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Abstract: In this work, a spectrum-sensing monopole antenna was used to operate in different
frequency bands for cognitive radio applications. The proposed antenna consists of a folded monopole
antenna with a partial ground plane, and it can be used for various wireless technologies operated at
various frequencies from 1.5 to 3.5 GHz. The suggested antenna was printed on a RO4003 substrate
with 3.38 permittivity and an overall size of 60 × 60 × 0.813 mm3. To achieve reconfigurability of the
antenna, PIN diodes (HPND-4005) were inserted at different lengths along the antenna to obtain the
desired performance. The antenna was fabricated and experimentally tested to validate the simulation
outcomes, and distinct consistency between the simulation and measurement outcomes was obtained.
Computer simulation tool (CST) software was used to design and simulate the suggested antenna
and then the model was fabricated to validate the simulation outcomes.

Keywords: folded monopole antenna; cognitive radio; reconfigurable; PIN diode

1. Introduction

Emerging technologies pave the way for future applications with challenging require-
ments including miniaturization in size with improved performance. These applications
need antennas with a wide bandwidth and a compact size to cover multiple frequency
bands [1–3]. One of the main problems caused by increasing the number of users and
their data rates is the scarcity of the spectrum and this can be solved by giving access
to secondary users (SUs) to exploit the unoccupied channels of the primary users (PUs)
using cognitive radio technology. Cognitive radio technology is considered as one of the
most useful technologies that mitigates the problem of the unoccupied spectrum which in
turn enhances spectral efficiency by carrying out dynamic spectrum management. This is
considered a challenging task that needs accurate monitoring of PUs’ presence over the
specified spectrum using spectrum sensing for different wireless applications [4,5]. These
applications can cover various technologies such as GSM (1800 MHz, 1900 MHz), UMTS
(2100 MHz), and WiFi (2400 MHz) [6–8].

Many efforts have been exerted to achieve multiband behaviour and many techniques
have been employed to fulfill the demands of recent wireless communication technolo-
gies. Some of the employed techniques to achieve multiband behaviour are a fractal
structure [9,10], a complementary split ring resonator metamaterial [11], a window grille
cross-structure [12], a meandered offset-feed [13], a split ring resonator and inverted F
slots [14], a bowtie slot patch [15], and DGS and DMS [16,17]. An additional capability that
can be possibly integrated with the multiband behaviour of the antenna is the reconfigura-
bility which has a vital role in the accomplishment of cognitive radio applications, and it
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can be carried out using PIN diodes [18–21], varactor diodes [22], lumped capacitors [23,24],
and RF MEMS [25]. In [18], a semi-circular patch was loaded onto a triangular radiator with
two inverted L-stubs to achieve reconfigurability between two frequency bands using a pair
PIN diode. In order to achieve a triple-band reconfigurable antenna, a pair of PIN diodes
are inserted on the two slots of a rectangular-shaped patch [19] for WLAN/WiMAX/ITU
applications. In [20], a reconfigurable MIMO antenna was designed using FR4 substrate to
switch between two band-stop filters at 1.77 and 4.75 GHz using a PIN diode with high
isolation. Two PIN diodes were utilized in [21] to achieve reconfigurable notched band
characteristics for a UWB antenna. Two band notched frequencies were reconfigured at
3.5 and 5.2 GHz for WiMAX/WLAN interference mitigation capability. Four varactor
diodes were used in the introduced filtenna for cognitive radio applications [22]. The
varactors’ tunning ranges from 3 GHz to 1.75 GHz when applying voltages from 9 V to
0 V, respectively. In [23], a reconfigurable triple-band antenna was implemented using
a pair of lumped capacitors to obtain two resonance frequencies at 1.51 and 1.91 GHz
besides the main resonance frequency of the patch at 2.45 GHz. The tunning range of the
two lumped capacitors were 670 MHz and 990 MHz for the lower and higher generated
frequencies, respectively, when different values of lumped capacitors were used (0.845 to
3.454 pF). A dual-band (2.4, 5 GHz) folded monopole antenna is presented in [24] for a
WLAN application with a lumped capacitor on the front side for size reduction purposes.
A UWB antenna with reconfigurable capability is presented in [25] for cognitive radio
applications using six MEMS switches to obtain five frequencies in the C-band.

In this paper, we introduce a folded monopole antenna operating for various wireless
applications. This can be achieved by embedding four PIN diodes on a multi-sectional
antenna for reconfigurability purposes and the suggested antenna succeeded in resonating
at the intended frequencies (1.45, 1.6, 2, 2.6, and 3.5 GHz) with reflection coefficient values
less than −10 dB. The suggested antenna was designed, simulated, fabricated, and then
tested to validate the achieved results and to confirm its suitability to operate for spectrum
sensing in cognitive wireless applications. The return losses of the suggested antenna as
well as the radiation patterns and gain values were obtained using CST 2019 software.

2. Folded Antenna

The design evolution of the suggested folded antenna is illustrated in Figure 1. The
antenna is simulated on RO 4003 with a height of 0.813 mm and a dielectric constant of
3.38. Four cases of the antenna are simulated to produce the desired frequency bands.
The antenna is a monopole antenna with a folded arm with a partially ground plane. A
microstrip line of impedance 50 Ω was utilized to feed the antenna. The desired resonance
frequency was achieved by changing the folded arm length as shown in Figure 1. Antenna
#1 consists of two sections of folded arms to resonate at 2.6 GHz with a bandwidth extended
from 2.45 to 2.85 GHz as illustrated in Figure 2 (the red dotted line). Antenna #2 achieved
a frequency bandwidth from 1.9 GHz to 2.2 GHz with a central frequency of 2 GHz as
illustrated in Figure 2 (the green dashed line). Antenna #3 is composed of many folded
arms to reduce the operating frequency band to 1.6 GHz and bandwidth from 1.55 GHz to
1.75 GHz (the blue dotted dashed line). Finally, antenna #4 is operated at the fundamental
mode of 1.45 GHz and the second mode is operated at 3.5 GHz with a bandwidth of
(1.3–1.5 GHz) for the first band and (3.48–3.65 GHz) for the second band as illustrated in
Figure 2 (the black solid line).

Figure 3 shows the distribution of the current of each case at different frequency
bands. It can be seen that the current is collected around the folded arm which confirms
the possibility of the antenna radiating effectively at the selected frequencies. The 3D
radiation patterns for each case at different frequency bands are illustrated in Figure 4. The
patterns are omnidirectional patterns at the desired frequency bands with around 2 dBi
realized gain.
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3. The Results of the Suggested Configuration

To achieve the frequency reconfigurability of the folded antenna, the four switches
(PIN diodes HPND-4005, Broadcom Inc., San Jose, CA, USA) were used to connect or
disconnect between the arms as presented in Figure 5a. The photo of the fabricated
prototype is illustrated in Figure 5b. An external DC voltage was applied to activate the
PIN diodes. The R&S ZVB 20 (Rohde & Schwarz, Munich, Germany) vector network
analyzer (VNA) was used in the measurement.
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Figure 5. The suggested configuration of the antenna with four PIN diodes switches from sw1 to sw4:
(a) the 2D layout and (b) the fabricated prototype.

Figure 6 depicts the simulated and tested reflection coefficient outcomes of the folded
model in various cases of the four PIN diodes. Figure 6a shows the antenna outcomes
when all of the switches were off. The tested results show that the antenna operated at a
center frequency of 3 GHz with a bandwidth from 2.6 GHz to 3.5 GHz. When sw1 was on,
the antenna worked at 2.6 GHz with a bandwidth from 2.4 GHz to 3 GHz as illustrated in
Figure 6b. When sw1 and sw2 were on, the antenna operated at 2.2 GHz with a bandwidth
extended from 1.9 GHz to 2.55 GHz as shown in Figure 6c. Figure 6d illustrates that the
antenna operated at a center frequency of 1.55 GHz with a bandwidth from 1.44 GHz to
1.8 GHz when the three switches were on.

Finally, when all of the switches were on, as shown in Figure 6e, there was a dual-band
at 1.5 GHz and a second mode at 3.5 GHz with a bandwidth from 1.3 GHz to 1.6 GHz
for the first band and from 2.48 GHz to 3.75 GHz for the second band. As well, the two
outcomes have a good match with a small discrepancy between them. This is due to the
fabrication and measurement process that cannot be tackled.

The folded antenna was placed inside the anechoic chamber to test the radiation
characteristics of the suggested antenna as illustrated in Figure 7. The 2D normalized
tested and simulated radiation patterns at ϕ = 0◦ (X-Z plane) and ϕ = 90◦ (Y-Z plane) at
different frequency bands based on the switch’s states are shown in Figure 8. The antenna
has a bidirectional pattern at ϕ = 90◦ and semi-omnidirectional at ϕ = 0◦. In addition, the
two outcomes have a good match with a small shift between them. This is because of the
measuring process.
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Figure 6. The S11 simulation and measurement outcomes of the folded antenna with PIN diodes:
(a) all of the switches off, (b) sw1 on, (c) sw1 and sw2 on, (d) sw1, sw2, and sw3 on, and (e) all of the
switches on.
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The proposed design was compared to other works and is tabulated in Table 1. Table 1
illustrates that the suggested antenna has good performance which suggests that it should
be used in cognitive radio applications.

Table 1. Comparison between reported antennas and our work.

Ref. εr/h
(mm) Size (mm2) fo (GHz) No.# of

Freqs. Actuators

[18] 2.1/0.254 40 × 50 1.8, 2.1 2 2 PIN diodes

[19] 4.4/1.6 20 × 20 3.6, 5.5, 8.1 3 2 PIN diodes

[20] 4.4/1.6 48 × 24 1.77, 4.75 2 1 PIN diode
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Table 1. Cont.

Ref. εr/h
(mm) Size (mm2) fo (GHz) No.# of

Freqs. Actuators

[21] 4.5/1.524 17 × 23 3.5, 5.2 2 2 PIN diodes

[22] 3.38/0.813 80 × 80 2.16, 2.8, 3 3 4 varactor diodes

[23] 2.2/1.6 80 × 80 1.51, 1.91, 2.45 3 2 lumped capacitors

[24] 4.4/0.8 65 × 100 2.4, 5 2 1 lumped capacitor

[25] 4.4/1.6 40 × 40 4, 5.6, 5.8, 7.2, 7.8 5 6 MEMS

This
work 3.38/0.813 60 × 60 1.5–3.5, 1.6, 2, 2.5, 3 6 4 PIN diodes

4. Conclusions

A folded microstrip-fed monopole antenna for cognitive radio applications has been
demonstrated. The proposed antenna has been designed for operation at various frequen-
cies from 1.5 to 3.5 GHz with an overall size of 60 × 60 × 0.813 mm3. The reconfigurability
behaviour was achieved by inserting four PIN diodes at different lengths along the antenna
to resonate at 1.45, 1.6, 2, 2.6, and 3.5 GHz with reflection coefficient values less than −10 dB.
The antenna was fabricated and experimentally tested to validate the simulation outcomes
with consistency between the outcomes being illustrated.
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