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Abstract: The relaxor ferroelectric single crystal (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) has
high piezoelectric constants, and thus has a good application prospect in the field of highly sensitive
piezoelectric sensors. In this paper, for relaxor ferroelectric single crystal PMN-PT, the bulk acoustic
wave characteristics on pure- and pseudo-lateral-field-excitation (pure- and pseudo-LFE) modes are
investigated. LFE piezoelectric coupling coefficients and acoustic wave phase velocities for PMN-PT
crystals in different cuts and electric field directions are calculated. On this basis, the optimal cuts of
pure-LFE and pseudo-LFE modes of relaxor ferroelectric single crystal PMN-PT are obtained, namely,
(zxt)45◦ and (zxtl)90◦/90◦, respectively. Finally, finite element simulations are carried out to verify
the cuts of pure-LFE and pseudo-LFE modes. The simulation results show that the PMN-PT acoustic
wave devices in pure-LFE mode have good energy-trapping effects. For PMN-PT acoustic wave
devices in pseudo-LFE mode, when the device is in air, no obvious energy-trapping emerges; when
the water (as a virtual electrode) is added to the surface of the crystal plate, an obvious resonance
peak and the energy-trapping effect appears. Therefore, the PMN-PT pure-LFE device is suitable for
gas-phase detections. While the PMN-PT pseudo-LFE device is suitable for liquid-phase detections.
The above results verify the correctness of the cuts of the two modes. The research results provide an
important basis for the development of highly sensitive LFE piezoelectric sensors based on relaxor
ferroelectric single crystal PMN-PT.

Keywords: lateral-field-excitation; relaxor ferroelectric single crystal; pure-LFE; pseudo-LFE; cuts

1. Introduction

Sensors based on piezoelectric bulk acoustic resonators have been widely used in gas
and liquid-phase sensing in recent years [1–4]. Traditional piezoelectric resonators usually
are based on thickness-field-excitation (TFE) mode (the electrodes are located on the upper
and lower surfaces of the resonator) [5–8]. In recent years, the lateral-field-excitation (LFE)
mode (electrodes are distributed on the same surface of the piezoelectric plate) has been
developed [9–11]. Devices based on the LFE mode have obvious advantages compared
with those based on the TFE mode [6], such as a higher quality factor, better frequency
stability, lower crystal aging rate and higher electrical sensitivity.

Previous LFE piezoelectric bulk acoustic wave sensors are mostly based on quartz
crystals; however, the piezoelectric coupling coefficients of quartz crystal devices are
low [12,13], resulting in limited sensitivities. Relaxor ferroelectric single crystals are in-
creasingly important in the field of piezoelectric devices due to their high piezoelectric
constants [14–19] and are considered to be a good choice of piezoelectric material for next-
generation high-performance transducers and sensors. In addition, the shear mode of the
PMN-PT single crystal is of practical importance in shear horizontal (SH) wave generation
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and reception [20], thus the PMN-PT single crystal also has a good application prospect
on guided wave generation and reception. Artificial polarization is necessary so that the
spontaneous polarization direction of the ferroelectrics is arranged in the direction closest
to the electric field through the reorientation of the electric domain, thereby exhibiting
piezoelectricity [21]. For artificial polarization, the single crystal is placed in a silicone oil
bath for polarization, and the silicone oil is heated to 10◦. Then it is kept warm, the DC
voltage polarization is increased about three times the coercive field of the crystal (PMN-PT
is about 1 kV/mm) for 15 min, and then the polarization voltage is halved and naturally
cools to room temperature.

Wang et al. found that piezoelectric devices based on lateral-field-excitation have three
different operating modes [22–24], namely, pure-LFE mode, quasi-LFE mode and pseudo-
LFE mode, which were further verified by experiments. Among them, a single vibration
mode can be obtained for pure-LFE mode and pseudo-LFE mode, which are suitable to
be used as the operational mode of bulk acoustic wave sensors. According to Wang’s
theory [22], for pure-LFE mode devices, the thickness-shear mode wave is excited only by
a lateral electric field. For pseudo-LFE mode devices, when in air, there is no resonance
peak; when in liquids, the resonance peak is generated not by the LFE but by the TFE with
the liquid acting as a virtual electrode. Relaxor ferroelectric single crystals PMN-PT has
high piezoelectric constants, which is important for obtaining high sensitivities of LFE
sensors [23]. However, the LFE characteristics of relaxor ferroelectric single crystals are
still unknown, and for relaxor ferroelectric single crystals, the cuts of the pure-LFE and
pseudo-LFE mode are not clear, which hinders applications of relaxor ferroelectric single
crystals in LFE piezoelectric sensors.

In this paper, the bulk acoustic wave characteristics of pure-LFE and pseudo-LFE de-
vices based on relaxor ferroelectric single crystal PMN-PT with high piezoelectric coupling
coefficients are calculated. The acoustic wave phase velocities and piezoelectric coupling
coefficients for different cuts and electric field directions are achieved, based on which,
the optimal cuts of pure-LFE and pseudo-LFE operating modes are obtained. Finally,
finite element simulations are carried out to verify the cuts of pure-LFE and pseudo-LFE
operating modes for PMN-PT crystals.

2. Lateral-Field-Excitation Characteristics of Relaxor Ferroelectric Single
Crystal PMN-PT

The piezoelectric coupling coefficient reflects the efficiency of energy conversion
between electrical and mechanical energies [25]. The LFE coupling factors of the PMN-PT
crystals in different cuts and electric field directions have been calculated by using the
extended Christoffel–Bechmann method [26]. The material constants of PMN-PT crystals
are from [27].

The crystal axial set and the notation (yxwl)ϕ/θ are defined according to the IEEE
standard [28,29]. The orientation of a substrate aligned with a rotated coordinate set of
axes is shown in Figure 1a, and the electric field direction relative to crystallographic axes
is shown in Figure 1b. The IEEE standard is used to define the crystal axial set and the
notation (yxwl)ϕ/θ, as shown in Figure 1.

The effective vibration mode of pure-LFE mode is LFE quasi-fast shear mode (LFE-b
mode) or LFE quasi-slow shear mode (LFE-c mode), and the effective vibration mode of
pseudo-LFE mode is TFE quasi-fast shear mode (TFE-b mode) or TFE quasi-slow shear
mode (TFE-c mode). The LFE and TFE coupling coefficients of PMN-PT crystals in all
cuts and electric field directions are calculated in order to obtain the cuts of pure-LFE and
pseudo-LFE modes, and the calculated results are shown in Figures 2 and 3.
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As shown in Figure 2a, the maximum LFE coupling coefficient of mode b is 52.12%, and
its corresponding cut is (zxtlw)±90◦/±17◦/0◦. As can be seen from Figure 2b, the maximum
LFE coupling coefficient of mode c is 94% and its corresponding cut is (zxtlw)0◦/±45◦/±90◦.
The piezoelectric coupling coefficient of the LFE-b mode under this cut is zero, and, as can
be seen from Figure 3b, the piezoelectric coupling coefficient of the TFE-c mode of this
cut is not zero. Therefore, not a single shear vibration mode can be obtained for this cut.
According to the calculation, a single shear vibration mode can be obtained for the cut of
(zxt)45◦. For this cut, the variations of the LFE and TFE piezoelectric coupling coefficients
with the electric field angles are shown in Figure 4a. When the electric field angle ψ = 0◦,
the LFE coupling coefficient of mode b is 0, and that of mode c is 36.9%. In addition, the
coupling coefficients of TFE-b and TFE-c modes are approximately 0. Therefore, a single
LFE shear vibration mode can be achieved for the cut of (zxt)45◦, that is, (zxt)45◦ PMN-PT
can meet the conditions of pure-LFE mode.
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As shown in Figure 3a, the maximum TFE coupling coefficient of mode b is 80.9%
and its corresponding cut is (zxtl)±72◦/±90◦. It can be seen from Figure 3b that the
maximum TFE coupling coefficient of mode c is 53.4% and its corresponding tangent
is (zxtl)±90◦/±50◦. Therefore, a larger coupling coefficient of TFE shear mode can be
obtained for the cut of (zxtl)±72◦/±90◦. However, it can be seen from Figure 3b that the
piezoelectric coupling coefficient of the TFE-c mode corresponding to this cut is not zero.
The calculated results in Figure 4 show that for the cut of (zxtl)90◦/90◦, when the electric
field angle ψ = ±90◦, the piezoelectric coupling coefficient of LFE c mode and b mode is
zero. The TFE coupling coefficient of mode b is 0 and that of mode c is 24.7%. A single TFE
vibration mode can be obtained for (zxtl)90◦/90◦. Thus, PMN-PT LFE devices on this cut
operate in pseudo-LFE mode.

3. Calculation of Phase Velocity of Acoustic Waves of Pure-LFE and Pseudo-LFE Mode

For PMN-PT crystals, a piezoelectrically stiffened Christoffel matrix is calculated
according to Equation (1) [30].

Γij = liK

(
cE

KL +

(
eKjlj

)
(lieiL)

liεS
ijlj

)
lLj, (1)
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where, liK is the wave propagating direction matrix, CE
KL is the stiffness constants matrix

under the condition of a constant electric field, lj is the field direction matrix, li is the
transpose of lj, eKj is the piezoelectric stress constants matrix, eiL is the transpose of eKj and
εS

ij is the permittivity constants matrix under the condition of a constant strain. Then, the
characteristic Equation (2) is solved. ∣∣Γij − cδij

∣∣ = 0 (2)

After the three characteristic values are obtained, the characteristic values cm and
material density ρ are substituted into Equation (3) to obtain the acoustic wave phase
velocities vm corresponding to the modes of a, b and c, respectively.

vm =

√
cm

ρ
(3)

The acoustic wave phase velocities for pure-LFE mode cut (zxt)45◦ and pseudo-LFE
mode cut (zxtl)90◦/90◦are obtained, which are shown in Figure 5.
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As shown in Figure 5a, the acoustic phase velocity of pure-LFE mode changes si-
nusoidally with the change of the electric field angle. When the electric field angle is
ψ = ±90◦ or ψ = 270◦, the maximum acoustic phase velocity can be obtained, namely,
2242.9 m/s. When the electric field direction is ψ = 0◦or ψ = 180◦, the minimum phase
velocity of acoustic wave is achieved, namely, 1245.4 m/s.

As shown in Figure 5b, the phase velocity of the pseudo-LFE mode does not change
with the variation of the electric field angle, keeping 1806.3 m/s. The reason for this
phenomenon is that the LFE piezoelectric coupling coefficient of the device operating on
pseudo-LFE mode is zero, and the TFE coupling piezoelectric coefficient is not zero. The
thickness electric field plays a major role; thus, the acoustic phase velocity does not change
with the lateral electric field angle.

4. Energy-Trapping Effects of PMN-PT Acoustic Wave Devices on Pure- and
Pseudo-LFE Modes

To verify the energy-trapping effects of PMN-PT acoustic wave devices on pure- and
pseudo-LFE modes, finite element simulations using COMSOL Multiphysics (Burlington,
MA, USA), a commercially available modeling package, are performed. This model is a
three-dimensional model, and the model size parameters are the same as the theoretical
model parameters. The frequency domain analysis is conducted to obtain the characteristic
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frequency of the resonator. The linearized Navier–Stokes, frequency domain interface,
laminar flow interface and piezoelectric coupling field interface in COMSOL Multiphysics
are employed. FSI (fluid–structure interaction) is used to model the interactions between
the liquid and the resonator.

4.1. Pure-LFE Mode

By solving the characteristic frequency by using COMSOL Multiphysics, the vibration
cloud image of the device based on (zxt)45◦ PMN-PT with a resonance frequency of
5.02 MHz is obtained, as shown in Figure 6.
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Figure 6. Vibration cloud image of the device operating on pure-LFE mode.

It can be seen from Figure 6 that the vibration energy of the resonator is mainly
concentrated in the electrode regions, and the vibrations of the electrode regions do not
change along the width direction, and there is almost no vibration in the non-electrode
regions, indicating that the resonator has good energy-trapping characteristics.

Figures 7 and 8 show displacement vector diagrams along the length and width of
the substrate plate, respectively. The arrows are the directions of displacement. It can be
seen from Figure 7a,b that the vibration is mainly concentrated in the central electrode
region, and the vibration in the external non-electrode region is almost negligible. Thus, the
device has a good energy-trapping effect. Moreover, there is a zero node in the thickness
direction of the displacement vector diagram, indicating that there is no vibration in the
central face of the substrate of the device. In addition, it can be seen from Figure 8a,b that
the main vibration mode is a first-order mode, and there is no attenuation trend along
the width direction. For this frequency, the main vibration mode of the device is the
thickness-shear mode.

By carrying out frequency domain calculations using COMSOL Multiphysics, the
admittance diagram of the device operating on pure-LFE mode is obtained, through which
the precise resonant frequency of the resonator can be achieved. The admittance is defined

as Ym = jωC0K2cot
(

kd
2

)/
kd
2 , where K is electromechanical coupling coefficient,C0 is static

capacitance, d is thickness of the piezoelectric plate and k is the propagation coefficient.
As shown in Figure 9, the peak resonance in the admittance diagram of the resonator is

5.0018 MHz, which is close to the calculated value of 5.02 MHz obtained by the characteristic
frequency calculation.
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Figure 7. Displacement vector diagrams along the length of PMN-PT devices on pure-LFE mode:
(a) displacement vector diagrams of the length slice; (b) a partially enlarged view of the length slice.
(Red color represents the direction and magnitude of the particle displacement, blue color represents
the electrode, and the red arrow represents that Figure 7b is the partial enlargement of Figure 7a.
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4.2. Pseudo-LFE Mode

The vibration distribution of the (zxtl)90◦/90◦ PMN-PT device in the air is obtained
through calculating the characteristic frequency, as shown in Figure 10a. It can be seen from
the figure that there is no energy-trapping effect near the fundamental frequency; thus, the
device does not exist thickness-shear vibration mode in air.
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Figure 10. Mode diagrams of device operating on pseudo-LFE mode: (a) in the air; (b) with liquid
load(water) on one side.

Figure 10b shows the (zxtl)90◦/90◦ PMN-PT LFE device with liquid load (water) on
one side, and the resonant frequency is 4.83 MHz. It can be seen from the figure that the
vibration energy of the resonator is mainly concentrated in the electrode region, and the
vibration of the electrode region does not change along the width direction, and there is
almost no vibration in the non-electrode region, indicating that the resonator with liquid
load on one side has good energy-trapping characteristics.

Figures 11 and 12 represent vector diagrams of LFE devices based on PMN-PT crystals
operating in pseudo-LFE mode in the air and with water on one side, respectively. The
arrows represent the displacement vectors. It can be seen from Figure 11a,b that there is no
energy-trapping effect in the air. In Figure 12a,b, it can be seen that when there is a liquid
load, the vibration of the device is mainly concentrated in the central electrode region, and
the vibration in the external non-electrode region is almost negligible. It can be seen that
the device has a good energy-trapping effect when it is under the liquid-phase load.
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Figure 11. Displacement vector diagrams along the length of PMN-PT devices on pseudo-LFE
mode in air: (a) displacement vector diagrams on the length slice of the device in the air; (b) a
partially enlarged view of the length slice of the device in the air. (Red represents the direction
and magnitude of the particle displacement, blue represents the electrode, and arrows represent the
partial enlargement of Figure (b) in Figure (a)).
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Figure 12. Displacement vector diagrams along the length of PMN-PT devices with liquid load
(water) on one side: (a) displacement vector diagrams on length slice of the device with liquid load;
(b) a partially enlarged view of the length slice of the device with the liquid load. (Red represents
the direction and magnitude of the particle displacement, blue represents the electrode, and arrows
represent the partial enlargement of Figure (b) in Figure (a)).

5. Conclusions

In this paper, the bulk acoustic wave characteristics of pure-LFE and pseudo-LFE
devices based on relaxor ferroelectric crystal PMN-PT are calculated, and LFE piezoelectric
coupling coefficients and acoustic wave phase velocities are obtained, based on which,
the cuts of the two modes are achieved. The results show that (zxt)45◦ and (zxtl)90◦/90◦

are the cuts for pure and pseudo-LFE modes of PMN-PT crystals, respectively. Then the
simulation results show that the pure-LFE device based on the relaxor ferroelectric single
crystal has a good energy-trapping effect. For pseudo-LFE devices, no resonance peak
and energy-trapping effect appear when the device is in the air. When liquid (as a virtual
electrode) is added to the surface of the device, an obvious resonance peak and energy-
trapping effect appear. The above results verify the correctness of the cuts of two modes
of PMN-PT crystals. In addition, it is shown that the pure-LFE device can obtain good
resonance characteristics when in the air, thus it is suitable for gas-phase detections. On the
other hand, the pseudo-LFE device can achieve good resonance characteristics when with
the liquid load, thus it is suitable for liquid-phase detections. The results can provide an
important basis for bulk acoustic wave sensors operating on pure-LFE and pseudo-LFE
modes based on relaxor ferroelectric single crystals.
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