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Abstract: For many years, we have been developing flexible sensors made of braided piezoelectric
poly-l-lactic acid (PLLA) fibers that can be tied and untied for practical applications in society. To
ensure good quality of sleep, the occurrence of bruxism has been attracting attention in recent years.
Currently, there is a need for a system that can easily and accurately measure the frequency of
bruxism at home. Therefore, taking advantage of the braided piezoelectric PLLA cord sensor’s
unique characteristic of being sewable, we aimed to provide a system that can measure the frequency
of bruxism using the braided piezoelectric PLLA cord sensor simply sewn onto a bed sheet on which
the subject lies down. After many tests using trial and error, the sheet sensor was completed with
zigzag stitching. Twenty subjects slept overnight in a hospital room on sheets integrated with a
braided piezoelectric PLLA cord. Polysomnography (PSG) was simultaneously performed on these
subjects. The results showed that their bruxism could be detected with an accuracy of more than 95%
compared with PSG measurements, which can only be performed in a hospital by a physician and
are more burdensome for the subjects, with the subjects simply lying on the bed sheet with a braided
piezoelectric PLLA cord sensor sewn into it.

Keywords: poly-l-lactic acid; piezoelectricity; braided cord; sensing; PLLA

1. Introduction

Sleep affects humans in many ways; the lack of it causes fatigue, affects immunity,
memory and learning, performance, and mental health, and most recently, causes de-
mentia [1–8]. For mental health care, it is important to record daily sleep conditions and
maintain and improve sleep duration and quality [9]. Polysomnography (PSG) is the gold
standard for the objective assessment of sleep status [10,11]. However, PSG is a sophisti-
cated diagnostic method, and the collection and accurate interpretation of results require
specialized knowledge and skills in PSG measurement. The measurement system is also
complex and expensive. Only a limited number of hospitals and laboratories offer PSG.
Measurement during sleep requires the use of numerous sensors. Furthermore, the data
obtained are visually analyzed by doctors [9–11]. Thus, the burden on the subject during
measurement is great, and the greatest drawback is that measurement cannot be performed
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routinely at home. Therefore, with the growing interest in sleep in recent years, there is a
need for a sleep tracker that can simply and routinely measure sleep status [9–11]. However,
current sleep trackers are less accurate than PSG. With these as a background, our goal is to
develop a device that can measure health status during sleep at home with an accuracy
comparable to that of PSG without causing any burden or discomfort to the subject.

We previously conducted research using a braided piezoelectric poly-l-lactic acid
(PLLA) cord [12,13], which has been attracting attention as a wearable sensor [14–20]. The
braided piezoelectric PLLA cord sensor we have developed to date has many unique
features. The following is a brief summary of the important features we have reported
thus far [12,13]. First, plant-derived piezoelectric PLLA fibers are used as a motion-sensing
material, and compared with other practical piezoelectric materials such as lead zirconate
titanate (PZT), they do not contain heavy metals, such as lead or fluorine, and have
less environmental impact [21–28]. Fibers are braided into a coaxial cable-like structure,
making it resistant to electrical disturbances, as shown in Figure 1a. This structure of the
piezoelectric PLLA braided cord was already reported [24,27]. The core of the piezoelectric
PLLA braided cord is a conductive fiber bundle, and PLLA and PET fibers are wound
around it. Furthermore, the conductive fibers cover them to realize a coaxial cable structure.
The core was wrapped with PET fiber to form a braided piezoelectric PLLA cord. The cord is
as mechanically strong as packing cords and is water-resistant. It can also be tied and untied
due to its braided structure. On the other hand, PLLA fibers are monofunctional sensors
that respond to bending motions and basically do not respond to stretching. However,
if they are formed into, for example, a decorative knot to make an accessory-type sensor
as shown in Figure 1b, they can respond to various motions [16,17,27,28]. This is a very
significant feature of this braided piezoelectric PLLA cord sensor that PZT and other
sensors do not have. The braided piezoelectric PLLA cord sensor can also be formed into
various stitches with an embroidery needle. This is not only a design feature, but selectivity
in sensing motion also can be achieved by embroidering a decorative knot or fabric [27].
For example, a choker with a lucky knot charm can detect only pulsation without being
affected by the body’s motion even when the body is making a large motion. When chain
stitches are embroidered on a denim fabric, only specific movements of each body part
can be detected [12,13,19,20,27]. These results are supported by the findings of analysis
with the finite element method (FEM), which identifies the bending displacement of the
stitched braided piezoelectric PLLA cord sensor [12,13]. Therefore, taking advantage of
the braided piezoelectric PLLA cord sensor’s unique characteristic of being sewable, we
aimed to provide a system that can measure the frequency of bruxism by simply sewing
the braided piezoelectric PLLA cord sensor onto a bed sheet.
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In this study, we constructed and improved a system using a braided piezoelectric
PLLA cord as a sensor. Then, the frequencies of bruxism in many subjects during one night
of sleep were acquired using the sensor simultaneously with PSG measurement. The data
thus obtained were compared to verify the accuracy of our system. As a result, we obtained
a comparable accuracy to PSG. The results are reported below.

2. Difficulty in Measuring Bruxism

Bruxism is defined by the American Sleep Society as a “repetitive jaw muscle activity
characterized by the clenching or grinding of teeth and/or the fixation or thrusting of
the mandible” [29,30]. When teeth grinding occurs, the teeth are clenched hard and
rub against each other repeatedly, which can aggravate gum sensitivity and periodontal
disease [29–38]. It is also considered to cause temporomandibular joint disorder, facial pain,
headaches, and stiff shoulders [31]. For those who sleep in the same room with others,
bruxism can generate noise and also deteriorate the sleep quality of those in the same
room. Stress and anxiety have been suggested as causes of bruxism [32], but a clear cause
is not yet known. Treatment options are limited and include dental treatment and the
use of a mouthpiece to prevent tooth wear [33,34]. There are two methods to diagnose
bruxism: one is by interviewing subjects with abnormal dental conditions such as tooth
wear caused by teeth grinding during sleep [9] and the other is using sensors such as
those in PSG to detect bruxism [9–11,34–38]. In the former method, the only option is
treatment because the diagnosis is made in the advanced state of symptoms. On the other
hand, the method of directly detecting teeth grinding requires a device to be worn on
the jaw, which is burdensome and cannot be used for daily measurement. These hurdles
make it difficult to conduct research. When this diagnosis is conducted in the hospital,
the subject wears the testing device and sleeps in a hospital bed overnight, and data are
collected. Figure 2 below shows an illustration of this process. Sleeping in this state is
stressful both physically and mentally due to the burden imposed by the testing equipment.
In addition, since the examination equipment can only be used in a hospital, it is not
possible to monitor the daily sleep status of a subject at home. Therefore, there is a need
for a technology that can routinely monitor the condition of bruxism during sleep in a
noncontact, nonburdensome manner. This would be useful in elucidating the causes,
treatment, and prevention of bruxism.
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3. Braided Piezoelectric PLLA Cord Sensor

As a system for detecting the occurrence of bruxism that allows subjects to sleep
soundly overnight without any psychological or physical stress, we considered integrating
a braided piezoelectric PLLA cord sensor into a bed sheet. Changes in the subject’s sleeping
posture cause major problems when detecting signals indicating the occurrence of bruxism
for the following reasons. Originally, the braided piezoelectric PLLA cord sensor was based
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on the piezoelectricity of PLLA fibers. Piezoelectricity is a phenomenon that generates an
electric charge in response to strain or stress applied to a material [39,40]. Therefore, if a
bed sheet is subjected to a large amount of strain or stress due to body movement or tossing
and turning during sleep, a large signal is generated on the basis of the piezoelectricity of
the PLLA fibers. In other words, if a signal larger than the piezoelectric signal that would
be generated by teeth grinding is generated by tossing and turning, it is superimposed
on the signal generated by teeth grinding. The separation of these signals is expected
to be difficult. In addition, there are various postures such as lying on one’s back or on
one’s side. Piezoelectric sensors such as those constructed using PZT [39,40] are now in
practical use. However, since the size of a PZT sensor is usually 3–5 cm, considering that
the subject changes their lying position while sleeping, many PZT sensors must be spread
over the entire bed and wired to each other. This is not a practical way when considering
the time and effort required to do this. In contrast, a single braided piezoelectric PLLA
cord can be easily sewn into a bed sheet over a large area that is responsive to changes in
the posture of a subject lying on the bed sheet. The major problem here is the detection
of the vibration generated by bruxism. The site of bruxism generation is considered to
be around the jaw and mouth. However, the braided piezoelectric PLLA cord is sewn
into the bed sheet. The braided piezoelectric PLLA cord is not directly in contact with the
site of bruxism generation, but is rather in contact with the subject’s back and other parts
below the neck. Common sense suggests that it would be difficult to detect the occurrence
of bruxism with the braided PLLA piezoelectric cord sewn into the bed sheet under this
condition. In previous studies, when such sensing was not possible, FEM was conducted
to search for conditions under which sensing was possible [41,42], and a prototype sensor
was successfully fabricated on the basis of FEM results. In this study, we followed the
same approach and first conducted FEM to search for conditions under which the braided
piezoelectric PLLA cord can be sewn into bed sheets to sense the vibration generated
by bruxism.

3.1. FEM

The posture of the subject on the bed during sleep should be in a way such that the
subject does not move away from the sensing area with the braided piezoelectric PLLA
cord. Furthermore, considering that the way of contact with the braided piezoelectric PLLA
cord changes depending on the subject’s posture, it is necessary to consider the method of
sewing the braided piezoelectric PLLA cord. There are two main patterns of embroidering
the braided piezoelectric PLLA cord on sheets. One is straight stitching, in which the
braided piezoelectric PLLA cord is stitched perpendicularly to the fabric as if it were sewn
with a regular sewing machine, and the other is zigzag stitching, in which the braided
piezoelectric PLLA cord is placed on the fabric surface and fastened with a different thread.
Since the site at which the subject comes in contact with the braided piezoelectric PLLA
cord varies depending on the subject’s posture and sleeping position, it is important that the
signal does not change at that time, which translates into system accuracy and simplicity.
Therefore, we first investigated via FEM whether there is a difference in response between
zigzag and straight stitching. Figure 3 shows the piezoelectric response of a model with
the braided piezoelectric PLLA cord zigzag-stitched in a circle and applied with a stress of
10 N perpendicularly to the entire fabric. The color of the piezoelectric response indicates
the magnitude of the response. The model with zigzag stitching shows almost the same
piezoelectric response throughout the circumference. In other words, the piezoelectric
response is the same regardless of the point of stress application on the circle. In contrast,
as shown in Figure 4, the model with straight stitching shows a large piezoelectric response
at the point where it touches the fabric and at the point of stress application on the fabric
where the curvature of the folded braided piezoelectric PLLA cord changes. During sleep,
the posture and position of the subject’s body vary from subject to subject, and even for the
same subject, it varies from time to time. In other words, it is impossible to predict how the
braided piezoelectric PLLA cord will come in contact with the subject’s body in this study.
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That is, it is strongly suggested that zigzag stitches, which generate the same piezoelectric
response no matter where the braided piezoelectric PLLA cord comes in contact with the
subject’s body, are suitable for the purpose of this study.

Micromachines 2024, 15, x FOR PEER REVIEW 5 of 20 
 

 

3.1. FEM 
The posture of the subject on the bed during sleep should be in a way such that the 

subject does not move away from the sensing area with the braided piezoelectric PLLA 
cord. Furthermore, considering that the way of contact with the braided piezoelectric 
PLLA cord changes depending on the subject’s posture, it is necessary to consider the 
method of sewing the braided piezoelectric PLLA cord. There are two main patterns of 
embroidering the braided piezoelectric PLLA cord on sheets. One is straight stitching, in 
which the braided piezoelectric PLLA cord is stitched perpendicularly to the fabric as if it 
were sewn with a regular sewing machine, and the other is zigzag stitching, in which the 
braided piezoelectric PLLA cord is placed on the fabric surface and fastened with a 
different thread. Since the site at which the subject comes in contact with the braided 
piezoelectric PLLA cord varies depending on the subject’s posture and sleeping position, 
it is important that the signal does not change at that time, which translates into system 
accuracy and simplicity. Therefore, we first investigated via FEM whether there is a 
difference in response between zigzag and straight stitching. Figure 3 shows the 
piezoelectric response of a model with the braided piezoelectric PLLA cord zigzag-
stitched in a circle and applied with a stress of 10 N perpendicularly to the entire fabric. 
The color of the piezoelectric response indicates the magnitude of the response. The model 
with zigzag stitching shows almost the same piezoelectric response throughout the 
circumference. In other words, the piezoelectric response is the same regardless of the 
point of stress application on the circle. In contrast, as shown in Figure 4, the model with 
straight stitching shows a large piezoelectric response at the point where it touches the 
fabric and at the point of stress application on the fabric where the curvature of the folded 
braided piezoelectric PLLA cord changes. During sleep, the posture and position of the 
subject’s body vary from subject to subject, and even for the same subject, it varies from 
time to time. In other words, it is impossible to predict how the braided piezoelectric 
PLLA cord will come in contact with the subject’s body in this study. That is, it is strongly 
suggested that zigzag stitches, which generate the same piezoelectric response no matter 
where the braided piezoelectric PLLA cord comes in contact with the subject’s body, are 
suitable for the purpose of this study. 

   
Figure 3. FEM calculation results of piezoelectric response of a model with braided piezoelectric 
PLLA cord zigzag-stitched in a circle. 

 
(a) (b) 

Figure 4. FEM calculation results of piezoelectric response of a model with braided piezoelectric 
PLLA cord stitched straight: (a) top view; (b) birdʹs-eye view. 

Figure 3. FEM calculation results of piezoelectric response of a model with braided piezoelectric
PLLA cord zigzag-stitched in a circle.

Micromachines 2024, 15, x FOR PEER REVIEW 5 of 20 
 

 

3.1. FEM 
The posture of the subject on the bed during sleep should be in a way such that the 

subject does not move away from the sensing area with the braided piezoelectric PLLA 
cord. Furthermore, considering that the way of contact with the braided piezoelectric 
PLLA cord changes depending on the subject’s posture, it is necessary to consider the 
method of sewing the braided piezoelectric PLLA cord. There are two main patterns of 
embroidering the braided piezoelectric PLLA cord on sheets. One is straight stitching, in 
which the braided piezoelectric PLLA cord is stitched perpendicularly to the fabric as if it 
were sewn with a regular sewing machine, and the other is zigzag stitching, in which the 
braided piezoelectric PLLA cord is placed on the fabric surface and fastened with a 
different thread. Since the site at which the subject comes in contact with the braided 
piezoelectric PLLA cord varies depending on the subject’s posture and sleeping position, 
it is important that the signal does not change at that time, which translates into system 
accuracy and simplicity. Therefore, we first investigated via FEM whether there is a 
difference in response between zigzag and straight stitching. Figure 3 shows the 
piezoelectric response of a model with the braided piezoelectric PLLA cord zigzag-
stitched in a circle and applied with a stress of 10 N perpendicularly to the entire fabric. 
The color of the piezoelectric response indicates the magnitude of the response. The model 
with zigzag stitching shows almost the same piezoelectric response throughout the 
circumference. In other words, the piezoelectric response is the same regardless of the 
point of stress application on the circle. In contrast, as shown in Figure 4, the model with 
straight stitching shows a large piezoelectric response at the point where it touches the 
fabric and at the point of stress application on the fabric where the curvature of the folded 
braided piezoelectric PLLA cord changes. During sleep, the posture and position of the 
subject’s body vary from subject to subject, and even for the same subject, it varies from 
time to time. In other words, it is impossible to predict how the braided piezoelectric 
PLLA cord will come in contact with the subject’s body in this study. That is, it is strongly 
suggested that zigzag stitches, which generate the same piezoelectric response no matter 
where the braided piezoelectric PLLA cord comes in contact with the subject’s body, are 
suitable for the purpose of this study. 

   
Figure 3. FEM calculation results of piezoelectric response of a model with braided piezoelectric 
PLLA cord zigzag-stitched in a circle. 

 
(a) (b) 

Figure 4. FEM calculation results of piezoelectric response of a model with braided piezoelectric 
PLLA cord stitched straight: (a) top view; (b) birdʹs-eye view. 

Figure 4. FEM calculation results of piezoelectric response of a model with braided piezoelectric
PLLA cord stitched straight: (a) top view; (b) bird’s-eye view.

If we adopt zigzag stitching, the braided piezoelectric PLLA cord must be designed
to have an inflection point that covers the entire bed sheet. To determine the effect of this
design, the piezoelectric response was calculated for the braided piezoelectric PLLA cord
having a curvature as shown in Figure 5. In particular, we paid attention to whether the
piezoelectric response at the inflection point is much larger than that at other locations,
as observed in straight stitching. As shown in the figure, a very detailed analysis of the
calculation results shows that the piezoelectric response at the inflection point is indeed
larger than those at other locations, but the rate of increase is less than 10%. From the
calculation results, the final configuration of a single braided piezoelectric PLLA cord to
be sewn onto a bed sheet was designed as shown in Figures 6 and 7. Figure 6 shows that
the cord covers a relatively large area of curvature where a constant piezoelectric response
can be expected. On the other hand, the stitch pattern in Figure 7 has a longer-period
curve than that in Figure 6. For Figure 6, a constant piezoelectric response is obtained.
For Figure 7, the magnitude of the piezoelectric response is not affected by the addition
of shorter-period curves. From these calculations, we decided to sew a single braided
piezoelectric PLLA cord in a zigzag pattern to achieve a bed sheet with a configuration that
provides a long-period curve.
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3.2. Bed-Sheet Sensor Blueprint

The shape of the braided piezoelectric PLLA cord sewn in a zigzag pattern was
determined from the results of FEM calculations. The specific size of the actual sheet sensor
was determined from this shape, with particular consideration given to ensuring that the
braided piezoelectric PLLA cord would always be in contact with the body in any position
of the subject while lying in bed, even for a petite woman. To determine the size of zigzag
stitching, human body dimensions were considered. Table 1 shows such data published by
the Ministry of Economy, Trade and Industry, Japan. From this table, it can be determined
that for the braided piezoelectric PLLA cord to be always in contact with the convexity
of the body, even when a petite woman lies on her back, side, or at an angle in bed, the
embroidery spacing of the braided piezoelectric PLLA cord must be 20 cm or less. Figure 8
shows a bed-sheet blueprint with the braided piezoelectric PLLA cord stitched in a zigzag
pattern determined via FEM (hereafter, bed-sheet-type sensor).
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Table 1. Human body dimension measurement results (H19-10-1).

Distance between Right and Left
Acromion (Not Necessarily a
Straight Line)

Vertical Distance from the Acromion to
the Lower End of the Elbow Bone Bent
at a Right Angle

Horizontal Linear Distance between the
Anterior and Posterior Surfaces of the
Chest at the Nipple Point

male female male female male female

mm mm mm

403 358 340 338 201 201
404 360 315 309 212 200
406 358 341 335 222 200
406 359 316 308 225 204
404 360 342 329 228 209
403 359 314 307 230 210
399 358 341 329 231 214
395 359 314 306 229 219
391 356 339 330 225 222
388 352 312 305 228 229
385 350 339 328 230 231
380 347 309 300 228 233

From the Ministry of Economy, Trade and Industry Japan

4. Bed-Sheet Sensor

From the FEM results, a design that fits the Japanese body shape was created, and a
single braided piezoelectric PLLA cord was stitched in a zigzag pattern using a computerized
sewing machine to make the stitches firm, as shown in Figure 9 (bed-sheet-type sensor).
The sewn bed-sheet-type sensor was placed on the bed and covered with a mattress pad. In
this system, which is the same as the previously reported system for the signal detection
circuit, the sensed signal is received by a preamplifier and then amplified 400 times by an
amplifier [41,42]. Basic measurements were conducted to confirm the responsiveness based
on the piezoelectricity of the bed-sheet-type sensor. The sheet with a braided piezoelectric
PLLA cord as the sensor sewn onto it was clamped at positions 10 cm to the left and right
from the center of the bed sheet, and a static tension of 1 N was applied so that the sheet
would not sag. An AC tensile strain with a frequency of 1 Hz and a distortion of 0.1% was
applied, and a 700-fold amplified response signal was received. An example of the response
signal is shown in Figure 10. The response waveform shows good reproducibility and
continuity. Next, sheets were placed on actual beds used in sleep experiments. The sheet
cover used in a sleep experiment was placed over another sheet to determine the pressure
response. Deformation was applied by pulsing a 0.5 mm diameter circular brass rod pushed
0.5 mm into the bed-sheet-type sensor at the center. An example of the response is shown in
Figure 11. The bed-sheet-type sensor was found to respond well to sharp pulses.

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 20 
 

 

4. Bed-Sheet Sensor 
From the FEM results, a design that fits the Japanese body shape was created, and a 

single braided piezoelectric PLLA cord was stitched in a zigzag pattern using a 
computerized sewing machine to make the stitches firm, as shown in Figure 9 (bed-sheet-
type sensor). The sewn bed-sheet-type sensor was placed on the bed and covered with a 
mattress pad. In this system, which is the same as the previously reported system for the 
signal detection circuit, the sensed signal is received by a preamplifier and then amplified 
400 times by an amplifier [41,42]. Basic measurements were conducted to confirm the 
responsiveness based on the piezoelectricity of the bed-sheet-type sensor. The sheet with 
a braided piezoelectric PLLA cord as the sensor sewn onto it was clamped at positions 10 
cm to the left and right from the center of the bed sheet, and a static tension of 1 N was 
applied so that the sheet would not sag. An AC tensile strain with a frequency of 1 Hz and 
a distortion of 0.1% was applied, and a 700-fold amplified response signal was received. 
An example of the response signal is shown in Figure 10. The response waveform shows 
good reproducibility and continuity. Next, sheets were placed on actual beds used in sleep 
experiments. The sheet cover used in a sleep experiment was placed over another sheet to 
determine the pressure response. Deformation was applied by pulsing a 0.5 mm diameter 
circular brass rod pushed 0.5 mm into the bed-sheet-type sensor at the center. An example 
of the response is shown in Figure 11. The bed-sheet-type sensor was found to respond 
well to sharp pulses.  

 
Figure 9. Photo of the completed bed-sheet-type sensor to be used in the experiment. 

 
Figure 10. Example of response signal from the bed-sheet-type sensor when an AC tensile strain of 
1 Hz frequency and a 0.1% strain rate were applied. 

Figure 9. Photo of the completed bed-sheet-type sensor to be used in the experiment.



Micromachines 2024, 15, 86 8 of 18

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 20 
 

 

4. Bed-Sheet Sensor 
From the FEM results, a design that fits the Japanese body shape was created, and a 

single braided piezoelectric PLLA cord was stitched in a zigzag pattern using a 
computerized sewing machine to make the stitches firm, as shown in Figure 9 (bed-sheet-
type sensor). The sewn bed-sheet-type sensor was placed on the bed and covered with a 
mattress pad. In this system, which is the same as the previously reported system for the 
signal detection circuit, the sensed signal is received by a preamplifier and then amplified 
400 times by an amplifier [41,42]. Basic measurements were conducted to confirm the 
responsiveness based on the piezoelectricity of the bed-sheet-type sensor. The sheet with 
a braided piezoelectric PLLA cord as the sensor sewn onto it was clamped at positions 10 
cm to the left and right from the center of the bed sheet, and a static tension of 1 N was 
applied so that the sheet would not sag. An AC tensile strain with a frequency of 1 Hz and 
a distortion of 0.1% was applied, and a 700-fold amplified response signal was received. 
An example of the response signal is shown in Figure 10. The response waveform shows 
good reproducibility and continuity. Next, sheets were placed on actual beds used in sleep 
experiments. The sheet cover used in a sleep experiment was placed over another sheet to 
determine the pressure response. Deformation was applied by pulsing a 0.5 mm diameter 
circular brass rod pushed 0.5 mm into the bed-sheet-type sensor at the center. An example 
of the response is shown in Figure 11. The bed-sheet-type sensor was found to respond 
well to sharp pulses.  

 
Figure 9. Photo of the completed bed-sheet-type sensor to be used in the experiment. 

 
Figure 10. Example of response signal from the bed-sheet-type sensor when an AC tensile strain of 
1 Hz frequency and a 0.1% strain rate were applied. 
Figure 10. Example of response signal from the bed-sheet-type sensor when an AC tensile strain of
1 Hz frequency and a 0.1% strain rate were applied.

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 11. Response of bed-sheet-type sensor to the push-in displacement of the sensor. 

5. Detection of Bruxism during Sleep 
Subjects who agreed to participate in our experiment were fitted with PSG equipment 

during an overnight sleep at a sleep clinic. The experiment was conducted as follows. In 
this measurement, the bed-sheet-type sensor was placed on the bed where the subject 
slept, and PSG measurements were conducted simultaneously throughout the night. We 
emphasize here that the results obtained from the bed-sheet-type sensor in this 
experiment can be accurately contrasted with PSG results obtained under the supervision 
of a physician. 

5.1. Medical Diagnostic Measurements 
A brief description of the medical equipment used in the sleep clinic is given in [9–

11] that focuses on features related to this experiment. PSG measurements (Figure 2) 
include electroencephalography (EEG) at Fp2-A1, F4-A1, C4-A1, and O2-A1; jaw and leg 
electromyography (EMG); bilateral electrooculography (BEOG); nasal airflow 
measurement; chest and abdominal respiratory movement detection; fingertip oxygen 
saturation measurement; electrocardiography (ECG); and a positional detection sensor 
fixed on the skin at the center of the sternum. Electrodes for EEG were placed on the head 
surface according to the international 10–20 method [9–11,34–38]. In addition, the body 
position during sleep was confirmed with an infrared camera. Specifically, EEG, BEOG, 
EMG of the jaw, ECG, abdominal movement detection, nasal airflow measurement, and 
oxygen saturation and snoring sound measurements were conducted. Video images and 
activity levels were also recorded. EEG and EMG of the jaw were conducted to determine 
tooth grinding [34–38]. Here, rhythmic masticatory muscle activity (RMMA) was 
determined by the technician on the basis of sleep stages, arousal, the visual assessment 
of movements, and EMG of the masseter muscle according to the AASM criteria [9,37]. 
The reason why the diagnosis of teeth grinding is so precise in such a sleep clinic is that it 
is based on the International Classification of Sleep Disorders [29,34–38], and sleep 
bruxism is considered to be one of the most common sleep disorders [9,37,38]. The 
appropriate processing of the data from the all-night EMG measurements in the hospital 
room was conducted by a clinical laboratory technician, and sleep bruxism was 
determined by a sleep specialist on the basis of the following criteria [9]. 
1) Mean amplitude of the electromyogram: 

More than 10% of the maximum occlusal force (masseter muscle) at waking time. 
2) Muscle contraction pattern during sleep bruxism episodes: 

(a) Phasic episode: 3 or more bursts (duration of 0.25 s to 2.0 s for each burst). 

Figure 11. Response of bed-sheet-type sensor to the push-in displacement of the sensor.

5. Detection of Bruxism during Sleep

Subjects who agreed to participate in our experiment were fitted with PSG equipment
during an overnight sleep at a sleep clinic. The experiment was conducted as follows. In this
measurement, the bed-sheet-type sensor was placed on the bed where the subject slept, and
PSG measurements were conducted simultaneously throughout the night. We emphasize
here that the results obtained from the bed-sheet-type sensor in this experiment can be
accurately contrasted with PSG results obtained under the supervision of a physician.

5.1. Medical Diagnostic Measurements

A brief description of the medical equipment used in the sleep clinic is given in [9–11]
that focuses on features related to this experiment. PSG measurements (Figure 2) include
electroencephalography (EEG) at Fp2-A1, F4-A1, C4-A1, and O2-A1; jaw and leg elec-
tromyography (EMG); bilateral electrooculography (BEOG); nasal airflow measurement;
chest and abdominal respiratory movement detection; fingertip oxygen saturation mea-
surement; electrocardiography (ECG); and a positional detection sensor fixed on the skin at
the center of the sternum. Electrodes for EEG were placed on the head surface according to
the international 10–20 method [9–11,34–38]. In addition, the body position during sleep
was confirmed with an infrared camera. Specifically, EEG, BEOG, EMG of the jaw, ECG,
abdominal movement detection, nasal airflow measurement, and oxygen saturation and
snoring sound measurements were conducted. Video images and activity levels were also
recorded. EEG and EMG of the jaw were conducted to determine tooth grinding [34–38].
Here, rhythmic masticatory muscle activity (RMMA) was determined by the technician
on the basis of sleep stages, arousal, the visual assessment of movements, and EMG of
the masseter muscle according to the AASM criteria [9,37]. The reason why the diagnosis



Micromachines 2024, 15, 86 9 of 18

of teeth grinding is so precise in such a sleep clinic is that it is based on the International
Classification of Sleep Disorders [29,34–38], and sleep bruxism is considered to be one of
the most common sleep disorders [9,37,38]. The appropriate processing of the data from the
all-night EMG measurements in the hospital room was conducted by a clinical laboratory
technician, and sleep bruxism was determined by a sleep specialist on the basis of the
following criteria [9].

1) Mean amplitude of the electromyogram: More than 10% of the maximum occlusal
force (masseter muscle) at waking time.

2) Muscle contraction pattern during sleep bruxism episodes:

(a) Phasic episode: 3 or more bursts (duration of 0.25 s to 2.0 s for each burst).
(b) Tonic episode: one burst lasting more than 2 s.
(c) Mixed episodes: bursts of both phasic and tonic episodes are present.

5.2. Bed-Sheet-Type Sensor Measurements

A mattress pad was placed on a sleep clinic bed for measurement. The bed-sheet-
type sensor was placed directly on the mattress pad and fixed with pins to prevent it
from shifting. The pad and the bed-sheet-type sensor were covered with a quick-drying,
water-absorbent box sheet; thus, the bed-sheet-type sensor was not visible to the subject.
The subject can sleep in any position, and our bed-sheet-type sensor does not restrict the
subject’s sleeping posture. The subject lies down naturally with a pillow in the desired
position, covers themselves with a blanket, and goes to sleep. The response signal from the
bed-sheet-type sensor was amplified 400 times through a preamplifier and an amplifier
and then stored in a data logger (NR-600B, Keyence corporation, Osaka, Japan; settings:
1 kHz and 12 bits) placed under the bed, as shown in Figure 12. The purpose of the
circuit configuration is briefly explained below. First, since the impedance of the braided
piezoelectric PLLA cord is very large, a preamplifier is used for impedance matching with
the circuit. Furthermore, since this signal contains noise related to the power supply, Twin-T
CR is used to remove the noise and amplify the weak signal for detection. Since the current
measurement target is a human and the frequency bands of respiration, pulse, and body
motion are 0.1 Hz to 10 Hz, the band-pass filter is used to detect these signals with high
accuracy.The data obtained during sleep were stored overnight along with the PSG data
described in the previous section.
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Figure 12. Circuit system for bed-sheet-type sensor.

6. Results

A demonstration experiment to show the effectiveness of the bed-sheet-type sensor
sewn with a braided piezoelectric PLLA cord was conducted at a medical institution using
a sleep test to diagnose sleep apnea syndrome. Note that the experiment at such a medical
institution was conducted only when the physician had confirmed that the bed sheet
embroidered with the braided piezoelectric PLLA cord as the sensor did not interfere with
the diagnosis of sleep apnea syndrome and the subject consented to participating in the
demonstration experiment.

6.1. Medical Judgment

In the experiment, subjects slept overnight in a clinic; they were fitted with PSG and
other medical devices necessary to diagnose apnea, and they slept lying down on a bed.
The bed-sheet-type sensor was placed under the bed cover. Before the measurement began,
the subjects were first asked to lie down on the bed, and the medical staff examined them
for any possible sleep disturbances caused by the bed-sheet-type sensor. All potential
subjects responded that they felt no discomfort at all. Fifteen subjects participated in the
demonstration experiment. During the overnight examination, some subjects experienced
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bruxism and others did not. An example of an actual all-night measurement of the wave-
forms during sleep obtained from the medical devices is shown. Figure 13 shows the ECG
waveform, EMG waveform, activity levels, and postural changes. Note that EMG can
detect weak signals at rest, but when body movements detected by the sleeping posture
and activity meter (such as turning over) occur, EMG also detects a large response signal.
On the other hand, ECG measures heartbeats continuously, and although the effect of
body movements on ECG should not be large in terms of the measurement principle, body
movements actually generate a large signal because the electrodes attached to the body
change their state of adhesion. The amount of activity here refers to the total amount of
activity per minute as measured by the physician with a small accelerometer attached to
the subject’s waist. Since the amount of activity is constantly changing, the amount of
activity in the figure is averaged over a 10 min period in order to show an overall trend. In
the all-night measurement, a wide variety of signals are generated, which should not be
the case in principle. It is very labor-intensive for technicians to individually determine
sleep stages from the data obtained in such a complex environment. Overall, it can be seen
in Figure 13 that the activity meter signal increases when the sleeping posture changes. In
other words, the activity level increases at the timing of sleep turning. Sleep levels also
change at this timing. At this time, a large signal is also generated in the ECG, which in
principle should not be affected by turning over. Furthermore, determining the occurrence
of teeth grinding is even more difficult. As mentioned earlier, the onset of bruxism is deter-
mined from changes in electromyographic signals in accordance with the aforementioned
diagnostic rules [9,34–39]. The difficulty is that when the sleep duration is 6 h (21,600 s), a
characteristic waveform lasting only 10–20 s is found in the data, from which the occurrence
of bruxism is identified. For a subject who grinds their teeth, more than 50 episodes of
bruxism occur in a single night. This indicates that even if such a complex PSG device could
be fitted at home (which is not possible), it would be impractical to continue to observe the
frequency of bruxism over a long period, even with current diagnostic methods, where a
specialist must make the diagnosis.
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6.2. Demonstration of Bed-Sheet-Type Sensor

To begin the analysis, the PSG signals when the subject was at rest and turned over
and at all points where teeth grinding occurred were compared with the signals from the
bed-sheet-type sensor. Representative results are shown in Figures 14–16. In these figures,
the magnitudes of the time and response signal axes are the same; thus, the magnitude and
period of signals can be intuitively understood. As shown in Figure 14, when the subject
was at rest, the signals from the bed-sheet-type sensor synchronized with the ECG signals.
When the subject turned over in the bed, both the ECG and EMG signals were large, as
shown in Figure 15. The signals from the bed-sheet-type sensor were also large. In the case
of teeth grinding, the ECG signal was almost unchanged from the resting state, as shown in
Figure 16. In the case of EMG, a high-frequency signal can be seen, although it is difficult
to see on this scale (an enlarged image will be shown later). The high-frequency signal
from the bed-sheet-type sensor also appears to be observed for a short period. From the
above, a fast Fourier transform (FFT) process was applied to the overnight sleep signals to
characterize the signal data obtained from the bed-sheet-type sensor during overnight sleep.
Figure 17 shows a representative example of the signals obtained with the bed-sheet-type
sensor for one night and the results of the FFT. In other words, these measurement data are
unprocessed measurement signals that include all small signals, such as the vital signals
of the subject and signals from body movements; the FFT results show that the detected
signals are within a wide frequency range. In particular, the FFT results suggest that the
absolute magnitudes of the signals are separated by frequency bands such as 0.1 Hz to
1 Hz, 1 Hz to 2 Hz, and 3 Hz to 7 Hz.
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Using these results, primary filtering processing of the signals, low pass filter (LPF)
processing (cut-off frequency: 0.5 Hz), band pass filter (BPF) processing (cutoff frequency:
0.8−1.5 Hz), and high pass filter (HPF) processing (cutoff frequency: 8 Hz) were performed
to determine the characteristics of the signals from the bed-sheet-type sensor during the
resting state, turning, and teeth grinding as determined by the physician. The results are
shown below. First, representative results of the resting state are shown in Figure 18. LPF
processing shows that the signal precisely synchronized with the respiratory signal, as



Micromachines 2024, 15, 86 12 of 18

shown at the bottom of Figure 18. The HPF-processed signal shows sharp pulses, indicating
that it synchronized with the ECG signal, as shown at the top of Figure 18. Next, Figure 19
shows the data when the subject turned from lying on their belly to lying on their back.
The top of Figure 19 shows the sleeping posture as determined by the physician. The
activity level shows a peak when the sleeping posture changes. Here, the activity level is
the sum of the amount of activity per minute. Thus, it can be seen that the activity level
captures the change in sleeping posture well; the EMG signal is also larger, indicating
that it is responding to the turning over. It also shows that the ECG which should not be
affected by the measurement principle is also affected by a large amount. On the other
hand, the bed-sheet type sensor responds from the beginning to the end of the turning over.
In PSG of teeth grinding, ECG shows that the heart rate is unchanged as usual, as shown in
Figure 20. Only EMG shows a characteristic signal. We sought to determine whether the
bed-sheet-type sensor detects a characteristic signal. A typical example is shown below.
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Figure 19. Typical example of simultaneous measurements with medical equipment (sleeping posture,
activity, (a) EMG, and (b) ECG) in a hospital and with the bed-sheet-type sensor on a bed during a
period that includes turning over in bed.
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Figure 20. Two representative examples of EMG and ECG signals at the time of the physician-
confirmed occurrence of bruxism.

Figure 21 shows EMG and HPF-filtered bed-sheet-type sensor signals at time when the
doctor identified the occurrence of bruxism. It can be seen that the HPF-filtered bed-sheet-
type sensor signal was different from the pulsation-based signal observed in the resting
state shown in Figure 18a.
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6.3. Algorithm for Bruxism Detection

As described above, it was found that the bed-sheet-type sensor can detect characteris-
tic signals during teeth grinding; therefore, we constructed an algorithm for detecting the
occurrence of teeth grinding using the bed-sheet-type sensor. To understand the charac-
teristics of the waveforms obtained from the bed-sheet-type sensor, FFT processing was
performed. The results are shown in Figure 22, which also shows the results in the resting
state and when the subject turned over in bed. As can be seen, a large signal is generated
below 1 Hz during turning over and other body movements. In contrast, when only
grinding is occurring, the signal at frequencies below 1 Hz is small, as in the resting state.
However, the signal at frequencies higher than 3 Hz is large only when teeth grinding
occurs. This trend is compared with that of the results of EMG, which is used by physicians
to determine teeth grinding. Figure 23 shows that the EMG and the bed-sheet-type sensor
results show good agreement. Based on these results, the following processing flow was
established to detect the occurrence of teeth grinding using only signals from the bed-sheet
type sensor: (1) Real-time sensing is carried out by a bed-sheet-type sensor. (2) First-order
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HPF processing (cutoff frequency: 3 Hz) is applied to the sensor signals. (3) If the amplitude
of the signal from the bed-sheet sensor is 5 times the average value over the past 20 min
and continues for 2 s, a start flag is set. If the amplitude is less than 5 times the average
value, an end flag shall be applied. (4) The FFT of the signal in the interval between the
flags in (3) is calculated. The sum of the calculated amplitudes between 3 Hz and 7 Hz is
obtained. When this sum is 100 times or more than the normal value (the average of the
data from the time of falling asleep to the present), the occurrence of bruxism is judged.
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restful sleep.

In the physician’s evaluation, 3 of the 15 subjects were found to have no incidence of
bruxism, whereas the other 12 subjects were found to have incidence of bruxism. For these
12 subjects, the occurrence of teeth grinding was independently determined from the bed-
sheet-type sensor data using the algorithm described above. The results are summarized in
Table 2. The following is an explanation of the table. For example, for subject No. 1, the
physician identified the number of times teeth grinding occurred from the EMG waveform
during one night of sleep, which was 150 times. On the other hand, the number of times
teeth grinding occurred was independently identified by the above-mentioned process
using the data of the bed-sheet-type sensor, which was 158 times. The number of times that
the doctor’s judgment was consistent with the bed-sheet-type sensor was 150 times and the
number of times of misjudgment was 8. In other words, every one of the 150 instances of
teeth grinding identified by the physicians was precisely confirmed by the data from the
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bed-sheet-type sensors. It should be emphasized that the occurrence of teeth grinding was
not missed at all by our bed-sheet-type sensor. However, the bed-sheet-type sensor results
included eight false positives. We have carefully examined all the cases of misjudgment,
and in all of them, a small body movement occurred for a moment. Table 2 shows that the
average success rate for each subject when using the bed-sheet-type sensor in this study
was over 90%.

Table 2. Comparison of diagnostic and bed-sheet-type sensor judgment results of bruxism.

Subject Gender Age Height
(cm)

Weight
(kg) BMI

Medical
Diagnosis

Bed-Sheet-Type Sensor

Determination by
Bed-sheet-Type

Sensor

Number of Times
of Correct
Judgment

Number of
Times of

Misjudgment

Success
Rate (%)

1 male 34 163 96 36 150 158 150 8 94.9
2 female 81 159 58 23 30 35 30 5 85.7
3 male 39 173 67 22 51 53 51 2 96.2
4 male 35 155 60 25 34 38 34 4 89.5
5 male 15 164 49 18 46 54 46 8 85.2
6 male 47 181 68 21 88 94 88 6 93.6
7 male 46 170 90 31 91 97 91 6 93.8
8 male 58 170 64 22 93 99 93 6 93.9
9 female 38 170 82 28 41 47 41 6 87.2
10 male 61 167 69 25 74 82 74 8 90.2
11 male 64 175 98 32 47 49 47 2 95.9
12 female 58 163 66 25 47 49 47 2 95.9

average of success rate (%) 91.9

Teeth grinding is a phenomenon that occurs in many people without their being aware
of it, and its presence is usually only recognized when serious dental damage or sleep
disturbances occur. Currently, the standard treatment for sleep disorders is to wear a
mouthpiece, which many patients find physically and mentally stressful, thereby affecting
their sleep quality. The widespread application of bed-sheet-type sensor systems for routine
data collection has the potential to contribute significantly to advancements in research
in this field. That is, the data routinely accumulated by bed-sheet-type sensor systems
could facilitate the development of innovative therapies that are currently considered
unfeasible. For example, it could lead to the development of specialized pillows and
household products designed to facilitate sleep positions that prevent teeth grinding. The
experimental results of the bed-sheet-type sensor system obtained in this study strongly
suggest that the system may lead to the development of new treatments.

7. Conclusions

Bruxism is attracting attention as one of the factors that interfere with the maintenance
and improvement of sleep quality, as it grinds and cracks teeth, aggravates gum sensi-
tivity and periodontal disease, and causes temporomandibular joint disorder, facial pain,
headaches, and stiff shoulders. In addition, for those sleeping together with others in the
same room, the noise generated by bruxism worsens the quality of sleep of the other people.
Thus, bruxism has a negative impact on health, and stress and anxiety have been suggested
as some of the causes. However, a method of measuring it continuously in daily life has
not been established. In this study, we developed a bed-sheet-type sensor consisting of a
braided piezoelectric PLLA cord as a device that can measure bruxism without causing any
burden or discomfort. This bed-sheet-type sensor offers a nonintrusive method of measur-
ing bruxism, eliminating the need for direct body contact, unlike PSG. We have developed
a device and an algorithm to identify and detect the unique waveform of bruxism. We used
the device on subjects in a sleep clinic and determined the consistency of its results with
judgments made by physicians on the basis of PSG results as a demonstration experiment.
As a result, we obtained surprising results showing consistency with all the judgments
made by the physicians. However, there were several cases in which the bed-sheet-type
sensor system showed the occurrence of teeth grinding, but the physician judged that no
teeth grinding occurred. In the future, we aim to fully implement the bed-sheet-type sensor
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system in society by enhancing collaboration with medical specialists, gathering more data
from a diverse range of subjects, and refining the accuracy of its waveform analysis.
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