
Citation: Lim, H.; Kim, M.; Kim, Y.;

Choo, S.; Kim, T.E.; Han, J.; Han, B.J.;

Lim, C.S.; Nam, J. Continuous

On-Chip Cell Washing Using

Viscoelastic Microfluidics.

Micromachines 2023, 14, 1658.

https://doi.org/10.3390/

mi14091658

Academic Editors: Ian Papautsky,

Abraham Lee and Jian Zhou

Received: 30 July 2023

Revised: 21 August 2023

Accepted: 23 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Continuous On-Chip Cell Washing Using Viscoelastic
Microfluidics
Hyunjung Lim 1,† , Minji Kim 2,†, Yeongmu Kim 3, Seunghee Choo 4, Tae Eun Kim 3, Jaesung Han 5,
Byoung Joe Han 6, Chae Seung Lim 7,* and Jeonghun Nam 3,6,*

1 Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul 02841, Republic of Korea;
hyunjunglim.email@gmail.com

2 Department of AI Electrical and Electronic Engineering, Incheon Jaeneung University,
Incheon 22573, Republic of Korea; minjizzang73@gmail.com

3 Artificial Intelligence (AI)-Bio Research Center, Incheon Jaeneung University,
Incheon 21987, Republic of Korea

4 College of Life Sciences and Bio Engineering, Incheon National University, Incheon 22012, Republic of Korea
5 Department of Mechanical and Control Technologies, Seoul Cyber University, Seoul 01133, Republic of Korea
6 Department of Digital Biotech, Incheon Jaeneung University, Incheon 22573, Republic of Korea
7 Department of Laboratory Medicine, College of Medicine, Korea University, Seoul 08307, Republic of Korea
* Correspondence: malarim@korea.ac.kr (C.S.L.); jhnam77@gmail.com (J.N.); Tel.: +82-2-626-1514 (C.S.L.);

+82-32-890-7515 (J.N.)
† These authors contributed equally to this work.

Abstract: Medium exchange of particles/cells to a clean buffer with a low background is essential for
biological, chemical, and clinical research, which has been conventionally conducted using centrifu-
gation. However, owing to critical limitations, such as possible cell loss and physical stimulation of
cells, microfluidic techniques have been adopted for medium exchange. This study demonstrates a
continuous on-chip washing process in a co-flow system using viscoelastic and Newtonian fluids.
The co-flow system was constructed by adding a small amount of biocompatible polymer (xanthan
gum, XG) to a sample containing particles or cells and introducing Newtonian fluids as sheath
flows. Polymer concentration-dependent and particle size-dependent lateral migration of particles
in the co-flow system were examined, and then the optimal concentration and the critical particle
size for medium exchange were determined at the fixed total flow rate of 100 µL/min. For clinical
applications, the continuous on-chip washing of white blood cells (WBCs) in lysed blood samples
was demonstrated, and the washing performance was evaluated using a scanning spectrophotometer.

Keywords: white blood cell; washing; co-flow; viscoelastic fluid

1. Introduction

Medium exchange of cells that are initially suspended in a medium with a high
background to another buffer with a low background is indispensable for biological and
clinical research [1,2]. The process of transferring cells across disparate solutions enhances
the sensitivity and accuracy of the analyses because cell sample preparation commonly
requires multiple medium exchange steps for chemical reactions, labeling, and washing.
Previous studies on solid-phase chemical reactions for cellular or molecular analyses
have reported that the mixing of solutions containing particles inevitably increased the
distributions in the analysis readout and the dead time of the reactions [3]. A typical
example of cell washing is the extraction of white blood cells (WBCs) from lysed whole
blood, since long-term exposure of WBCs to lysis buffer is detrimental and cell lysates can
be background noise for post-analyses. Conventional washing of WBCs involves multiple
steps such as mixing lysis buffer, centrifugation, removal of cell lysates, and retrieval
of WBCs.
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Centrifugation is the conventional method for cell washing; however, it has draw-
backs such as the use of expensive and bulky equipment, long time consumption, labor
intensiveness, and possible cell loss due to the additional pipetting process, which also
varies with operator skill. In addition, the high shear stress induced by the centrifugal force
can damage cells. Moreover, throughput is limited because centrifugation involves batch
processing and is discontinuous.

According to recent advancements in microfluidics, this method can be used as an al-
ternative to centrifugation to address the aforementioned limitations. Among microfluidic
techniques, active methods relying on external force fields have been widely used because
of the rapid and uniform medium exchange between solutions, which includes dielec-
trophoretic [4,5], acoustophoretic [6–9], and magnetic forces [10,11]. Meanwhile, passive
methods utilizing channel geometry and/or the hydrodynamic effects of flow-negating
external force fields have also been adopted for medium exchange [12–15]. More recently,
viscoelastic non-Newtonian microfluidics has gained considerable attention because of its
intrinsic nonlinear elastic forces, which enable particle/cell manipulation in a relatively
simple straight microchannel compared with other passive methods using Newtonian
fluids [16,17]. Although inertia-based cell washing can be achieved in a straight channel,
the flow rate range and cell size required for efficient washing are limited. Owing to
the advantages of viscoelastic microfluidics, it has been applied to not only particle/cell
focusing and separation [17–24], but also particle/cell washing [24–26].

In the previous cell washing using the co-flow configuration of viscoelastic and New-
tonian fluids, Ha et al. implemented microparticle transfer across laminar streams using
λ-DNA solution and Newtonian fluid [25], whereas Yuan et al. used poly(ethylene oxide)
(PEO) for microparticle/cell washing [26]. λ-DNA has strong viscoelasticity even at ex-
tremely low concentrations because of the long relaxation time of DNA molecules [27,28].
However, it is relatively expensive compared to other viscoelastic non-Newtonian fluids.
In contrast, PEO solutions have medium elasticity and weak shear thinning and have been
most widely used in microfluidic particle/cell manipulation.

In this study, we propose continuous on-chip washing of white blood cells in lysed
blood using a co-flow system of viscoelastic non-Newtonian and Newtonian fluids. Here,
instead of using λ-DNA and PEO solutions as viscoelastic fluids, we investigated the lateral
transfer of cells from a xanthan gum (XG) solution to a Newtonian fluid. XG, as a high-
molecular-weight polysaccharide, has been known as being biocompatible and non-toxic,
which can be employed in the food industry, medical field, and tissue engineering [29–33].
Recently, the size-dependent lateral migration and separation of microparticles in an XG
solution in a straight microchannel have been conducted [34–36]. Unlike λ-DNA and PEO
solutions, the XG solution has strong shear thinning with little viscoelasticity; therefore,
the equilibrium positions of particles in the XG solution are different from those in other
viscoelastic solutions. Then, the cell suspension in the XG solution can be introduced
along the channel center with minimal shear stress, which can be a strong advantage when
dealing with shear-sensitive cells [37]. In the present study, the migration characteristics
of particles with different blockage ratios were studied using a co-flow system of XG
solutions at various concentrations and Newtonian fluids, which has not yet been examined.
Continuous on-chip washing of WBCs in lysed blood samples was demonstrated, and the
cell washing performance was evaluated using a spectrophotometer and a hemocytometer.

2. Materials and Methods
2.1. Device Fabrication

A microfluidic device was fabricated from polydimethylsiloxane (PDMS) using a soft
lithography technique with an SU-8 replica mold patterned onto a silicon wafer. The PDMS
base and curing agent (Sylgard 184, Dow Corning, Midland, MI, USA) were mixed at a
10:1 ratio, degassed in a vacuum chamber, thermally cured in an oven for 1 h at 80 ◦C,
peeled off from the mold, and bonded onto a glass slide with oxygen plasma (CUTE, Femto
Science, Hwaseong, Republic of Korea). The fabricated PDMS microchannel consisted of
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two inlets, two outlets, and a straight rectangular channel with 100 µm width (W), 50 µm
height (H), and 30 mm length.

2.2. Sample Preparation

As a viscoelastic non-Newtonian fluid, XG (X0048, Tokyo Chemical Industry Co., Ltd.,
Chuo, Tokyo, Japan) was prepared in phosphate-buffered saline (PBS) at concentrations of
50, 100, 250, and 500 ppm to evaluate the effect of viscoelasticity on the medium exchange
of particles/cells. To estimate the flow characteristics of particles in XG solution, fluorescent
polystyrene particles with diameters of 500 nm, 2, 5, 10, and 13 µm (ThermoFisher, Waltham,
MA, USA) were used. The final concentration of the particles suspended in the XG solution
was approximately 1× 105 particles/mL.

The rheological properties of XG solutions were measured using a rheometer (AR2000,
TA Instruments, New Castle, DE, USA) over a wide range of shear rates at room temper-
ature. The measured viscosities and relaxation times of 50, 100, 250, and 500 ppm XG
solutions are summarized in Table 1.

Table 1. Summary of measured rheological properties of XG solutions at 50, 100, 250, and 500 ppm.

XG Concentration (ppm) η0(mPa·s) 1 η∞(mPa·s) 2 λ (ms)

50 478 0.95 76.5
100 698 1.5 92.5
250 790 2.3 172.5
500 892 4 313

1 Zero-shear-rate viscosity; 2 infinite-shear-rate viscosity.

Single-donor human whole blood (Innovative Research, Inc., Novi, MI, USA) was used
in this study. Whole blood (1 mL) was mixed with 7 mL of 1× BD FACS lysing solution (BD
Biosciences, San Jose, CA, USA), 1 mL of 1× SYBR Green for fluorescent staining of WBCs,
and 1 mL of 1000 ppm XG solution containing 500 nm fluorescent particles for visualization
of the viscoelastic fluid flow in the co-flow system. The final XG solution concentration
was 100 ppm.

2.3. Experimental Procedure and Post Analysis

The sample and sheath fluid flow rates of the co-flow system were controlled using
a syringe pump (Fusion-4000; Chemyx, Stafford, TX, USA). During the experiments, an
inverted microscope (IX71, Olympus, Tokyo, Japan) equipped with a color CCD camera
(CS230B, Olympus, Tokyo, Japan) was used to monitor the flow of the particles/cells.

To evaluate the washing performance of the co-flow system, samples injected at the two
inlets and collected from the two outlets were examined using a UV/VIS spectrophotometer
(Multiskan SkyHigh, ThermoFisher Scientific, Waltham, MA, USA). In addition, for a
quantitative evaluation of WBC washing, the recovery rate of WBCs was analyzed based
on manual counting using a hemocytometer. This was defined as the ratio of the number
of particles collected at outlet B to the total number of WBCs in the sample collected from
both outlets.

3. Results and Discussion
3.1. Working Principle

Figure 1 shows a schematic of continuous on-chip cell washing using the co-flow of a
viscoelastic non-Newtonian and a Newtonian fluid. For cell washing, a microchannel with
a low aspect ratio (AR, AR = H/W, H is the channel height and W is the channel width)
was used, as shown in the cross-sectional view (a-a’) in Figure 1. Cells were injected at
the center inlet (inlet B) as focused at the center of the microchannel, with sheath flows of
Newtonian fluid injected at the side inlet (inlet A), as shown in Figure 1A.
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Figure 1. Schematic of continuous on-chip particle/cell washing using a co-flow system of a vis-
coelastic non-Newtonian and a Newtonian fluid. For WBC washing, sample mixtures containing
lysed blood with a non-Newtonian fluid (xanthan gum solution, XG sol.) were introduced to the inlet
A, accompanied by sheath fluid (Newtonian fluid) at the inlet B. Due to medium exchange of cells
at the Newtonian/non-Newtonian fluid boundary, WBCs were migrated to a clear buffer solution,
while blood lysates and non-Newtonian fluid were removed at outlet A.

In a co-flow system, the lateral migration of cells is affected by the rheological lift (FrL)
of strongly shear-thinning and weakly elastic XG solutions [36].

FrL ∼ a3∇N1 (1)

Here, a is the particle diameter, and N1 is the first normal stress difference. The
strong shear thinning of XG solutions tends to drive particle migration to low-shear-rate
regions [31]. However, fluid inertial lift (FiL) also affects cell migration.

FiL = FiL,w + FiL,s ∼ ρ(a/W)4Q2 (2)

where ρ is the fluid density, W is the microchannel width, and Q is the total flow rate.
FiL,w and FiL,s indicate the wall-induced and shear-gradient-induced inertial lifts, respec-
tively. FiL,w pushes particles/cells away from the channel walls, whereas FiL,s pushes
particles/cells to the center of each microchannel face [38]. Based on the synergistic effect of
both forces during flow, the flow characteristics of the particles were different for different
non-Newtonian fluids. In a viscoelastic non-shear-thinning solution (polyvinylpyrrolidone,
PVP) [39], particles migrate towards the center of the microchannel, whereas large particles
migrate to two off-centered equilibrium positions, with smaller particles flowing around the
centerline in a viscoelastic and weakly shear-thinning fluid (i.e., PEO) [40]. Unlike the other
above-mentioned non-Newtonian fluids, the equilibrium positions of the particles/cells
in the XG solution were found to be different [36], which has not been studied in co-flow
systems with Newtonian fluids.

Owing to the simultaneous effect of inertial and rheological forces in viscoelastic fluid
flow, non-dimensional numbers are required to characterize the flow in a microchannel,
including the Reynolds number (Re), Weissenberg number (Wi), and elasticity number (El).

Re =
ρVmDh

η
(3)

Wi = λ
.
γc (4)

El =
Wi
Re

(5)
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where Vm, Dh, η, and
.
γc indicate the mean flow velocity, the hydraulic diameter of the channel,

the characteristic viscosity of the solution, and the characteristic shear rate, respectively.
As shown at B in Figure 1, cells with a blockage ratio (β = a/H, H is the microchannel

height) larger than a threshold value are migrated laterally across the boundary from
the viscoelastic fluid to the Newtonian fluid. In the present study, we determined this
threshold value as the critical blockage ratio for effective cell washing. Particles/cells with a
blockage ratio lower than the critical blockage ratio cannot be driven to the Newtonian fluid;
therefore, they remain within the viscoelastic fluid, which can be used for the visualization
of the viscoelastic fluid stream. Therefore, continuous on-chip washing of cells was achieved
(C in Figure 1).

3.2. Effect of Viscoelasticity on Lateral Migration of Particles

To examine the effect of viscoelasticity on the flow characteristics of 13 µm fluorescent
particles, the distributions of particles suspended in 50, 100, 250, and 500 ppm XG solutions
were observed. The flow rate ratio of the sample (particle-containing XG solution) and
sheath (PBS) flows was modulated to maintain a uniformly focused width of the sample
in the inlet region, regardless of the sample viscosity. As the concentration of the XG
solution increases, the viscosity increases (Table 1), and the focused width of the sample
solution becomes wider owing to the viscosity difference between the sample and the
sheath fluid [41–43]. The cells flowing at the center of the broadened sample stream
cannot escape from the viscoelastic sample fluid and migrate across the boundary to the
Newtonian sheath fluid. Therefore, to maintain a constant focused width ratio of 1:19
(sample to sheath) at the inlet region, the flow rate ratios of the sample and sheath fluids
are required to be adjusted. For 50 and 100 ppm XG solution, the flow rate ratio was fixed
at 1:19 with flow rates of 5 µL/min for sample (Qsample) and 95 µL/min for sheath (Qsheath),
while the flow rate ratios were modulated to 1:39 and 1:99 for 250 ppm and 500 ppm XG
solution, respectively, at the fixed total flow rate (100 µL/min).

Figure 2 shows the stacked microscopic images and normalized particle distribution of
13 µm particles. Particle distribution was examined in the expansion region (width 800 µm)
at the outlet, which was for visualization of the flow streams of particles. The 800 µm
expansion region was divided into 40 virtual bins, and the number of particles in each bin
with 20 µm was normalized by the total number of particles flowing in the entire width.
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Figure 2. Effect of xanthan gum (XG) concentrations of (a) 50 ppm, (b) 100 ppm, (c) 250 ppm, and
(d) 500 ppm on medium exchange of 13 µm particles from XG solution to PBS in the co-flow device.
The total flow rates were 100 µL/min, and the focused width ratio of the sample to sheath flows
was modulated as 1:19 for 50 and 100 ppm XG solution, 1:39 for 250 ppm XG solution, and 1:99 for
500 ppm XG solution. White dotted lines show the channel walls, and the X and Y axes indicate the
normalized number of particles of 0–100 and the width of the expansion region of 0–800 µm. The
scale bar is 100 µm.

At the inlet, 13 µm particles were focused at the channel center using a sheath fluid
(PBS). Due to the rheological lift during the co-flow, many 13 µm particles were found
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to migrate laterally towards the channel walls even at a low concentration of 50 ppm
(Re = 27.8, Wi = 510.1, El = 18.3) (Figure 2a). With an increase in concentration to 100 ppm
(Re = 14.8, Wi = 616.7, El = 41.6), the fluorescent streams of 13 µm particles were located near
the channel walls (Figure 2b). This indicated that most of the particles migrated laterally
and were driven into the other medium (Newtonian fluid). The ratio of particles flowing
near the channel walls increased with an increase in the concentration of the XG solution
to 250 ppm (Re = 9.7, Wi = 1150, El = 119.0) and 500 ppm (Re = 5.6, Wi = 2086, El = 375.3),
as shown in Figure 2c,d, owing to the enhanced shear thinning effect. To achieve effective
medium exchange by fully utilizing the effect of rheological lift, which becomes stronger
with increasing XG concentration, a sample solution with a high XG concentration, such
as 500 ppm, is preferable. However, owing to its high viscosity, the device throughput is
limited to ~1 µL/min.

Meanwhile, to validate that the lateral migration of 13 µm particles was enough for
on-chip washing, the flow distributions of 500 nm particles in PBS and XG solutions at
various concentrations were examined (see Supplementary Figure S1). Briefly, 500 nm
particles suspended in PBS and XG solutions flowed with maintaining the focused width
ratio at the inlet and showed no notable distribution difference in the width ratio at the
inlet, which was due to the extremely small blockage ratio (β = 0.01). The distribution of
500 nm particles in PBS and 50 ppm XG solution showed a slight increase due to the effect
of diffusion, since the diffusion coefficient increases with decreasing viscosity (0.88 mPa·s
for PBS and 0.8 mPa·s for 50 ppm XG solution at room temperature). Then, the lateral
migration of 13 µm particles in 100 ppm XG solutions shown in Figure 2b was regarded
as being sufficient for medium exchange from a non-Newtonian to a Newtonian fluid.
Therefore, although XG solutions with concentrations higher than 100 ppm can be used for
particle/cell washing, the concentration of the XG solution was determined to be 100 ppm
for further experiments, considering device throughput and lateral migration distance.

3.3. Determination of Critical Blockage Ratio for Efficient Washing

To determine the threshold blockage ratio for efficient washing, fluorescent particles
with diameters of 0.5, 2, 5, 10, and 13 µm were suspended in a 100 ppm XG solution,
and the particle distribution was examined. The blockage ratios (β) of the particles were
0.01, 0.05, 0.1, 0.2, and 0.26, respectively. Figure 3 shows the particle size-dependent flow
streams in the 100 ppm XG solution at fixed flow rates (Qsample 5 µL/min and Qsheath
95 µL/min). In Figure 3a, the Y-axis indicates a normalized fluorescent intensity of 0–100,
while the Y-axes in Figure 3b–e denote the normalized number of particles flowing in each
segment. For 500 nm particles (β = 0.01), the particles flowed initially focused along the
channel center at the inlet but with slight diffusion (Figure 3a), which was due to the small
blockage ratio. Therefore, in the subsequent washing experiments, 500 nm fluorescent
particles were used to visualize non-Newtonian fluid flow in the co-flow system. As shown
in Figure 3b–e, as the particle size increased, the particles were driven further, and the
equilibrium positions of the particles approached toward the channel walls. Particles with
a blockage ratio higher than 0.1 started to show wall-directed lateral migration (Figure 3c).
Using our experimental conditions (100 ppm XG solution, Re = 14.8, Wi = 616.7, El = 41.6),
particles/cells with β ≥ 0.1 can be medium-exchanged and washed to clean buffer for
post-analysis. In this study, the target for cell washing, WBCs, has a size distribution of
11.0± 5.0 µm (β = 0.11± 0.05) [20], so the lateral migration of WBCs will be sufficient for
cell washing, based on the results in Figure 3d,e. In addition, although the length of the
microchannel used in this study was fixed, multiple particle/cell separations and washing
processes could be achieved using a co-flow system by modulating the channel length
depending on the experimental objectives.
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3.4. Clinical Application of Continuous On-Chip Washing

Washing WBCs in lysed blood samples has been demonstrated as a clinical application
of continuous on-chip washing using a co-flow system. Isolation of WBCs from other
blood components and buffer medium exchange are required for the proper treatment
of various infectious diseases by the extraction of virological markers in WBCs [44,45]
and for the detection of various diseases such as leukemia and human immunodeficiency
virus infections [46]. Microfluidic approaches can address the bottlenecks of conventional
methods (centrifugation and flow cytometry), such as the requirement of large volumes
of samples and reagents, bulk setup, and trained personnel, which limits access in low-
resource settings.

Figure 4a,b show the stacked microscopic images at the inlet and outlet of the mi-
crochannel, respectively. Fluorescence-stained WBCs and 500 nm particles were initially
focused by sheath flows injected from the side inlets (Figure 4a). At the outlet, WBCs were
laterally driven toward the channel walls, while 500 nm particles visualizing the flow of
the non-Newtonian fluid (XG solution) remained along the central region of the channel
(Figure 4b)). Figure 4c–e shows the fluorescent images of the samples before and after the
washing process. At the inlet, a mixture of WBCs and 500 nm particles was used (Figure 4c).
After the washing process, migrated WBCs were collected in PBS at the side outlets (outlet
B, Figure 4e) without 500 nm particles flowing to the center outlet (outlet A, Figure 4d).
For the quantitative evaluation of WBC washing, the number of WBCs in each collected
sample in outlets A and B was counted using a hemocytometer. The recovery rate of WBCs
at outlet B exceeded 98% under our experimental conditions (Figure 4f).

To evaluate the on-chip washing performance of the WBCs in the XG solution further
qualitatively, the absorbance spectra of the samples at the two inlets and two outlets
were tested using scanning spectrophotometry (Figure 4g). PBS at inlet B had minimal
absorbance without any peaks within the wavelength range of 440–650 nm, while the
sample at inlet A containing lysed blood and fluorescent nanoparticles (500 nm diameter)
in XG solution showed two major peaks at wavelengths of ~540 and 575 nm. XG has no
notable absorption peaks within the 440–650 nm wavelength range, and it seems that the
declining trend in absorbance within the 440–500 nm wavelength might be due to XG [47].
An amount of 500 nm fluorescent particles were used to visualize the viscoelastic flow
stream, which did not affect the absorption spectrum within the wavelength range for
analysis. The sample at inlet A also contained 1× SYBR Green for WBC staining, which
shows extremely low absorbance values within the 440–650 nm wavelength, so that it
has no effect on the current spectra results [48]. The washed WBCs collected at outlet B
also showed two peaks with considerably reduced absorbance. These two major peaks
at 540 and 575 nm wavelengths and one valley at 560 nm wavelength are the absorption
characteristics of hemoglobin that exist in lysed blood samples [49]. Meanwhile, the sample
from outlet A displayed a slight decrease in absorbance compared to that of the initial
sample at inlet A. This indicates that diffusion of the initial sample into a Newtonian fluid
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(PBS) may have occurred during the on-chip washing process. Moreover, because of the
large molecular size of xanthan gum, the molecular size ranges from hundreds to thousands
of nanometers. Considering 100-nm-sized molecules, the mean square distance (x) that a
molecule has diffused in time t was calculated as 1.24 µm:〈

x2
〉
= 6Dt (6)

D =
KT

3πµa
(7)

where D is the diffusion coefficient and K is Boltzmann’s constant (K = 1.3806488× 10−23J/K),
respectively. The calculated distance (x = 1.24 µm) indicates that the diffusion in the co-
flow system can be negligible. Therefore, based on the absorbance spectra and theoretical
analysis, efficient on-chip washing of WBCs from lysed blood to clean buffer (PBS) can be
achieved using our XG solution-based co-flow system.
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Figure 4. Application of the viscoelastic medium exchange system for white blood cell (WBC) washing
at a total flow rate of 100 µL/min at the (a) inlet and (b) outlet expansion regions. Fluorescent images
of the sample (c) before the washing process and after the washing process at the (d) outlet A and
(e) outlet B. (f) Recovery rate based on quantitative analysis. (g) Absorbance spectra of the sample
before and after the washing process.

Our viscoelastic particle/cell washing device enables continuous on-chip washing.
However, for the practical implementation of our device and the prospective replacement of
centrifugation, its throughput is required to be improved. Device throughput can be further
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enhanced by decreasing the flow resistance, which means adopting multiple channels in
a radial arrangement or device stacking in multiple layers [50–52]. Also, the aspect ratio
of the microchannel can be modulated to have a wider channel by fabricating the fluidic
device in a rigid thermoplastic resin [53], which facilitates the mass production of devices
for commercialization. In addition, for further optimization, the effects of the total flow
rate, channel length, and design of the outlet trifurcation are required to be considered to
improve the washing performance.

4. Conclusions

In summary, we demonstrated continuous on-chip washing of particles/cells using
a co-flow system of viscoelastic and Newtonian fluids, enabling the washing of WBCs
in lysed blood samples. The proposed method utilizes an XG solution as a viscoelastic
fluid, which has not been used in microfluidic co-flow systems. The effects of XG solution
concentration and particle size were investigated to optimize the experimental parameters
for particle/cell washing using the co-flow system. Therefore, 100 ppm XG solution was
used for further experiments, and the critical particle blockage ratio for continuous washing
was determined to be 0.1. In addition, 500 nm fluorescent particles were used to evaluate
medium exchange over a viscoelastic/Newtonian fluid interface. Finally, WBCs were
successfully washed from lysed blood samples by adding XG solution to clear buffer with
a negligible diffusion effect, which was verified by absorbance spectra. Therefore, our
co-flow system is a potential alternative to the conventional medium exchange and washing
processes using centrifugation, allowing various biomedical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi14091658/s1, Figure S1. Flow distribution of 500 nm particles
in (a) PBS and XG solutions at various concentrations of (b) 50 ppm, (c) 100 ppm, (d) 250 ppm, and
(e) 500 ppm.
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