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Abstract: In this paper, a novel dual-mass MEMS piezoelectric vector hydrophone is proposed to
eliminate the transverse effect and solve the problem of directivity offset in traditional single-mass
MEMS piezoelectric vector hydrophones. The reason for the directional offset of the traditional
single-mass cantilever MEMS piezoelectric vector hydrophone is explained theoretically for the first
time, and the angle of the directional offset is predicted successfully. Both analytical and finite element
methods are employed to analyze the single-mass and dual-mass cantilever MEMS piezoelectric
vector hydrophone. The results show that the directivity of the dual-mass MEMS piezoelectric
vector hydrophone has no deviation, the transverse effect is basically eliminated, and the directiv-
ity (maximum concave point depth) is significantly improved, so more accurate positioning can
be obtained.
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1. Introduction

Almost 71% of the Earth’s surface is covered by water. In the future, humankind
will rely heavily on marine resources. Therefore, high-performance underwater acoustic
detection equipment, in which hydrophones are considered to be the core component [1], is
urgently needed. Hydrophones mainly include acoustic pressure hydrophones and vector
hydrophones. Compared with acoustic pressure hydrophones, vector hydrophones can
measure vector information such as particle displacement, velocity, and acceleration of
the underwater acoustic field. Combining MEMS technology with vector hydrophones
is advantageous because this combination has a small size, low power consumption,
low fabrication cost, and better signal noise ratio, and it can more easily detect low
frequencies [2–4].

According to the sensing mechanism, MEMS vector hydrophones can be mainly
divided into capacitive vector hydrophones [5,6], piezoresistive vector hydrophones [7–12],
and piezoelectric vector hydrophones [13–17]. There are few articles available on capacitive
MEMS vector hydrophones. Li et al. fabricated a low-noise capacitive MEMS vector
hydrophone by employing differential capacitors with a sensitivity of−179.9 dB [5]. Among
piezoresistive MEMS vector hydrophones, the bionic ciliated piezoresistive MEMS vector
hydrophone stands out as a representative design. In 2007, Shang, Chen et al. proposed a
bionic ciliated MEMS piezoresistive vector hydrophone with an unamplified sensitivity of
−247.7 dB [9]. Building upon this design, they subsequently proposed variations, including
the bionic T-Shape [8], bionic cup-shaped [10], and bionic fitness-wheel-shaped [12] MEMS
piezoresistive vector hydrophones. Recently, a new design, the Crossed-circle MEMS
ciliary vector hydrophone, has been proposed [11]. The article on the cup-shaped MEMS
vector hydrophone reports the signal amplification factor with an unamplified sensitivity
of −228.5 dB [10]. The latest Crossed-circle MEMS ciliary vector hydrophone does not
specify the amplification factor while demonstrating an amplified sensitivity of −186.7 dB.
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In the realm of piezoelectric MEMS vector hydrophones, a significant contribution was
made by Junhong Li et al. in 2016. They developed a cantilever MEMS vector hydrophone
with ZnO thin films, which achieved an unamplified sensitivity of −229.5 dB [15]. In 2019,
Dongning Li et al. proposed a novel MEMS vector hydrophone based on a composite beam
with double U grooves, aiming to enhance sensitivity. This design achieved an unamplified
sensitivity of −220.8 dB [4,18]. Capacitive mems vector hydrophones offer high sensitivity,
but they need bias voltage during operation, are susceptible to the effects of parasitic
capacitance, and possess complex structures. In contrast, piezoresistive and piezoelectric
MEMS vector hydrophones have relatively low sensitivity, but they are passive devices
with a simple structure. Furthermore, with continuous advancements, the sensitivity of
piezoresistive and piezoelectric hydrophones has significantly improved. In comparison to
piezoelectric MEMS vector hydrophones, the piezoresistive type is affected by unavoidable
thermal noise caused by Joule heating. Additionally, its sensitivity is slightly lower than
that of the piezoelectric type due to lower energy conversion efficiency [14,19,20].

However, the cantilever piezoelectric MEMS vector hydrophone exhibits a signifi-
cant directional offset (transverse effect), leading to substantial errors in sound source
localization [14,21,22]. The directional offset or transverse effect is manifested by the fact
that the maximum sensitivity axis of the vector hydrophone does not coincide with the
main axis [23]. For an excellent accelerometer, its transverse sensitivity ratio should be
controlled within 5% or lower [21]. In 2002, K. Deng et al. introduced a ring-shaped
piezoelectric MEMS accelerometer with a transverse sensitivity ratio of less than 2% and an
acceleration of 0.77 pC/g [24]. In 2006, Lijie Chen et al. fabricated a piezoresistive MEMS
vector hydrophone with bridge structure in order to reduce the large transverse effect of the
cantilever structure. However, the transverse effect was not completely eliminated, and its
directivity was still offset by approximately 5◦ [25,26]. In 2011, Chengzhe Li et al. proposed
two compensation methods to reduce transverse effects based on the cymbal piezoelectric
accelerometer, but both of them require multiple sensors to cooperate [27]. In 2014, Yan Liu
et al. introduced an improved figure of merit (FOM) that encompasses resonant frequency,
sensitivity, and transverse sensitivity [28]. In 2019, Lin lina et al. proposed a piezoresistive
accelerometer with the non-planer dual flexure beam to reduce the influence of transverse
effects. The transverse sensitivity ratio of this accelerometer was less than 0.078%, while the
acceleration sensitivity was 0.64 mV/g [29]. In 2019, Jian Yang et al. proposed a T-Shape
Piezoelectric MEMS Resonant Accelerometer with a transverse sensitivity ratio of less than
4.77% and an acceleration sensitivity of 1.11 Hz/g [30]. In the same year, to enhance the
quality factor Q and sensitivity, Jian Yang et al. introduced a Piezoelectric MEMS Resonant
Accelerometer with a fork-like structure and two proof masses resonate reversely, result-
ing in an acceleration sensitivity of 8.53 Hz/g and a transverse sensitivity ratio less than
6.1% [31]. In 2022, Chengying Li et al. proposed a square MEMS piezoelectric accelerometer
with low transverse sensitivity. This accelerometer exhibited a sensitivity of 1.96 mV/g,
and its transverse sensitivity ratio was less than 0.6% [21].

The transverse sensitivity of multi-beam structure can be well controlled, but the
sensitivity is small. The sensitivity of the single-beam structure is large, but the transverse
sensitivity is not well-controlled [25]. Currently, it is challenging to achieve both a low
transverse sensitivity ratio and high sensitivity simultaneously. Cantilever MEMS piezo-
electric vector hydrophones offer high sensitivity, but there is an urgent need to address
the issue of directional offset (transverse sensitivity) without compromising their sensi-
tivity. This paper aims to explore the underlying sensing mechanism causing directional
offset and predict the angle of the directional offset in the cantilever MEMS piezoelectric
vector hydrophone. Additionally, we propose a dual-mass MEMS piezoelectric vector
hydrophone that addresses the issue of directional offset without compromising the high
sensitivity of the cantilever structure.
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2. Modeling Analysis

Vector hydrophones are primarily categorized into a moving-coil type, sound-pressure
gradient type, and resonant-column type according to the principle of detecting vibrations.
Different types of vibration detection principles correspond to different working principles,
but they all share a common characteristic. That is, the detection of acoustic signals is
directional, and the directional curve presents a pattern of “8” shape [32]. However, the
directivity of the traditional single-mass MEMS piezoelectric vector hydrophone is offset,
where the maximum concave point does not appear in the expected 90◦ and 270◦ [14,15].
In this section, the reasons for the directional offset of the traditional single-mass MEMS
piezoelectric vector hydrophone will be explored, and the corresponding solutions will be
proposed.

The directivity of a vector hydrophone is defined as a function of the output
voltage [33]:

D(θ) = 20 log(
|V(θ)|
|V(θ0)|

) (1)

where |V(θ)| is the absolute value of the output voltage of the vector hydrophone when
the incident acoustic wave is along with the incident angle of θ, and |V(θ0)| is the absolute
value of the maximum output voltage of the vector hydrophone when the incident acoustic
wave is along with the incident angle of θ0. Equation (1) shows that the maximum concave
point occurs at the minimum output voltage.

To simplify the analysis of the MEMS vector hydrophone, the following assumptions
are made: 1. The effective mass of the cantilever beam is significantly smaller than that
of the proof mass and can be neglected; 2. The layers of the cantilever beam are elastic
and obey Hooke’s law; 3. The proof mass and the cantilever beam are rigidly connected;
4. The cantilever beam undergoes pure bending deformation, while the stresses in the z
direction and the strains in the x direction can be ignored compared with the other strains
and stresses [34].

When the traditional single-mass MEMS piezoelectric vector hydrophone is subjected
to acceleration in the y-z plane, it can be simplified to the following model.

In Figure 1, lm and hm are the length and height of the proof mass, and l is the length
of the cantilever beam. When the single-mass MEMS piezoelectric vector hydrophone is
subjected to an acceleration acc, then F = macc equates the force point to the center of the
proof mass.
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The orthogonal decomposition of F is obtained as follows:

Fa = F cos θFb = F sin θ (2)

The bending moment generated by Fb at the vertex of the point cantilever beam is

Mb = Fb
hm

2
(3)
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The bending moment at any position on the composite beam is

M(x) = Mb + Fa(l +
lm
2
− x) = F sin θ

hm

2
+ F cos θ(l +

lm
2
− x) (4)

The average stress of the piezoelectric film is

σ1 = Ep
M(x)
(EI)eq

(
hp

2
+ a
)

(5)

where Ep is young modulus of the piezoelectric film, hp is the thickness of the piezoelec-
tric film, a is the distance between the neutral surface of the composite beam and the
piezoelectric layer, and (EI)eq is equivalent flexural rigidity of the composite beam [34].

The output voltage of the piezoelectric layer due to acceleration is

V(θ) =
Q
C

=
1
C

∫ le

0
d31σ1bdx =

bd31Ep

C(EI)eq

(
hp

2
+ a
) le∫

0

M(x)dx = A
le∫

0

M(x)dx (6)

where le is the length of the electrode and d31 is the piezoelectric coefficient of the piezoelec-
tric film. For the determined composite beam, its related parameter A is also determined
and can be regarded as a constant. According to Equations (4) and (6), the output voltage
generated by the traditional single-mass MEMS piezoelectric vector hydrophone is the
result of the combined action of the vertical and horizontal components of the acceleration.

According to Equation (6), the charge quantity of the piezoelectric element is the
integral of the bending moment. When the bending moment of the traditional single-mass
MEMS piezoelectric vector hydrophone changes sign in the electrode, the tensile stress on
one end of the piezoelectric film and the compressive stress on the other end will generate
charges of opposite polarity, which cancel each other out, resulting in the deviation of
directivity of the traditional single-mass MEMS piezoelectric vector hydrophone.

Setting V(θ) = 0 solves the concave point position θ in the y–z plane of the traditional
single-mass MEMS piezoelectric vector hydrophone.

θ = arctan(
−2l − lm + le)

hm
) (7)

where l is the length of the composite beam, le is the length of the electrode, and lm and hm
are the length and height of the proof mass.

To correct the directional offset of the traditional single-mass MEMS piezoelectric
vector hydrophone, a dual-mass MEMS piezoelectric vector hydrophone with an upper and
lower symmetry is proposed. The simplified model of the dual-mass MEMS piezoelectric
vector hydrophone is shown in Figure 2.
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The bending moment and output voltage of the dual-mass MEMS piezoelectric vector
hydrophone are

Mb = Fb × 0 = 0 (8)

M = Mb + Fa(l − x) = F cos θ(l − x) (9)

V(θ) =
Q
C

=
1
C

le∫
0

D3bdx = A
le∫

0

F cos θ(l − x)dx (10)

where le is the length of the electrode. According to Equation (10), when θ is 90◦ and
270◦, V(θ) = 0. The concave point appeared at 90◦ and 270◦, and the directivity did not
deviate. The proof masses of the traditional single-mass and dual-mass MEMS piezoelectric
vector hydrophone have the same weight. However, the dual-mass MEMS piezoelectric
vector hydrophone makes the center of gravity of the proof mass located in the plane of the
composite beam through the symmetric proof masses, thus solving the directional offset of
the traditional single-mass MEMS vector hydrophone.

Based on Equations (6) and (10), the charge generated by the single-mass MEMS piezo-
electric vector hydrophone is influenced by both the horizontal and vertical components
of acceleration. In contrast, the dual-mass MEMS piezoelectric vector hydrophone is only
sensitive to the vertical component of acceleration. Therefore, more accurate sound source
location can be obtained.

3. Finite Element Analysis

Some approximate assumptions have been made in the above analytical analysis.
In this section, finite element simulation is used to analyze the directivity of the MEMS
piezoelectric vector hydrophone.

Figure 3 shows the relationship between the directional offset angle of the traditional
single-mass MEMS piezoelectric vector hydrophone and the length l of the composite beam.
As shown in Figure 3, the directional offset angle decreases gradually as the length l of the
composite beam increases.
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Figures 4 and 5 show the variation in the directional offset angle of the traditional
single-mass MEMS piezoelectric vector hydrophone with proof mass height hm and elec-
trode length le, respectively. As shown in Figures 4 and 5, with increasing proof mass
height hm or electrode length le, the directional offset angle of the traditional single-mass
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MEMS piezoelectric vector hydrophone increases. The electrode length le has little effect
on the directional offset angle.
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As observed from Figures 3–5, regarding the directional offset angle of the traditional
single-mass MEMS piezoelectric vector hydrophone, the finite element simulation results
are basically consistent with the theoretical modeling results in the above section, and the
maximum error is less than 0.8◦.

Figures 6 and 7 show the voltages generated by the acceleration of different mag-
nitudes in different directions for the traditional single-mass and the dual-mass MEMS
piezoelectric vector hydrophone, respectively. The curve with the dotted line and “+” sign
represents the voltage generated by the single-mass MEMS piezoelectric vector hydrophone
and the dual-mass one with constant acceleration at different angles in the y–z plane and
the x–z plane. The solid line represents the voltage generated by different magnitudes of
acceleration (g ∗ cos(θ)) in a fixed direction (z direction).
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the dual-mass MEMS piezoelectric vector hydrophone. (lm = 300 µm, b = 300 µm, hp = 4 µm,
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As shown in Figure 6, the curve of g ∗ cos(θ) in the fixed direction of the traditional
single-mass MEMS piezoelectric vector hydrophone coincides with the curve of constant
acceleration in the x–z plane at different angles. This indicates that the effect produced by
acceleration at different angles in the x–z plane can be completely equivalent to the effect
produced by g ∗ cos(θ) acceleration along the z direction. g ∗ cos(θ) can be considered as
the vertical component of the constant acceleration at different angles.

However, the curve of g ∗ cos(θ) in the fixed direction of the traditional single-mass
MEMS piezoelectric vector hydrophone does not coincide with the curve of constant
acceleration in the y–z plane at different angles. This indicates that the effect produced by
acceleration at different angles in the y–z plane cannot be equivalent to the effect produced
by g ∗ cos(θ) acceleration along the z direction. This is consistent with the analysis in the
previous section. The charge generated by the traditional single-mass MEMS piezoelectric



Micromachines 2023, 14, 1495 8 of 12

vector hydrophone in the y–z plane is the result of the combined action of the horizontal
component and the vertical component of acceleration, which leads to directional offset.

Figure 7 shows that for the dual-mass MEMS piezoelectric vector hydrophone, the
curve of g ∗ cos(θ) in the fixed direction coincides with the curve of the x–z plane and the
curve of the y–z plane. This indicates that when it is subjected to an acceleration in any
direction, the acceleration can be decomposed orthogonally. The voltage generated by
the dual-mass MEMS piezoelectric vector hydrophone is equivalent to the result of the
independent action of the acceleration component perpendicular to the dual-mass MEMS
piezoelectric vector hydrophone. The dual-mass MEMS piezoelectric vector hydrophone
is only sensitive to the vertical component of acceleration, and the voltage generated is
only the result of the vertical component acting alone. Compared with the traditional
single-mass MEMS piezoelectric vector hydrophone, the dual-mass MEMS piezoelectric
vector hydrophone is more accurate in terms of sound source localization.

Figures 8 and 9 show that the single-mass and the dual-mass MEMS piezoelectric
vector hydrophone exhibit clear directivity patterns of “8” shape. However, in the y–z
plane, the “8” shape directivity of the traditional single-mass MEMS piezoelectric vector
hydrophone is offset, and its concave point appears at 277◦ instead of 270◦. The concave
point of the dual-mass MEMS piezoelectric vector hydrophone appears at 270◦, and the
directivity pattern of “8” shape is not offset.

In the y–z plane, the maximum concave point depths of the single-mass and the dual-
mass MEMS piezoelectric vector hydrophone are −102.59 dB and −111.94 dB, respectively.
In the x–z plane, the maximum concave point depths of the traditional single-mass and
the dual-mass MEMS piezoelectric vector hydrophone are −213.97 dB and −332.38 dB,
respectively. Compared with the traditional single-mass MEMS piezoelectric vector hy-
drophone, the maximum concave point depth of the dual-mass MEMS piezoelectric vector
hydrophone is increased by 118.42 dB. The directivity performance is significantly im-
proved.

The transverse sensitivity ratio refers to the ratio of transverse sensitivity to the
sensitivity along the main sensitive axis [22,35]. In this study, it is represented as S(90◦)

S(0◦) ,
where S(90◦) and S(0◦) indicate the sensitivity of the vector hydrophone at 90◦ and 0◦

acceleration directions, respectively. The transverse sensitivity ratio for the y-axis of the
single-mass MEMS piezoelectric vector hydrophone is 12.88%, while for the dual-mass one,
it is 0.37%. These results demonstrate that the proposed dual-mass MEMS piezoelectric
vector hydrophone effectively eliminates the transverse effect.

Table 1 shows the sensitivity and directional offset of various types of MEMS vector
hydrophones. The data of the first five vector hydrophones in Table 1 are experimental data,
and the data of this work are theoretical. The table indicates that other vector hydrophones
exhibit directional offset issues, while the proposed dual-mass MEMS piezoelectric vector
hydrophone addresses this problem. The resonant frequency (typically obtained through
impedance measurement system) is another important metric for vector hydrophones,
as it determines the bandwidth of the hydrophone [36]. Figure 10 shows the sensitivity
and resonant frequency of the single-mass and dual-mass MEMS piezoelectric vector
hydrophone as a function of the proof mass height. Here, the proof mass height of the
dual-mass MEMS piezoelectric vector hydrophone is the sum of the upper and lower
proof masses. It can be observed that the dual-mass hydrophone exhibits slightly higher
sensitivity and slightly lower resonant frequency compared to the single-mass hydrophone.
These characteristics are advantageous for detecting low-frequency signals.

The directivity of the traditional single-mass and the dual-mass MEMS piezoelectric
vector hydrophone are shown in Figures 8 and 9, respectively. The −z direction is the
starting 0◦.
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Table 1. Sensitivity and directivity offset of various types of MEMS vector hydrophones.

Works Sensing Structure Sensitivity Directional Offset

Lijie Chen. et al. [25,26] Piezoresistive Bridge four cantilever −194 dB (Amplification 53 dB) Yes
Wei Xu. et al. [10] Piezoresistive Bionic cup-shaped −188.5 dB (Amplification 40 dB) Yes

Jinlong Song. et al. [19] Piezoresistive Bio-inspired
X-channel: −187 dB
Z-channel: −163 dB
(With amplification)

Yes

Junhong Li. et al. [15] Piezoelectric Cantilever −229.5 dB (No amplification) Yes
Qingqing Fan. et al. [4,18] Piezoelectric Cantilever with double U groove −186.8 dB (Amplification 34 dB) Yes

This work Piezoelectric Dual-mass Cantilever slightly higher than cantilever [15] No
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4. Conclusions

In this paper, a comprehensive analysis of the directivity of the single-mass cantilever
MEMS piezoelectric vector hydrophone is conducted for the first time. The results reveal
that the traditional single-mass MEMS piezoelectric vector hydrophone is affected by
both vertical and horizontal components of acceleration, which leads to directional offset.
The analytical method and finite element simulation are used to analyze the directional
offset angle of the traditional single-mass MEMS piezoelectric vector hydrophone. The
results show that the analytical method aligns with the finite element simulation outcomes,
validating the accuracy of the analytical method in predicting the directional offset angle.

To solve the directional offset issue of the traditional single-mass MEMS piezoelectric
vector hydrophone, a novel dual-mass MEMS piezoelectric vector hydrophone is proposed
in this paper. By employing symmetric proof masses, the center of gravity of the proof
masses is positioned at the middle plane of the composite cantilever so that the dual-mass
MEMS piezoelectric vector hydrophone is only sensitive to the vertical component of the
acceleration. Therefore, the directional offset of the traditional single-mass MEMS piezo-
electric vector hydrophone is corrected, and the transverse effect is basically eliminated. In
comparison to single-mass MEMS vector hydrophones, the transverse sensitivity ratio of
the dual-mass MEMS vector hydrophone is optimized from 12.88% to 0.37%, with slightly
higher sensitivity and slightly lower resonant frequency. The voltage generated by the
dual-mass MEMS piezoelectric vector hydrophone is only influenced by the sensitive direc-
tion and not affected by other directions. Therefore, a more accurate sound source location
can be obtained. The maximum concave depth of the dual-mass MEMS piezoelectric
vector hydrophone in the x–z plane and y–z plane is increased by 118.42 dB and 9.35dB,
respectively, and the directivity performance is greatly improved. The directivity of the
single-mass MEMS piezoelectric vector hydrophone is offset by 7◦ in the y–z plane, while
the dual-mass MEMS piezoelectric vector hydrophone has no offset. However, it should be
noted that the fabrication process of the dual-mass MEMS piezoelectric vector hydrophone
is more complex and challenging compared to the single-mass one.
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