The study provides valuable insights for achieving
high resolution in core-shell droplet printing, as shown in Figure 8a. Gu et al. [43] achieved
excellent control of perovskite nucleation and crystal growth during the inkjet printing
process by introducing a soluble polyethylene oxide (PEO) layer. The perovskite thin film
can be readily printed on a large scale with high-resolution patterning. Perovskite thin film
optical detectors exhibited a responsivity of up to 1036 mA/W and maintained over 96.8%
of the initial photocurrent after 15,000 consecutive bending cycles, as shown in Figure 8b.
Altintas [82] printed synthetic perovskite nanocrystals (PNC) with high photolumines-
cent quantum yields using electrohydrodynamic printing, resulting in controllable PNC
patterns in different colors. This result led to the creation of a high-quality white LED
with excellent luminance performance and stability, as shown in Figure 8c. Zhong [83]
printed perovskite quantum dot film patterns on different polymer substrates using in-situ
inkjet printing technology. By varying the substrate temperature, controlled adjustments
of droplet size and contact angle were achieved, resulting in perovskite quantum dot film
array dot lattice sizes of approximately 110 µm, as shown in Figure 8d. Tang [84] achieved
high-resolution full-color perovskite quantum dot film patterns using electrohydrodynamic
printing. Through process parameter optimization, stable printing of perovskite quantum
dot film dot arrays with diameters less than 5 µm was attained, as shown in Figure 8e.
Liu [85] printed ink on LED chips sized 9 × 45 mils, yielding a dried ink-layer thickness of
351 µm, resulting in color-converting mini-LED chips that maintained 55% of luminance
intensity after operating for 116 h, as shown in Figure 8f. Fang [59] demonstrated a simple
method that combines inkjet printing and melt-processing techniques to prepare patterned
liquid crystal (LC) films, aiming to produce high-performance organic integrated circuits.
The inverter based on patterned LC films exhibited a high gain of up to 23.75 and a noise
margin exceeding 81.3%, paving the way for the production of high-performance organic
integrated devices due to the excellent universality of the patterned process and the high
quality of the obtained films, as shown in Figure 8g. Kim [86] achieved finely patterned
quantum dots with sub-micron lateral resolution and adjustable thickness using electro-
hydrodynamic printing. The uniform quantum dot pattern array, composed of different
quantum dot materials, enabled the fabrication of a series of outstanding optoelectronic
devices. Additionally, quantum dot LEDs were obtained using electron-beam-deposited
quantum dot patterns, with red and green quantum dot pixel resolution comparable to that
of commercial displays, as shown in Figure 8h.
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Sons, 2021. (h) Uniform quantum dot array printed for quantum dot LED using E-jet. Reproduced
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5.2. Micro/Nano Electronic System Components

Droplet printing is a flexible manufacturing technology with excellent material com-
patibility that can be used to prepare microstructures on different substrates with various
physical characteristics and in different shapes. In this way, it has been a mainstream
technology in the integration manufacturing of micro/nano system devices.

Wang [87] successfully fabricated micron-scale-resolution conductive silver patterns
using the electrohydrodynamic printing method and further demonstrated the production
of several passive electrical components such as thin film resistors, fork-shaped capacitors
(6 pF), and spiral inductors (0.6 µH), as shown in Figure 9a. Li [88] proposed a new method
for preparing self-aligned microlens arrays using multi-functional electrohydrodynamic
printing. This process, by regulating the mode of the confined region and the volume of
droplets in each region, generated microlens arrays with different bottom shapes, aperture
sizes, aspect ratios, and filling factors. The details of the impact on light extraction were
discussed. Finally, a self-aligned MLA with a filling factor of up to 99.3% achieved 49%
enhancement in light extraction, demonstrating its enormous potential for OLED light
extraction, as shown in Figure 9b. Su [89] achieved an increase in the numerical aperture
of microlens arrays from 0.18 to 0.53 through surface-modified polymer’s contact angle.
By combining printing parameters with PDMS nano-film modification, various high nu-
merical aperture microlens patterns were obtained through electrohydrodynamic printing.
Projection experiments demonstrated that the microlens array exhibited uniformity and
excellent optical performance. Additionally, the fabricated microlens array could generate
virtual images with magnification as high as 1.72×, as shown in Figure 9c.
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5.3. Integrated Sensors

Given their small feature size and large specific surface area, microstructures prepared by
droplet printing technologies have exhibited notable advantages in the production of sensors.

Li [90] deposited ZnO thin films using an electrospray method and produced an alcohol
gas sensor, exhibiting good repeatability and response stability in the target gas. Wang [21]
introduced a method for preparing gel pressure sensors using hydrophobic/hydrophilic
patterned surface. Through optimization of the array configuration of the sensor, an uneven
conductive gel array was fabricated. The array exhibited high sensitivity (0.29 kPa−1 in
the 0–30 kPa pressure range) and maintained a sensitivity of 0.13 kPa−1 in the 30–100 kPa
range. Zhang [91] demonstrated a droplet laser array with integrated microfluidics on
a silicon chip, generating and controlling four individual droplet optical cavities using a
2 × 2 nozzle array. Droplet arrays ranging in diameter from 115 to 475 µm could be generated,
removed, and regenerated as needed, promising the development of miniature light sources
and biological and chemical sensors. Yousaf [92] presented a temperature-compensated
integrated sensor wherein the sensor electrodes were fabricated using electrohydrodynamic
printing technology and the active layer of the humidity sensor was covered by an electrospray-
deposited polymer. The humidity sensor’s active layer was made of a novel composite of
polyethylene oxide (PEO) and 2D molybdenum disulfide (MoS2) flakes, achieving high
sensitivity (85 k Omega/%RH) and almost linear responsiveness over a wide detection
range (0–80% RH) of relative humidity, As shown in Figure 10a,b. Chang [93] introduced a
molecular patterning technique with spatial control for spatial control molecular patterning
for preparing liquid crystal (LC) microdroplet arrays on glass substrates. This technique
utilized an oxygen plasma-activated PDMS stamp to remove pre-coated dimethyloctadecyl[3-
(trimethoxysilyl)propyl] ammonium chloride (DMOAP) molecules from the glass substrate,
resulting in surfaces with complementary patterns and specific hydrophobicity. When LC
molecules were introduced onto these produced molecular patterns, LC microdroplet arrays
with uniform droplet sizes and positional order were formed, as shown in Figure 10c. Qin [94]
manufactured a capacitive touch sensor by using electrohydrodynamic printing technology
to print AgNPs onto PET film. A high-resolution microelectrode array with a resolution of
up to 15 µm was successfully developed. Additionally, the sensor exhibited high flexibility,
high sensitivity, and a short response time (~30 ms), making it further suitable for use in
microcapacitance, inductance, or electrode arrays as a flexible display, as shown in Figure 10d.
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6. Summary and Future Prospects

Droplet printing technologies have shown excellent advantages in the integrated
manufacturing of micro-/nano-scale flexible electronic devices. However, given the small
feature size and fast printing speed, the stable generation and deposition of droplets are
still key challenges for its applications. Several works have focused on control strategies
to promote the printing accuracy of droplet arrays, including apparatus design, liquid
interface control, electrical and physical field regulation, and an intelligent system, which
has been applied in flexible electronics to promote integration and device performance.

Although much progress has been made in the droplet printing technologies and its
application in flexible devices, there are still many challenges to be investigated in future works:

(1) Droplet printing technologies are still mostly limited to the laboratory research. Given
the excellent performance of printed structures, there is urgent demand for the
spread of novel printing methods to industrial fields. Parallel multi-channel print-
ing is expected to be an effective way to realize the high-throughput production of
droplets [95,96]. However, the accurate and controllable synchronous deposition of
droplet arrays at high resolution is still a serious challenge. More intensive study
focused on the ejection, motion, and interaction behavior of multi-channel printing
droplets is still required.

(2) Functional ink materials with novel properties have been applied in droplet printing
to fabricate specific micro/nano structures [97,98]. However, the generation and
motion of droplets during droplet printing occurs under a complex multi-physics field
coupling process, easily leading to deformation, fusion, diffusion, breaking-up, etc.
Given the need to obtain functional droplets with consistent characteristics, adaptive
intelligent control algorithms must be further developed to reduce the attempt cost in
terms of both human and material resources.

(3) Composite droplets have exhibited various unexpected performances to promote the
application potentials through the interaction effect among different nanomaterials [99,100].
Among them, droplet printing technologies have shown excellent advantages to prepare
composite droplets with different liquid channels [101]. However, due to different solution
properties like surface tension and conductivity of printing jets in micro/nano scale, the
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accurate and stable assemble of composite droplets with various dimensions and materials
is still a serious challenge requiring concerns.
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