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Abstract: Micro-Electro-Mechanical System (MEMS) inertial sensors, characterized by their small
size, low cost, and low power consumption, are commonly used in foot-mounted wearable pedestrian
autonomous positioning systems. However, they also have drawbacks such as heading drift and
poor repeatability. To address these issues, this paper proposes an improved pedestrian autonomous
3D positioning algorithm based on dual-foot motion characteristic constraints. Two sets of small-
sized Inertial Measurement Units (IMU) are worn on the left and right feet of pedestrians to form an
autonomous positioning system, each integrated with low-cost, low-power micro-inertial sensor chips.
On the one hand, an improved adaptive zero-velocity detection algorithm is employed to enhance
discrimination accuracy under different step-speed conditions. On the other hand, considering
the dual-foot gait characteristics and the height difference feature during stair ascent and descent,
horizontal position update algorithms based on dual-foot motion trajectory constraints and height
update algorithms based on dual-foot height differences are, respectively, designed. These algorithms
aim to re-correct the pedestrian position information updated at zero velocity in both horizontal
and vertical directions. The experimental results indicate that in a laboratory environment, the
3D positioning error is reduced by 93.9% compared to unconstrained conditions. Simultaneously,
the proposed approach enhances the accuracy, continuity, and repeatability of the foot-mounted IMU
positioning system without the need for additional power consumption.

Keywords: pedestrian navigation; dual-foot; inequality constraint; Kalman filter; Inertial Measure-
ment Unit (IMU)

1. Introduction

With the development of global navigation satellite systems (GNSS), they have be-
come crucial infrastructures for spatiotemporal information systems, meeting the outdoor,
wide-ranging, all-weather, and real-time high-precision navigation and positioning needs.
However, satellite navigation signals are vulnerable, easily affected by obstructions such as
buildings and dense vegetation, and often become ineffective indoors or in underground
spaces [1,2]. To address this issue, various indoor positioning technologies based on ra-
diofrequency stations, such as pseudo-satellites, ultra-wideband (UWB), and Bluetooth
have been researched internationally [3–5]. Meanwhile, pedestrian navigation systems
based on Micro-Electro-Mechanical System Inertial Measurement Units (MEMS-IMU),
which do not rely on any external information, have gained widespread attention in the
field of indoor positioning [6].

In recent years, scholars both domestically and internationally have conducted in-
depth research on pedestrian navigation, focusing on foot-mounted, waist-mounted, and
other distributed Inertial Measurement Unit (IMU) systems. Significant progress has been
made in zero-velocity phase detection, human gait analysis, and compensation for iner-
tial sensor errors. To enhance the accuracy of zero-velocity detection in mixed-motion
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modes, Yujie Sun [7], Mingkun Yang [8], and Seong Yun Cho [9] have proposed innova-
tive zero-velocity interval (ZVI) detectors. To accommodate various motion patterns, Ni
Zhu [10] proposed a machine learning model for detecting zero-velocity moments with-
out any pre-classification step, named the Uniform AI Model for All pedestrian Motions
(UMAM). Pedestrian gait detection helps improve the accuracy of foot-mounted pedes-
trian autonomous navigation. Zhihong Deng [11,12] has categorized common gaits into
seven types and built a Bidirectional Long Short-Term Memory Recurrent Neural Network
(BLSTM-RNN) as a gait classifier. By combining the Zero-Integration Heading Rate (ZIHR)
method with a simplified Heuristic Drift Reduction (HDR) method, it reduces heading drift.
Some scholars have also studied pedestrian gait detection and positioning with sensors
installed at the waist and wrist. Nasim Hajati et al. [13] used an Inertial Measurement Unit
(IMU) mounted on a belt, estimating the attitude through an unscented Kalman filter and
ultimately calculating the position in three dimensions with the help of a step detection
algorithm. Debjyoti Chowdhury et al. [14] developed a wearable device that can be fixed
on the wrist, employing a simplified algorithm for human activity detection.

To enhance the robustness of the pedestrian autonomous navigation and localiza-
tion system, Hongyu Zhao et al. [15] employed a threshold-based strategy to validate the
detected zero-velocity update (ZUPT) periods. They proposed a quantitative metric for
estimating the smoothness of the position data, with the advantage of achieving continuous
error correction throughout the entire gait cycle. However, a limitation is its lack of adapta-
tion to other walking speeds. Qiuying Wang et al. [16] introduced a rapid initial alignment
algorithm for foot inertial/magnetic pedestrian localization based on an Adaptive Gradient
Descent Algorithm (AGDA). This method considers the characteristics of gravity and the
Earth’s magnetic field, measured by accelerometers and magnetometers when the pedes-
trian is stationary. Its advantage lies in the introduction of AGDA for quick initial alignment,
but it must consider the impact of magnetic disturbances. Weixing Qian et al. [17] pro-
posed a novel pedestrian navigation method that constructs an Adaptive Virtual Inertial
Measurement Unit (VIMU) based on gait type classification. The advantage is the use of
these models to address the problem of position estimation when the actual foot IMU is
out of range. However, further improvement in accuracy is needed. Miaoxin Ji et al. [18]
introduced a Zero-Velocity Update with Zero Position Difference (ZUPT-ZPD) combining
foot and tibia kinematic information. To obtain accurate posture and position through the
fusion of foot and tibia measurement information, they proposed an Improved Extended
Kalman Particle Filter (EKPF) based on zero position difference to enhance localization
accuracy. However, 3D pedestrian localization is not achieved. Tao Liu et al. [19] designed
a personnel positioning system comprising a foot inertial module, a smartphone, and
pre-deployed sparse QR code points. The system utilizes a newly developed data fusion
algorithm for real-time and post-processing fusion of relative foot position and 3D QR
code control point coordinate data. However, it requires pre-placement of QR code points.
Wenchao Zhang et al. [20] proposed three improved constraint algorithms for detecting
static stages, heading drift constraints, and height divergence constraints, respectively.
Nevertheless, high-speed walking modes were not considered. Dongpeng Xie [21], based
on a foot-carried pedestrian navigation system, employed an Error State Extended Kalman
Filter (EKF) framework that integrates the GNSS position, zero-velocity state, barometric
height, and other information. Its advantage lies in providing technical references for
accurately and continuously obtaining common pedestrian position information. However,
GNSS assistance is required. F. Seco et al. [22] estimated terrain slope and height changes
during forward walking using IMU. The advantage is in checking whether the ramp is
associated with existing ramps in the database, but it is not applicable to staircase scenarios.

Simultaneously, in the aforementioned studies, it was observed that pedestrian navi-
gation systems based on foot-mounted inertial sensors have the drawback of decreasing
position accuracy over long durations and distances due to error accumulation. Scholars
both domestically and internationally have explored the use of pedestrian navigation sys-
tems based on dual inertial units to address this issue. Peter Händel et al. [23,24] proposed
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a method that fuses information from two navigation systems. The advantage lies in cou-
pling two foot systems using the maximum separation distance constraint between the
two systems, thereby improving the positioning performance. However, it is limited to the
horizontal position correction. Prateek et al. [25] introduced a pedestrian navigation system
based on the fusion of dual inertial systems. The advantage is in utilizing the maximum
distance between the feet during normal walking to constrain the dual-system position-
ing results, achieving favorable outcomes, especially when the initial heading estimate is
known. The team led by Xiaoji Niu at Wuhan University [26] discovered a reliable periodic
equality constraint in pedestrian motion patterns. The advantage is an enhancement in the
horizontal positioning performance of the dual-foot system. Exploiting the regularity in
pedestrian bipedal motion, Wei Shi et al. [27], based on human kinematics, constructed an
ellipsoid constraint model using the maximum stride length and foot lift height during
walking. This approach improved pedestrian position estimation accuracy, although experi-
ments across multiple walking speeds were not conducted. Ming Cheng et al. [28] proposed
an improved method for dual-foot inertial/magnetometer pedestrian positioning based
on adaptive inequality-constrained Kalman filtering. The advantage is the introduction of
adaptive inequality constraints in the ZUPT Kalman filtering, reducing cumulative position
errors, although the computational unit used has a larger volume. Sen Qiu et al. [29] estab-
lished a low-cost body sensor network, leveraging a multi-sensor data fusion algorithm for
gait analysis. The advantage is in using multiple sensors to achieve gait analysis, but the
sensor quantity exceeds five. Renjie Wu et al. [30] addressed dual-foot inertial navigation
systems (DF-INS) and proposed a Dual Trajectory Fusion (DTF) method. The advantage lies
in merging left and right foot trajectories into a single center-of-mass trajectory using ZUPT
clustering and fusion weight calculation. Shao Chen et al. [31] designed a dual MIMU
single-board pedestrian inertial navigation system (PINS) and introduced a novel constraint
method. The advantage is the formation of a constant three-dimensional (3D) position
difference constraint based on the layout of two sensors on the circuit board, although
other walking speeds were not considered. Min Su Lee et al. [32] developed an advanced
human positioning algorithm using multiple wearable inertial sensors. The advantage is
continuous fusion of position and velocity from a foot-based inertial measurement (PDR)
system, leveraging known motion relationships between different body parts. However,
a relatively large number of sensors were used.

Meanwhile, there are also some other correction methods for pedestrian positioning
results based on inertial sensors. One common approach is to use indoor radio positioning
base station information to correct the results of pedestrian inertial positioning. For instance,
a combination of inertial sensors and UWB navigation methods can be employed, utilizing
UWB ranging information to correct the inertial positioning results. The advantage of
these methods is the ability to achieve higher precision in positioning results. However,
a limitation is that it requires the pre-deployment of radio base stations.

In summary, in complex motion scenarios such as walking, running, ascending, and
descending stairs, the pedestrian zero-velocity phase still cannot adaptively and accurately
discriminate. The current pedestrian positioning method based on dual foot-mounted IMU
has not defined the essence of dual-foot distance constraints. Addressing the above issues,
this paper, based on the foot-mounted pedestrian navigation system and considering the
application scenario of indoor navigation through extensive experimental analyses, makes
contributions primarily in the following three aspects:

Firstly, an improved zero-velocity phase determination method based on generalized
likelihood estimation is employed. This involves constructing a probability density function
for inertial sensor data, adaptively adjusting the zero-velocity phase detection threshold
based on the motion state and achieving a complete dual-foot zero-velocity updating and
zero-height updating process.

Secondly, a horizontal position update algorithm based on dual-foot motion trajectory
constraints is designed. In terms of horizontal localization, a method is proposed that
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uses the distance between the trajectory of one foot to the other foot as a constraint.
The inequality Kalman filter method is utilized to correct the dual-system position.

Thirdly, in altitude localization, the height of the staircase between the dual feet is
employed as observation data to further refine the altitude position results.

This paper is organized as follows: Section 2 analyzes the dual-foot gait characteristics
and introduces the basic technical principles and mathematical models. Section 3 presents
the dual-foot zero-velocity interval detection method. Section 4 designs the 3D pedestrian
positioning scheme based on the dual foot-mounted IMU. Section 5 validates the effective-
ness of the method by experimentally comparing the position accuracy before and after
correction. Section 6 concludes the paper.

2. Basic Principles of Pedestrian Positioning
2.1. Gait Analysis for Dual Foot

One gait is defined as the period between when a foot touches the ground and when
the same foot touches the ground again [33]. In kinematics, the gait period of a pedes-
trian is divided into two phases: the standing phase and the swinging phase, where the
standing phase, which refers to the process from heel strike to toe-off, is longer than the
swinging phase and accounts for about 60% of the entire gait period [34]. The standing
phase described in this paper differs from the definition of standing phase in kinematics;
for example, the moment when the right foot is in full contact with the ground to the mo-
ment when the right heel is about to leave the ground, at which point the supporting foot
is in full contact with the ground and has no relative displacement, is the standing phase
referred to in this paper, and it is also referred to as the zero-velocity phase. Its percentage
of the gait period varies depending on the gait speed, and within the zero-velocity phase,
the current foot velocity should theoretically be zero. The pedestrian gait period is shown
in Figure 1.
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Based on foot-mounted indoor pedestrian inertial navigation systems, errors mainly
arise from sensor measurements during zero-velocity phases, such as during the stationary
phase. In this phase, the true estimated velocity should be 0, but the observed value
calculated from sensor readings represents an error observation of the velocity during the
zero-velocity phase.

2.2. Basic Zero-Velocity Correction Pedestrian Dead Reckoning Algorithm

The Inertial Measurement Unit (IMU) can be installed on the body of pedestrians
to acquire inertial data, measuring acceleration and angular rate information during the
pedestrian’s motion. Through navigation algorithms that process and calculate the mea-
sured data, the IMU enables the recognition of gait patterns, as well as the positioning and
navigation of pedestrians. As discussed in the previous section analyzing the bipedal gait
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of pedestrians, foot-mounted inertial sensors can also utilize the brief zero-velocity charac-
teristics when the foot is fully grounded. This allows for partial error correction without
the need for additional sensors. The overall framework of a basic zero-velocity-corrected
pedestrian dead reckoning algorithm is illustrated in Figure 2. Commonly used zero-
velocity correction estimation methods include Kalman filtering, quadratic curve fitting,
curve fitting using the solution to the state equation, and maximum likelihood estimation.
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The pedestrian navigation system based on foot-mounted IMU is nonlinear and can
be corrected for navigation errors using the Extended Kalman Filter (EKF) [35]. Assuming
the nonlinear system’s state equation and observation equation are

Xk = f (Xk−1, k− 1) + Γ(Xk−1, k− 1)Wk−1
Zk = h(Xk, k) + Vk

(1)

In the equations, Xk is the n-dimensional state sequence at time k, Zk is the m-
dimensional observation sequence at time k, Wk−1 is the p-dimensional system process
noise sequence at time k− 1, and Vk is the m-dimensional random observation noise se-
quence. Γ(Xk−1, k − 1) is an n× p-dimensional matrix representing the system process
noise input. The nonlinear function f is associated with the previous state vector and the
current state vector, while the nonlinear function h is associated with the estimated state
vector and the measurement vector. The state transition matrix Φk,k−1 and the observation
matrix Hk are defined as

Φk,k−1 =
∂ f

∂X̂k−1
=

∂ f (X̂k−1, k− 1)
∂Xk−1

∣∣∣∣∣Xk−1=X̂k−1

, Hk =
∂h

∂Xk

∣∣∣∣∣X̂k,k−1

X̂k = X̂k,k−1 + Kk[Zk − h(X̂k,k−1, k)] (2)

Kk = Pk,k−1HT
k [HkPk,k−1HT

k + Rk]
−1

(3)

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Γ(X̂k−1, k− 1)Qk−1ΓT(X̂k−1, k− 1) (4)

Pk = [I−KkHk]Pk,k−1 (5)

Formulas (2)–(5) represent the basic equations of discrete Kalman filtering, where Kk
is the Kalman gain, Pk,k−1 is the predicted associated estimation error covariance, Rk is the
variance matrix of Vk, Qk−1 is the variance matrix of Wk−1, and Pk is the updated associated
estimation error covariance. By providing initial values for X̂0 and P0, and based on the
measurements Zk at time k, the estimated state X̂k(k = 1, 2, . . .) can be obtained.
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This paper selects attitude error δϕT, position error δrT, and velocity error δvT as the
state variables of the extended filter.

X =
[
δϕT δrT δvT]T

= [δγ δθ δψ δrN δrE δrD δvN δvE δvD]
T (6)

where δγ, δθ, δψ are attitude errors of the IMU mathematical platform, and δrN , δrE, δrD and
δvN , δvE, δvD represent the position error and velocity error in the navigation coordinate
system (i.e., north-east-down, NED). The linearized state transition model is given by

Xk = Φk,k−1Xk−1 + wk−1 (7)

The state transition matrix is Φk,k−1 =

 I3×3 03×3 03×3
03×3 I3×3 ∆t · I3×3
−∆t · Sk 03×3 I3×3

, where Sk is rep-

resented as Sk =

 0 −an
zk an

yk
an

zk 0 −an
xk

−an
yk an

xk 0

, an
xk, an

yk, an
zk are the projection of the three-axis

acceleration (x, y, z) in the navigation coordinate system at time k, ∆t is the time interval
between two sampling points, and I3×3 denotes 3× 3 the identity matrix.

Through the recursive process of extended Kalman filtering, estimates for attitude
error, position error, and velocity error can be obtained. Feeding back the error estimates
into the strapdown inertial navigation system allows for error compensation of various
navigation parameters. At the current time, the velocity and position after error correction
are given by

vk|k = vk|k−1 −Xk(7 : 9) = vk|k−1 − δvk
rk|k = rk|k−1 −Xk(4 : 6) = rk|k−1 − δrk

(8)

where vk|k−1 and rk|k−1 are the uncorrected velocity and position at time k. The error
correction of attitude angles is achieved by updating the attitude transformation matrix.
The corrected attitude transformation matrix is given by

Cn
bk|k

= g(Cn
bk|k−1

, δϕk) =
2I3×3 + δΘk
2I3×3 − δΘk

· Cn
bk|k−1

(9)

where Cn
bk|k−1

is the uncorrected attitude transformation matrix at time k, δϕk is the attitude
error at time k, and δΘk is the skew-symmetric matrix of the attitude error at time k.
The algorithm that utilizes the zero-velocity characteristics when the carrier is stationary
for error correction is called the Zero-Velocity Update (ZUPT). Through the analysis of the
pedestrian’s gait process, there is a brief standstill period during the gait cycle, known as
the zero-velocity phase [36–38]. Due to factors such as noise and external disturbances,
the actual velocity has some error, and it is not exactly zero during the standstill period.
The velocity output during this period becomes the observation for the filter, as shown
in Equation (10). This allows estimation of horizontal attitude errors, position errors,
etc., which are then fed back into the navigation calculation system to obtain corrected
navigation parameters.

Z = vn − 0 = δvn (10)

Correspondingly, the observation matrix is

H = [03×3 03×3 I3×3] (11)

2.3. The Kalman Filter Based on Inequality Constraints

In the application of the discrete Kalman filter, the state variables are often limited
by the environment and experimental conditions, and this limited information cannot be
represented by a system model. If this information is ignored, the optimal solution in the
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actual situation will not be obtained, which will reduce the reliability of the estimation [39].
Therefore, the constraint equation is used to represent the constraint information; for example,
inequality is used to express the relationship between the constraint information and the state
variables, and then the optimal solution satisfying the constraint equation is calculated by
combining with the Kalman filter [40], that is, the Kalman filter based on inequality constraints.

The optimal solution of the inequality-constrained Kalman filter can be set as{
f (xk) = min

x
(

^
xk − xk)

TW(
^
xk − xk),

ϕ(xk) ≤ d,
(12)

where f (xk) is the objective function; W is a positive definite projective symmetry matrix,

taken here as W = P−1
k , where the covariance matrix of

^
xk is Pk; ϕ(xk) is the mathematical

equation of the limiting information; and d is the value of the constraints.

3. Improved Adaptive Zero-Velocity Phase Detection

The information acquisition module worn by the pedestrian’s left and right feet is
mainly a six-degree-of-freedom inertial sensing unit composed of a three-axis gyroscope
and a three-axis accelerometer, and its output model yk ∈ R6 is constructed to be denoted as

yk =

[
ya

k
yω

k

]
(13)

where ya
k ∈ R3 is the matrix form of the acceleration ratio information at k moments and

yω
k ∈ R3 is the matrix form of the angular velocity information at k moments. The main

process of zero-velocity phase detection is to set N observations between n and n + (N− 1)
as time traversal phases to determine whether the foot-strapped sensor is moving or

stationary under the condition that the original data sequence zn
∆
= {yk}

n+N−1
k=n is known.

And the probability of the sensor remaining stationary is determined under the sensor
non-stationary condition, while the probability of False Alarm is set to a very small value
so that the probability of detecting it as a stationary event is maximized.

A mathematical model construction method is used to transform the detection of the
zero-velocity phase into a binary hypothesis testing process by first setting up a detector
chosen between hypothesis H0 and hypothesis H1, where H0 denotes the non-zero-velocity
phase of the MEMS-IMU and H1 denotes the zero-velocity phase of the MEMS-IMU.
The accuracy of the detector depends on the magnitude of the probability value of false
alarms, which arise from the probability value PFA = P(H1|H0 ) of judging that H1 holds
when hypothesis H0 is true, and the probability value PD = P(H1|H1 ) of judging accurately
when hypothesis H1 holds. The goal of judging two hypotheses at a given PFA by the
Neyman–Pearson theorem is to maximize the value of PD. Set p(zn; H0) and p(zn; H1) to
represent the probability density functions of the two hypothesized observations, PFA = a is
known and the conditions for judging H1 to be true in order to maximize the value of PD are

L(zn) =
p(zn; H1)

p(zn; H0)
> γ (14)

The threshold γ in the above equation can be determined by the following equation:

PFA =
∫
{zn :L(zn)>γ}

p(zn; H0)dzn = α (15)

where the function L(zn) is the likelihood ratio of traversing zn, that is, the likelihood
of hypothesis H1 with respect to hypothesis H0. Combined with the given mathematical
model of the sensor, the generalized likelihood estimation decision condition is calculated
by simplification as
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1
N ∑

k∈Ωn

(
1

σ2
a

∥∥∥∥ya
k − g

ya
n

‖ya
n‖

∥∥∥∥2
+

1
σ2

ω
‖yω

k ‖
2

)
< λ (16)

In this equation, the threshold for judgment is defined as λ = (−1/N) ln γ, where
‖ya

n‖ represents the mean of acceleration divided by force output within the sliding win-
dow [41]. σ2

a and σ2
ω, respectively, denote the noise variance values for the accelerometer

and gyroscope, while N stands for the current value of the sliding window.
This article introduces an enhanced threshold-adaptive zero-velocity interval detection

algorithm which dynamically adjusts the judgment threshold λ in real-time by identifying
different motion states. The primary challenge in adaptive threshold adjustment is how
to recognize distinct motion states. In general, when a person is moving quickly, the peak
magnitude of foot acceleration is noticeably greater than during slow movement, indicating
higher fluctuations in inertial measurement data. These variations can be expressed through
a series of mathematical features. Therefore, in motion state classification, real-time inertial
measurement data are collected during motion. The average peak magnitude of acceleration
within a 0.1-s sliding window (since the duration of foot contact during walking is relatively
short, the window length should not be overly extended) is calculated. The current motion
state is determined by analyzing this value.

After determining the motion state, the next challenge is how to select different zero-
velocity interval detection thresholds for each motion state. Pedestrian motion, including
normal walking, brisk walking, slow jogging, and fast running, is categorized into eight
different speed levels. For each speed level, a total of 20 threshold calibration experiments
are conducted. In these experiments, participants maintain a constant speed according
to a predefined reference path. The goal is to find the detection threshold that minimizes
trajectory error. This process is repeated 20 times for each speed level, resulting in statistical
averages for the peak magnitude of acceleration (denoted as |a|max) and the optimal
detection threshold (denoted as λm), as shown in Table 1.

Table 1. Relationship between average peak magnitude of acceleration and optimal detection threshold.

Test Normal Walking Brisk Walking Slow Jogging Fast Running

average peak magnitude of acceleration 23.16 26.15 28.77 32.16 37.16 38.40 41.46 42.0 42.17
optimal detection threshold 0.0638 0.0839 0.150 0.176 0.307 0.350 0.457 0.479 0.520

Using polynomial fitting based on the data in the table, we can estimate the function
relationship between the optimal detection threshold and the average peak magnitude of
acceleration, as shown in Figure 3. The constructed function model is as follows:

f (x) = 9.6486e−4x2 − 0.0407x + 0.4943 (17)

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 23 
 

 

statistical averages for the peak magnitude of acceleration (denoted as a
max

) and the op-

timal detection threshold (denoted as m ), as shown in Table 1. 

Using polynomial fitting based on the data in the table, we can estimate the function 

relationship between the optimal detection threshold and the average peak magnitude of 

acceleration, as shown in Figure 3. The constructed function model is as follows: 

−= − +f x e x x4 2( ) 9.6486 0.0407 0.4943  (17) 

 

Figure 3. The function relationship between the optimal detection threshold and the average peak 

magnitude of acceleration. 

Table 1. Relationship between average peak magnitude of acceleration and optimal detection 

threshold. 

Test Normal Walking  Brisk Walking Slow Jogging Fast Running 

average peak mag-

nitude of accelera-

tion 

23.16 26.15 28.77 32.16 37.16 38.40 41.46 42.0 42.17 

optimal detection 

threshold 
0.0638 0.0839 0.150 0.176 0.307 0.350 0.457 0.479 0.520 

4. Pedestrian Autonomous 3D Positioning Algorithm Based on Dual-Foot Motion 

Characteristic Constraints 

4.1. Analysis of Characteristics in Pedestrian Dual-Foot Motion Trajectories 

Based on the analysis of dual-foot gait characteristics in Section 2.1, during various 

gait patterns in pedestrian locomotion, the left and right feet move alternately, with the 

distance between their trajectories staying within a certain range. In normal circumstances 

they do not intersect. From this pattern, we can deduce that in pedestrian bipedal naviga-

tion, the vertical distance between the right foot position and the left foot trajectory at any 

given moment remains within a maximum threshold, forming a constraint condition. This 

approach, distinct from constraints based on maximum step lengths or ellipsoidal con-

straints, is better suited for dynamic motions that involve significant variations in maxi-

mum step lengths, such as taking large strides or making turns. 

In Figure 4a, a schematic representation of pedestrian dual-foot trajectories is pre-

sented. The dashed lines depict the projection of the trajectories onto the horizontal plane, 

and the black dots represent the landing points for the left and right feet. The solid lines 

connecting them provide an approximate representation of the movement trajectories be-

tween the two feet. To further analyze a stepping phase, the solid line connecting points 

Figure 3. The function relationship between the optimal detection threshold and the average peak
magnitude of acceleration.



Micromachines 2023, 14, 2192 9 of 21

4. Pedestrian Autonomous 3D Positioning Algorithm Based on Dual-Foot Motion
Characteristic Constraints
4.1. Analysis of Characteristics in Pedestrian Dual-Foot Motion Trajectories

Based on the analysis of dual-foot gait characteristics in Section 2.1, during various gait
patterns in pedestrian locomotion, the left and right feet move alternately, with the distance
between their trajectories staying within a certain range. In normal circumstances they
do not intersect. From this pattern, we can deduce that in pedestrian bipedal navigation,
the vertical distance between the right foot position and the left foot trajectory at any
given moment remains within a maximum threshold, forming a constraint condition.
This approach, distinct from constraints based on maximum step lengths or ellipsoidal
constraints, is better suited for dynamic motions that involve significant variations in
maximum step lengths, such as taking large strides or making turns.

In Figure 4a, a schematic representation of pedestrian dual-foot trajectories is presented.
The dashed lines depict the projection of the trajectories onto the horizontal plane, and the
black dots represent the landing points for the left and right feet. The solid lines connecting
them provide an approximate representation of the movement trajectories between the
two feet. To further analyze a stepping phase, the solid line connecting points A and B
represents the trajectory of the left foot. Point A corresponds to the (n − 1)th landing
point of the left foot, and point B represents the nth landing point of the left foot. Point C
designates the (n − 1)th landing point of the right foot. During the phase when the left foot
remains stationary and the right foot moves from its (n − 1)th to nth landing point (point
D), the horizontal plane projection distance between the right foot and the AB trajectory
is labeled as d, representing the vertical separation between the right foot’s position and
the left foot’s trajectory at that specific moment, as illustrated in Figure 4b. In normal
walking, d does not exceed a predetermined threshold denoted as η. Based on these motion
characteristics, a secondary correction is applied from the horizontal direction to enhance
the accuracy of the localization results.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 23 
 

 

A and B represents the trajectory of the left foot. Point A corresponds to the (n − 1)th land-
ing point of the left foot, and point B represents the nth landing point of the left foot. Point 
C designates the (n − 1)th landing point of the right foot. During the phase when the left 
foot remains stationary and the right foot moves from its (n − 1)th to nth landing point 
(point D), the horizontal plane projection distance between the right foot and the AB tra-
jectory is labeled as d, representing the vertical separation between the right foot’s posi-
tion and the left foot’s trajectory at that specific moment, as illustrated in Figure 4b. In 
normal walking, d does not exceed a predetermined threshold denoted as η. Based on 
these motion characteristics, a secondary correction is applied from the horizontal direc-
tion to enhance the accuracy of the localization results. 

 
(a) (b) 

Figure 4. Horizontal distance constraints on dual-foot trajectories: (a) pedestrian dual-foot motion 
trajectories; (b) horizontal distance constraints. 

The horizontal coordinates of the left and right feet at the (n − 1)th and nth landing 
points are defined as follows: The horizontal coordinate of point A is denoted as 

− − −=n n np x yL L L
1 1 1( , ) , the horizontal coordinate of point B is denoted as =n n np x yL L L( , ) , and the 

horizontal coordinate of point C is denoted as − −=n n np x yR R R
1 1( , ) . The horizontal coordinate 

of the right foot at the k th moment is represented by point D, with its horizontal coor-
dinate being =k k kp x yR R R( , ) . 

ϕ −

−

−
=

−
k n

k n

x x
y y

R L
1

R L
1

arctan  (18) 

γ −

−

−
=

−
n n

n n

x x
y y

L L
1

L L
1

arctan  (19) 

R L 2 R L 2
1 1( ( ) arcsin( )k k n k nd x x y y ϕ γ− −= − + − ⋅ −）  (20) 

We utilized optical motion capture equipment to record the dual-foot motion trajec-
tories of pedestrians and perform statistical analyses on the distance data between the 
right foot and left foot trajectories. This experiment was conducted using the Realis 

Figure 4. Horizontal distance constraints on dual-foot trajectories: (a) pedestrian dual-foot motion
trajectories; (b) horizontal distance constraints.

The horizontal coordinates of the left and right feet at the (n − 1)th and nth land-
ing points are defined as follows: The horizontal coordinate of point A is denoted as
pL

n−1 = (xL
n−1, yL

n−1), the horizontal coordinate of point B is denoted as pL
n = (xL

n , yL
n),

and the horizontal coordinate of point C is denoted as pR
n = (xR

n−1, yR
n−1). The horizontal
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coordinate of the right foot at the kth moment is represented by point D, with its horizontal
coordinate being pR

k = (xR
k , yR

k ).

ϕ = arctan

∣∣∣∣∣ xR
k − xL

n−1

yR
k − yL

n−1

∣∣∣∣∣ (18)

γ = arctan

∣∣∣∣∣ xL
n − xL

n−1

yL
n − yL

n−1

∣∣∣∣∣ (19)

dk =
√

(xR
k − xL

n−1
)2

+ (yR
k − yL

n−1)
2 · arcsin(|ϕ− γ|) (20)

We utilized optical motion capture equipment to record the dual-foot motion trajecto-
ries of pedestrians and perform statistical analyses on the distance data between the right
foot and left foot trajectories. This experiment was conducted using the Realis Optical Mo-
tion Capture System. Participants in the experiment attached optical markers (Markers) to
the same location on the dorsum of both feet. Multiple motion capture cameras, positioned
at various angles, continuously tracked these Marker points in real-time and transmitted
their spatial coordinate data to a data processing workstation. We calculated the vertical
distance between the right foot position during the standing phase of experimental subjects
and the trajectory of the left foot at different moments, forming four groups of distance
sequences. The curve graph is shown in Figure 5.
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Figure 5. Statistical curve graph of the vertical distances between the right foot’s position during the
standing phase and the trajectories of the left foot at different moments.

From Figure 5, it can be observed that the distance varied during pedestrian dual-foot
motion, but it remained within a certain range. The maximum value did not exceed 0.407 m,
and the minimum value did not fall below 0.011 m. The patterns of the distance sequences
obtained from different experimental participants are similar; therefore, this maximum
distance value can be used to establish an inequality constraint.

4.2. Horizontal Position Update Algorithm Based on Dual-Foot Motion Trajectory Constraints

In a pedestrian dual-foot navigation system, as analyzed in the preceding text, there is
constraint information regarding the distance between bipedal trajectories. This relation-
ship can be expressed using inequalities, and subsequently, the Kalman filter is constrained.
By doing so, the optimal solution can be calculated, and the states estimated using this
method better match the actual positioning results. The algorithm makes two main as-



Micromachines 2023, 14, 2192 11 of 21

sumptions for its modeling. Firstly, it assumes that the inertial sensors worn on the feet are
securely fixed and do not experience lateral displacement. Secondly, it assumes that the
pedestrian’s movements include only conventional walking, slow running, fast running,
jumping, and stair climbing modes. During these activities, the algorithm assumes that
the pedestrian cannot subjectively control the placement of the feet and adheres to normal
human activity patterns.

For two navigation systems, the true state of the ith navigation system at time k is
represented by xi

k (including attitude, position, and velocity), and the estimated state is
represented as x̂i

k, where xi
k ∈ Rni and x̂i

k ∈ Rni are included. We define the joint state
vector as follows:

xk
def
=
[
(xL

k )
T

(xR
k )

T
]T

, x̂k
def
=
[
(x̂L

k )
T

(x̂R
k )

T
]T

(21)

In the equation, x̂k ∈ Rm(n1 + n2 = m), (xL
k )

T
=

[
(δϕL

k)
T

(δrL
k )

T
(δvL

k )
T
]T

,

(xR
k )

T
=
[
(δϕR

k )
T

(δrR
k )

T
(δvR

k )
T
]T

.
When pedestrians move on the same floor, at time k, the vertical distance between the

time trajectories of the right foot and left foot front and back positions, calculated as dk,
can be described in relation to a threshold:√

‖Rx · x̂k‖2+
∥∥Ry · x̂k

∥∥2 · arcsin(arctan

∣∣∣∣∣Rx · x̂k − xL
n−1

Ry · x̂k − yL
n−1

∣∣∣∣∣− arctan

∣∣∣∣∣ xL
n − xL

n−1

yL
n − yL

n−1

∣∣∣∣∣) ≤ η (22)

In the equation, Rx =
[
01×12 1 0 0 01×3

]
, Ry =

[
01×12 0 1 0 01×3

]
.

The problem can be solved by the local minimum point of quadratic programming
and the maximum likelihood method, as shown by (23). The state vector for navigation
estimation is constrained within a reasonable subspace, calculating a state estimation vector
with higher precision that fulfills the inequality constraint:{

p(x̂k)
def
= argxmin(x̂k − xk)

TP−1
k (x̂k − xk)

dk ≤ η
(23)

In the equation, xk denotes the estimated results of unconstrained Kalman filter state
variables; Pk stands for the unconstrained Kalman filter covariance matrix; and x̂k signifies
the estimated results of constrained Kalman filter state variables.

4.3. Height Update Algorithm Based on the Height Difference between Both Feet

In the process of bipedal locomotion by pedestrians on the same plane, the theoretical
value of the height difference between the two feet, calculated after each step is taken
with the left and right feet, should be 0, as shown in Figure 6a. Therefore, inspired by
the zero-velocity update algorithm, the Dual-foot Zero Height Update (DZHU) algorithm
is proposed. It updates the pedestrian’s height coordinates in the zero-velocity phase to
obtain a more accurate height estimation.

The left and right foot initial coordinates are defined as pL
n−1 = (xL

n−1, yL
n−1, zL

n−1) and
pR

n−1 = (xR
n−1, yR

n−1, zR
n−1), respectively. After the right foot takes a step, the coordinates

become pR
n = (xR

n , yR
n , zR

n ). The calculated height difference between both feet is represented
as ∆ht = zR

n − zL
n−1. If the current value of ∆ht is less than a pre-defined threshold,

it is considered that the pedestrian is walking on a flat surface, and the height difference
between the feet remains unchanged. ∆ht represents the observed error in the height
coordinates at time t in the zero-velocity phase. Otherwise, the pedestrian’s height has
truly changed, possibly due to activities such as ascending or descending stairs, and further
analysis and verification are required, as explained below.
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In the normal process of ascending and descending stairs, the height difference be-
tween the dual feet varies, rendering the dual-foot zero height update algorithm no longer
applicable. In such situations, the height difference between the two feet is fixed at the
height of m(m = 1 or 2 or 3, m < 4) steps, as shown in Figure 6b. Through research and
analysis, we propose a height estimation algorithm that utilizes the height between the two
feet as an observation. The prerequisite for applying this algorithm is that the pedestrian is
not walking on an inclined floor or ramp and that the height of each step of indoor building
stairs is nearly the same, meeting relevant industry standards. The algorithm’s modeling
is based on specific assumptions and is only applicable for correcting height positioning
results during extended stair descent. It cannot achieve height positioning correction in
scenarios such as long slopes or elevators.

Determining m is pivotal in this context. Initially, the known height of an individual
staircase step is defined as ∆h0. By assessing the height difference ∆ht between the two feet
within various threshold ranges, an estimation of the number of steps m between the left
and right feet is achieved. This process aims to obtain the observed error m ∗ ∆h0 in the
height coordinates at time t. Subsequently, these observed errors are integrated into the
observation vector Z, resulting in the formulation depicted in Equation (24).

Z =


[∆ht δvn] |∆ht| < h1

[(∆ht − 1 ∗ ∆h0)δvn] h1 ≤ |∆ht| < h2
[(∆ht − 2 ∗ ∆h0)δvn] h2 ≤ |∆ht| < h3
[(∆ht − 3 ∗ ∆h0)δvn] |∆ht| ≥ h3

(24)

In the equation, δvn represents the velocity error vector. In the experiments described
in this paper, h1 = 0.1 m is defined, h2 = 0.2 m is set to a value between the height of one
and two steps, and h3 = 0.4 is set to a value between the height of two and three steps.

5. Pedestrian Navigation System Prototype Construction and Experimental Validation
5.1. Construction of a Pedestrian Navigation System

Figure 7 outlines the workflow from the raw input data from the bipedal system
to the output of three-dimensional positioning results. To establish a dual foot-mounted
pedestrian navigation system, IMUs are worn on the left and right feet of the human body,
collecting foot angular velocity and acceleration data at the same frequency. Utilizing an im-
proved zero-velocity detection method based on a generalized likelihood ratio, it accurately
determines whether the pedestrian is in a static phase. If the detection output is false, each
system calculates attitude, velocity, and position information through loosely coupled inte-
gration. If the output is true, the zero-velocity update method and the dual-foot zero height
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update method are employed to correct the velocity and height information. Furthermore,
based on constraints from the characteristics of bipedal motion, an inequality-constrained
Kalman filter is constructed. This filter performs a secondary correction of the pedestrian’s
horizontal position after zero-velocity correction. Using the prior knowledge of the step
height between the feet as an observation, it updates the pedestrian’s height coordinates
during the zero-velocity phase to obtain a more robust three-dimensional positioning result.
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Figure 7. The schematic diagram of the improved method for indoor 3D pedestrian positioning based
on dual foot-mounted IMU system.

To validate the feasibility of the dual-foot pedestrian navigation system and its posi-
tioning method proposed in this paper, each foot of the pedestrian is equipped with a set of
wearable positioning terminals with the same accuracy, as illustrated in Figure 8. The hard-
ware of the terminal mainly includes a three-axis accelerometer, a three-axis gyroscope
chip, a processor, a Bluetooth module, a battery, etc., with detailed performance parameters
outlined in Table 2. The two terminals can achieve real-time communication through the
Bluetooth module and are also capable of receiving and collecting raw sensor data through
serial communication.
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Figure 7. The schematic diagram of the improved method for indoor 3D pedestrian positioning 
based on dual foot-mounted IMU system. 
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Table 2. The main characteristics of wearable positioning terminals.

Parameter Gyroscope inside the
Wearable Terminal

Accelerometer Inside the
Wearable Terminal

Update Rate 100 Hz 100 Hz
Standard full range 450◦/s 20 g
In-run bias stability 18◦/h 15 µg

Noise density 0.03◦/s/
√

Hz 60 µg/
√

Hz

5.2. Experimental Validation

To validate the performance of the algorithm in both horizontal and vertical directions
and to facilitate the accuracy assessment, closed walking routes were selected in both
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horizontal and vertical directions. The positioning error was determined by comparing the
deviation between the final calculated position and the starting point. The experimental site
was the three-story building of the Artificial Intelligence Navigation Test Field. The paths
are of various types such as rectangles, straight lines, circles, etc. Adhesive tape was pre-
applied to the floor to facilitate the experimenters in walking along the routes. Horizontal
paths were set up in the first-floor hall and the second-floor rectangular corridor, while the
vertical positioning experiments were conducted on the staircase from the first to the third
floor. There are no slopes, damaged steps, etc. The spacious staircase environment also
facilitates experimenters in achieving different walking speeds when going up and down
the stairs. The specific environment and path planning are illustrated in Figure 9.
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ment with a predefined route; (b) pedestrian vertical positioning experiment with a predefined route.

Experiment 1: To validate the dynamic adjustability of the improved adaptive zero-
velocity phase detection method, the same individual collected experimental data in four
different motion states—walking, brisk walking, slow running, and fast running—along
the same path. The actual step counts were recorded for each state, and the results were
compared with the classical threshold method and the traditional GLRT method with a
fixed threshold. The comparative results are illustrated in Figures 10 and 11.

Figure 10 presents the detection results of the three methods in walking and brisk
walking states. The blue line, black line, and red line represent the results of the classical
threshold method, the GLRT method with a fixed threshold, and the proposed method
in this paper, respectively. It can be observed that the classical threshold method and the
GLRT method with a fixed threshold have instances of missed detection. The zero-velocity
phase detection accuracies for the three methods are 80%, 90%, and 100%, respectively.
Figure 11 illustrates the detection results in the slow running and fast running states, with
the zero-velocity phase detection accuracies for the three methods being 65%, 85%, and
100%, respectively. The classical threshold-based zero-velocity interval detection method
exhibited severe missed detections and frequent false alarms. Additionally, in the fast
running state, the fixed threshold GLRT method showed an increased rate of missed
detections, indicating that these two methods are no longer suitable for fast running
motion states.

Due to the use of fixed detection thresholds in the classical threshold method and
the GLRT method with a fixed threshold, they often achieved satisfactory results only in
specific motion states. The method proposed in this paper adaptively adjusts the detection
threshold according to the motion state, ensuring accurate zero-velocity phase detection in
all three states.
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Figure 11. The zero-velocity detection results of the three methods under slow jogging and fast
running motion states.

Experiment 2: This experiment involved two sets of paths. In one set, the experimental
subjects walked at a normal pace from the starting point, circled around a rectangular path,
and returned to the original point. In the other set, the experimental subjects walked at
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a normal pace from the starting point, followed a path that included both rectangular and
circular sections, and returned to the original point. After the devices were powered on, the
pedestrians remained stationary for the first 10 s, and the sampling frequency was set to
100 Hz. During the walking process, it was assumed that the wearable terminal was rigidly
attached to the foot and that no sliding occurred.

By comparing the positions of the left and right foot landing points before and after
constraint, firstly, the unconstrained positions of the dual-foot landing points are shown in
Figure 12a. From the figure, it can be analyzed that the distance between the trajectories
of the right and left foot accumulates and gradually becomes larger over time, especially
increasing at turning points. The distance is relatively stable during straight walking.
Errors in heading angles lead to irregular trajectory shapes, and the average error for
the final return of the left and right feet to the original point is 1.548 m. The trajectories
formed by the left and right foot landing points show a trend of separation, with the
distance between the trajectories gradually increasing to a degree that deviates from the
typical human motion pattern. After applying constraints based on the characteristics of
dual-foot motion, the landing points are shown in Figure 12b. Firstly, it can be observed
that the trajectories are more regular after constraint, aligning better with the predefined
trajectory. The correction effect of the landing points is significant, especially at turning
points. The average error for the final return of the left and right feet to the original point is
0.498 m after constraint, resulting in a 67.8% reduction in positioning error compared to the
unconstrained case. Moreover, there is a regular alternation between the left and right foot
landing points, conforming to the typical human walking pattern. It can be observed that
the constrained trajectory results exhibit higher continuity and reliability.
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Using the same method, a second set of experiments was conducted to verify the
effectiveness of the algorithm in more complex paths. Since the distance between the
trajectories of the right and left foot varies, the circular path poses a challenge for this
algorithm. The trajectory of the rectangle is more rectangular, and when examining the
same straight path traversed in different instances, the position results calculated before
and after are close. This indicates that the method proposed in this paper improves the
repeatability of pedestrian autonomous positioning. From the Figure 13, it can be analyzed
that the constrained dual-foot trajectory points better align with the circular reference
path. The average positioning error for the left and right feet is 0.423 m after constraint,
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which is a 49.5% reduction compared to the unconstrained case with an error of 0.838 m.
This indicates that the algorithm based on dual-foot motion characteristics in this paper
improves the positioning accuracy in the horizontal direction. And there is no additional
radio positioning sensor module, maintaining the low power consumption characteristics
of this solution.

Micromachines 2023, 14, x FOR PEER REVIEW 19 of 23 
 

 

  
(a) (b) 

Figure 13. Positions of the left and right foot landing points before and after constraint in a complex 
path: (a) unconstrained positions of the left and right foot landing points before correction; (b) po-
sitions of the left and right foot landing points after inequality-constrained Kalman filtering. 

Experiment 3: Height positioning experiments were conducted on stairs, both as-
cending and descending, in a three-story stairwell. Participants powered up the devices 
and collected experimental data by walking from the first floor to the third floor and vice 
versa. Using a laser rangefinder, measurements were taken to determine that the total 
height of the three floors was 9.06 m, with each step having a height of 0.16 m. During this 
process, the left and right feet were set to alternate between ascending and descending 
stairs, ensuring that the real vertical distance between the feet corresponds to the height 
of one step. The horizontal distance between the feet was not considered throughout the 
process, and it was assumed that the devices were worn on shoes without experiencing 
relative displacement. 

The experimental results are shown in Figure 14, where the horizontal axis represents 
the frame number of the raw data, and the vertical axis represents the height value. Ana-
lyzing the graph, it can be observed that during the process of ascending and descending 
stairs, the existing basic algorithm has multiple sources of acceleration errors in the verti-
cal direction. This leads to a significant divergence in the results of the vertical height po-
sitioning of the feet over time, gradually losing the ability to determine the floor. The fig-
ure shows that the one with a larger height positioning error is 1.24 m. At the same time, 
it can be analyzed that the height difference between the two feet is gradually increasing, 
which is inconsistent with the assumed condition in the actual process that the height 
difference between the two feet remains within a certain range. 
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Experiment 3: Height positioning experiments were conducted on stairs, both as-
cending and descending, in a three-story stairwell. Participants powered up the devices
and collected experimental data by walking from the first floor to the third floor and vice
versa. Using a laser rangefinder, measurements were taken to determine that the total
height of the three floors was 9.06 m, with each step having a height of 0.16 m. During
this process, the left and right feet were set to alternate between ascending and descending
stairs, ensuring that the real vertical distance between the feet corresponds to the height
of one step. The horizontal distance between the feet was not considered throughout the
process, and it was assumed that the devices were worn on shoes without experiencing
relative displacement.

The experimental results are shown in Figure 14, where the horizontal axis represents
the frame number of the raw data, and the vertical axis represents the height value. Ana-
lyzing the graph, it can be observed that during the process of ascending and descending
stairs, the existing basic algorithm has multiple sources of acceleration errors in the vertical
direction. This leads to a significant divergence in the results of the vertical height posi-
tioning of the feet over time, gradually losing the ability to determine the floor. The figure
shows that the one with a larger height positioning error is 1.24 m. At the same time, it can
be analyzed that the height difference between the two feet is gradually increasing, which
is inconsistent with the assumed condition in the actual process that the height difference
between the two feet remains within a certain range.

The height positioning results based on the Dual-Foot Height Difference Updating
Algorithm (DZHU) gradually approach reasonable values. By utilizing the height differ-
ence between both feet, it restricts the tendency of height divergence, providing a more
complete display of the pedestrian’s stair ascent process. The height positioning errors
using this method for ascending and descending stairs are 0.07 m and 0.08 m, respectively.
This represents a significant reduction in error compared to the existing baseline algorithm,
with a decrease of 91.3% and 93.2% for the ascending and descending stairs, respectively.
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This indicates an improvement in positioning accuracy in the vertical direction through
the height updating algorithm (DZHU). Similarly, this algorithm has improved the reli-
ability and repeatability of the height measurement method based on low-cost inertial
sensors. This is beneficial for the practical application of low-cost inertial sensor modules
in engineering.
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Experiment 4: Walking indoors from the starting point, climbing one set of stairs to the
second floor, and then descending the other set of stairs back to the starting point. During
the straight path, the participants walked at different speeds, including fast walking, jog-
ging, and running. The subjects wore the dual-foot positioning terminal, and the experiment
followed the ‘complex’ path, recording data along the way.

The data processing was carried out using three methods: Improve GLRT, Improve
GLRT + DZHU, and Improve GLRT + DZHU + DMTC, as shown in Figure 15. The average
of the 3D positioning errors of the left and right feet was taken as the position error result.
Due to the drawback of error accumulation in low-cost inertial sensors and the lack of
further correction of measurement results in both horizontal and vertical directions, using
the Improve GLRT method alone resulted in a positioning error of 3.435 m, which is not
conducive to position measurements in practical complex environments. By applying the
Improve GLRT + DZHU method, the divergence in the vertical direction was constrained,
leading to a positioning error of 0.679, significantly improving the positioning accuracy.
The position error using Improve GLRT + DZHU is 0.679 m, and the result obtained using
Improve GLRT + DZHU + DMTC is better than the other two methods, with a positioning
error of 0.209 m. The accuracy is improved by 93.9% and 69.2%, respectively. The proposed
method not only enhances the positioning accuracy of the system in practical complex
environments but also improves the system’s continuity, reliability, and repeatability.
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6. Conclusions

This article proposes an improved autonomous 3D positioning algorithm for pedes-
trians based on data from micro-inertial sensors such as gyroscopes and accelerometers
worn on the pedestrian’s feet. The algorithm utilizes constraints based on the motion
characteristics of both feet to correct the 3D positioning of pedestrians indoors. To achieve
this, a pedestrian 3D positioning system was constructed using dual foot-mounted IMUs.
The proposed algorithm incorporates an improved adaptive zero-velocity interval detection
method, along with a horizontal positioning update algorithm based on constraints from
the motion trajectories of both feet and a height update algorithm based on the height
difference between both feet. This approach is better suited for three-dimensional position-
ing scenarios involving variations in walking speed and navigating stairs. The results of
this study demonstrate that our autonomous pedestrian positioning trajectory correction
method exhibits excellent measurement positioning performance, reliability, and repeata-
bility. Additionally, the designed dual foot-mounted IMU module is compact, requires low
power, and is easy to wear, making it suitable for prolonged use. The main limitation of
our work is the need for further research into the integration and fusion of multiple types
of miniature sensors. In the future, we aim to develop a more cost-effective, low-power,
and comfortable-to-wear positioning microsystem.
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