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Abstract: Piezoelectric semiconductors, being materials with both piezoelectric and semiconducting
properties, are of particular interest for use in multi-functional devices and naturally result in multi-
physics analysis. This study provides analytical solutions for thick piezoelectric semiconductor plates
with periodic boundary conditions and includes an investigation of electromechanical coupling
effects. Using the linearization of the drift-diffusion equations for both electrons and holes for
small carrier concentration perturbations, the governing equations are solved by the extended Stroh
formalism, which is a method for solving the eigenvalues and eigenvectors of a problem. The solution,
obtained in the form of a series expansion with an unknown coefficient, is solved by matching
Fourier series expansions of the boundary conditions. The distributions of electromechanical fields
and the concentrations of electrons and holes under four-point bending and three-point bending
loads are calculated theoretically. The effects of changing the period length and steady-state carrier
concentrations are covered in the discussion, which also reflects the extent of coupling in multi-
physics interactions. The results provide a theoretical method for understanding and designing with
piezoelectric semiconductor materials.

Keywords: piezoelectric semiconductor; multi-layer plates; Stroh formalism; multi-field coupling

1. Introduction

Piezoelectric semiconductors (PSCs) were first discovered in the 1960s and used
for designing solid-state electronic devices [1]. With the rapid development of material
science and design techniques, PSCs have once again attracted attention for their potential
applications in novel mechanical and electrical devices that simultaneously use both the
piezoelectric and semiconducting properties. For example, the two new research areas
of piezotronics [2–4] and piezo-phototronics [5–7] are driven and developed based on
ZnO micro-/nanowires. In addition, one-dimensional nanostructures of PSCs, such as
GaN nanotubes [8] and nanobelts [9], CdS nanowires [10], CdSe nanowires [11], InAs
nanowires [12], InN nanorods [13] and others, have been extensively studied and used in
the design of nanosensors with special functions [14–16].

In addition to one-dimensional nanostructures, there are some studies of two-dimensional
PSC materials, such as single-atomic-layer MoS2 and MoSe2 [17,18] and ZnO nanowire
thin films [19,20]. It has been observed that two-dimensional materials can achieve bet-
ter electrical and mechanical properties designable for use as PSC nanostructures and
nanosensors [17,21]. Furthermore, two-dimensional nanostructures, like thin films, are
more stable, more flexible, and easier to manufacture and have the distinct possibility of
combining with other materials to make devices for special functions [22]. Theoretical
analysis of two-dimensional PSC structures can provide extensive guidance for discovering
new applications of PSCs.

For one-dimensional setups, the multi-field coupling problem resulting from using
PSCs can be simplified and solved theoretically. There are studies on the extension and
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bending problems of single-material fibers and nanowires [23–25] and on using two ma-
terials [26,27] or more [28,29] with PN junctions to form composite fibers. The theoretical
analysis of multi-dimensional PSC problems is more difficult due to more complex equilib-
rium equations, constitutive relations, and multi-field coupling boundary conditions. In
spite of this, there are classic electromechanical coupling problems that have been solved for
thin plates [30–32], or infinite or semi-infinite domains, such as those for fracture [33–35]
and wave propagation [36–38]. In addition, the studies on the temperature effects of
PSCs [39–41] and the combinations with other functional materials [42,43] also enrich the
understanding of the multi-field coupling effects of structures. However, general solutions
for finite-sized geometric shapes with complex boundary conditions can provide much-
needed insight for designing PSC devices and sensors [44,45]. In particular, the analysis
of two-dimensional PSC plates with finite thickness is suitable for use in designing PSC
devices and sensors.

The Stroh formalism provides a practical and elegant way to solve plane problems. The
method was proposed by Stroh [46] to solve dislocation, fracture, and steady-state problems
of anisotropic elasticity. It has been used by Barnett and Lothe [47] for studying surface
waves in piezoelectric crystals and Ting et al. [48] to obtain a complete set of solutions for
anisotropic elasticity. Recently, an extended Stroh formalism has been developed for the
analysis of piezoelectric materials [49] and used to solve wave propagation problems with
periodic boundaries [50,51].

This article extends the Stroh formalism to solve plane problems for PSC materials
subject to electromechanical coupling boundary conditions. The extended Stroh formalism
is developed for plane problems of PSC materials and a general solution is presented in
Section 2. Section 3 demonstrates the solution by looking at two numerical examples of
bending and shows the physical field distributions in a thick plate under different boundary
conditions. Section 4 studies the solution by considering the influence of the period length,
steady-state carrier concentrations, and material parameters. Conclusions are drawn in
Section 5.

2. A general Solution for a PSC Plate

The following first introduces the basic equations and then the Stroh formalism. Next,
interactive boundary conditions are considered and the general PSC solution is developed
using Stroh formalism. Finally, the case of constant boundary terms is examined.

2.1. The Basic Equations for PSCs

A homogeneous PSC plate in the Ox1x2 plane with thickness h is considered here, as
shown in Figure 1. The problem is further restricted to a two-dimensional plane-strain state
in the x2 direction. As a result, the variation of interest is in the Ox1x3 plane and defined by
boundary conditions given as physical field distributions on the upper and lower surfaces
of the plate.
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The response of the piezoelectric material is assumed linear and is, thus, described by
the constitutive relations:

σij = cijklSkl − ekijEk,
Di = eiklSkl + εikEk,

(1)

where σij is the stress tensor, Skl is the strain tensor, Ek is the electric field vector, Di is the
electric displacement vector, cijkl is the elastic constant, ekij is the piezoelectric constant,
and εik is the dielectric constant [52]. The mechanical strain-displacement relation and the
electric field-potential relation are given by:

Sij =
1
2
(
ui,j + uj,i

)
,

Ei = −ϕ,i,
(2)

where “,” in the subscript denotes a derivative with respect to the spatial coordinate of the
noted index.

For semiconductor materials, the current density is an important parameter that
includes the influence of two events. One is the drift of the charge carriers caused by
existing electric fields and the other is the diffusion caused by the concentration gradient
of the carriers. These are captured by the drift-diffusion current relations for holes and
electrons given by:

Jp
i = qpµ

p
ijEj − qDp

ij p,j,
Jn
i = qnµn

ijEj + qDn
ijn,j,

(3)

where p and n are, respectively, the concentrations of holes and of electrons; Jp
i and Jn

i
are the two current densities; µ

p
ij and µn

ij are the associated carrier mobilities; and Dp
ij and

Dn
ij are the associated carrier diffusion constants, where the superscripts p and n indicate,

respectively, the holes and electrons [53]. Here, q = 1.602× 10−19C is the elementary
electron charge.

For the static problems of PSC plates, the physical fields are not time-dependent. As
such, there are no time-dependent terms in the governing equations, which include the
stress equilibrium equation, the electric induction field equation, and the conservation
equations of charge for holes and electrons. These are given in the absence of body forces,
respectively, as:

σij,j = 0,
Di,i = q

(
p− n + N+

D − N−A
)
,

Jp
i,i = 0,

Jn
i,i = 0,

(4)

where N+
D and N−A are, respectively, the concentrations of ionized donors and ionized

acceptors [52,53]. If the recombination and generation of electrons and holes are ignored,
Equation (4) describes the basic equations governing the static response of piezoelectric
semiconductors.

The drift-diffusion current relations given in Equation (3) are not linear, which causes
some difficulty in the analysis. To obtain theoretical solutions for semiconductor materials,
typically, a first-order perturbation method is used to simplify this equation [23,39]. That is,
in Equation (3) each concentration is treated as consisting of a constant term and a small
perturbation term, which can be written as:

n = n0 + ∆n, p = p0 + ∆p, (5)

where
n0 = N+

D , p0 = N−A . (6)
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Assuming that ∆p and ∆n are much smaller than p0 and n0, respectively, Equation (3)
can be approximated as:

Jp
i = −qp0µ

p
ij ϕ,j − qDp

ij(∆p),j,
Jn
i = −qn0µn

ij ϕ,j + qDn
ij(∆n),j.

(7)

For the following analysis, all the unknown fields will be organized into a single vector
that will be termed the generalized displacement vector and denoted by ũi and all the
responses will be organized into a single matrix that will be termed the generalized stress
and denoted by σ̃ij. The specific form of this organization is given as:

ũi =


ui i = 1, 2, 3
ϕ i = 4
∆p i = 5
∆n i = 6

, σ̃ij =


σij i = 1, 2, 3
Dj i = 4

Jp
j i = 5

Jn
j i = 6

, j = 1, 2, 3 . (8)

Using this organization, in view of the symmetry of the elastic and piezoelectric
tensors and the mechanical strain-displacement and electric field-potential relations of
Equation (2), the constitutive relations are given in Equations (1) and (7) can be rewritten
as a single generalized constitutive equation. This is given as:

σ̃ij = Bijkl ũk,l , (9)

where the coefficients Bijkl are given as:

Bijkl =



cijkl i, k = 1, 2, 3
eijl i = 1, 2, 3; k = 4
eklj i = 4; k = 1, 2, 3
−ε jl i = k = 4
−qp0µ

p
jl i = 5; k = 4

−qDp
jl i = 5; k = 5

−qn0µn
jl i = 6; k = 4

qDn
jl i = 6; k = 6

0 others

, j, l = 1, 2, 3 . (10)

Substituting the generalized constitutive relation, given in Equation (9), into Equation
(4), the governing equations for the static response, in terms of the generalized displacement
vector, take the form:

Bijkl ũk,jl = qδi4(δk5 − δk6)ũk, (11)

where δij is the Kronecker delta. This is the form used in the following section to extend
the Stroh formalism to the study of the static response of PSC plates.

2.2. The Basic Solution by Stroh Formalism

Stroh studied the solution of two-dimensional problems for anisotropic linearly elastic
materials [46]. The method proposed by Stroh builds a solution through the analysis of
displacement fields that are of fixed direction but have general variation in their magnitude
in the plane of the problem. The result is a method that constructs the solution based on the
displacement field, as opposed to the Lekhnitskii method [54], which builds the solution
based on Airy and Prandtl stress functions. Stroh formalism for solving the problem follows
a process similar to its extension provided here.

Stroh formalism is constructed by considering a displacement field that has a fixed
direction but is otherwise of a fairly general form. For the problem at hand, we consider a
state of plane strain along the x2-axis and a general two-dimension displacement in the
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Ox1x3 plane. Stroh formalism suggests constructing a solution to Equation (11) using the
generalized displacement field:

ũ = a f (z), (12)

where a is a constant six-dimensional direction vector, f (z) is a scalar function of the scalar
argument z = x1 + px3, and p is a scalar parameter. This provides the relations:

∂ũ
∂x1

= a
d f (z)

dz
,

∂ũ
∂x3

= pa
d f (z)

dz
, (13)

and
∂2ũ
∂x2

1
= a

d2 f (z)
dz2 ,

∂2ũ
∂x2

3
= p2a

d2 f (z)
dz2 ,

∂2ũ
∂x1∂x3

= pa
d2 f (z)

dz2 . (14)

After substitution into Equation (11), one obtains the requirement:

[
Q + p

(
R + R

′
)
+ p2T

]
a

d2 f (z)
dz2 = Aa f (z), (15)

where the coefficients are constructed from 6× 6 matrices defined as:

Qik = Bi1k1, Rik = Bi1k3, R′ ik = Bi3k1, Tik = Bi3k3, Aik = qδi4(δk5 − δk6). (16)

The explicit forms of these terms are given as:

Q =



c11 c16 c15 e11 0 0
c16 c66 c56 e16 0 0
c15 c56 c55 e15 0 0
e11 e16 e15 −ε11 0 0
0 0 0 −qp0µ

p
11 −qDp

11 0
0 0 0 −qn0µn

11 0 qDn
11

, R =



c15 c14 c13 e31 0 0
c56 c46 c36 e36 0 0
c55 c45 c35 e35 0 0
e15 e14 e13 −ε13 0 0
0 0 0 −qp0µ

p
13 −qDp

13 0
0 0 0 −qn0µn

13 0 qDn
13

,

R
′
=



c15 c56 c55 e15 0 0
c14 c46 c45 e14 0 0
c13 c36 c35 e13 0 0
e31 e36 e35 −ε13 0 0
0 0 0 −qp0µ

p
13 −qDp

13 0
0 0 0 −qn0µn

13 0 qDn
13

, T =



c55 c45 c35 e35 0 0
c45 c44 c34 e34 0 0
c35 c34 c33 e33 0 0
e35 e34 e33 −ε33 0 0
0 0 0 −qp0µ

p
33 −qDp

33 0
0 0 0 −qn0µn

33 0 qDn
33

,

A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 q −q
0 0 0 0 0 0
0 0 0 0 0 0

.

Here, pairs of subscripts associated with the elastic and piezoelectric constants are
replaced, as in the Voigt notation, by single subscripts with these rules:11→ 1 , 22→ 2 ,
33→ 3 , 23 or 32→ 4 , 13 or 31→ 5 , 12 or 21→ 6 .

In the case of anisotropic elasticity, the right-hand side of Equation (15) is zero; thus,
one immediately obtains a solution in the form of an eigenvalue problem. For the extension
considered here, a similar solution exists when f (z) takes the form f (z) = e−iξz for a
constant ξ, termed the characteristic reciprocal length, and the imaginary unit i so that the
solution ũ = ae−iξz is formed to satisfy the condition:

−ξ2
[
Q + p

(
R + R

′
)
+ p2T

]
a = Aa. (17)
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This can now be reorganized to obtain the condition:[
Q + p

(
R + R

′
)
+ p2T

]
a = 0, (18)

for the matrix
Q = Q +

1
ξ2 A. (19)

The form can now be expressed by an equivalent eigen equation, known as the
extended Stroh’s eigenvalue problem, given by:

N
[

a
b

]
= p

[
a
b

]
, (20)

for the unknown vector
[
a b

]T , where the 12× 12 matrix N and the six-dimensional
vector b are:

N =

[
−T−1R

′
T−1

−Q + RT−1R
′ −RT−1

]
, b =

[
R
′
+ pT

]
a. (21)

If this eigenvalue problem is non-degenerate, there will be six complex conjugate pairs
that identify twelve linearly independent eigenvectors. Solving Equation (20) for a given ξ
provides a base for constructing a general solution by a linear combination based on the
Stroh formalism. Letting β denote an index from 1 to 6, each pair of eigenvalues will be

denoted by (pβ, pβ) and their associated eigenvectors by
(

aβ,
¯
aβ

)
. The solution then takes

the form:

ũ =
6

∑
β=1

cβaβe−iξ(x1+pβx3) +
6

∑
β=1

dβ
¯
aβe−iξ(x1+pβx3), (22)

where cβ and dβ are undetermined coefficients. Using this solution in the generalized
constitutive relation given in Equation (9) allows one to evaluate the generalized traction
on a surface that is normal along x3 through the relation:

t̃ = σ̃i3 = −iξ

(
6

∑
β=1

cβbβe−iξ(x1+pβx3) +
6

∑
β=1

dβ

¯
bβe−iξ(x1+pβx3)

)
, (23)

which is the same as the displacement in a linear combination using bβ. The solution to the
problem requires one to obtain the undetermined coefficients by using specific boundary
conditions.

2.3. Boundary Conditions

The generalized unknowns may be subject to the Dirichlet, Neumann, or a linear
mix of these conditions. Physically, these correspond, respectively, with a generalized
displacement, a generalized traction, or a linear combination. For a homogeneous PSC
plate with thickness h, as shown in Figure 1, the boundary conditions on the upper and
lower surfaces (i.e., x3 = 0,−h) can be written in a unified notation as:

I1
uũ(x1, 0) + I1

t t̃(x1, 0) = F1(x1),
I2

uũ(x1,−h) + I2
t t̃(x1,−h) = F2(x1),

(24)

where F1(x1) and F2(x1) are six-dimensional vector-valued functions of x1 and I1
u, I1

t , I2
u,

and I2
t are 6 × 6 diagonal matrices that satisfy I1

u + I1
t = I2

u + I2
t = I6, where I6 is the

six-by-six identity matrix. In this unified form, the condition I1
u = I6 and I1

t = 0 represents
a generalized displacement boundary condition while the I1

u = 0 and I1
t = I6 condition

represents a generalized stress boundary condition. Here we only considered the cases
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where the elements of these diagonal matrices were 0 or 1. The more general case can be
found in [48].

Finite PSC plates are commonly utilized in practice for smart devices or sensors that
are subject to periodic conditions. In this case, the functions F1(x1) and F2(x1) can describe
the periodical distributions of physical fields on the upper and lower surfaces of the PSC
plate, as shown in Figure 2. For the period length L along the x1 direction, this transforms
the infinite PSC plate problem into a finite one and makes the components of F1(x1) and
F2(x1) into periodic functions of period L.
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2.4. The General Solution

The infinite PSC plate with periodical boundary conditions on both surfaces can be
solved using Batra’s method for imposing boundary conditions using the Fourier series
decomposition method [55,56]. In this case, the periodic functions F1(x1) and F2(x1) are
described by their Fourier series, given by:

F1(x1) =
A1

0
2 + Re

∞
∑

α=1

(
A1

α + iB1
α

)
e−iαkx1 ,

F2(x1) =
A2

0
2 + Re

∞
∑

α=1

(
A2

α + iB2
α

)
e−iαkx1 ,

(25)

where A1
α, B1

α, A2
α, and B2

α are vectors of trigonometric Fourier coefficients. For the conve-
nience of the subsequent solution, it is written in a complex exponential form that retains
only the real part due to the physical meaning. The Fourier series expansion separates the
solution into two parts, one being constant and the other having exponential terms. These
parts are solved as follows.

2.4.1. The Solution for a Constant Loading Term

When the physical boundary conditions are constants, the problem reduces to the sim-
pler one-dimensional case. That is, the physical fields become functions of only x3. In this
case, the governing equation, Equation (11), transforms into an equation for displacement
vector u0(x3), given by:

Tu”
0 = Au0. (26)

This is a linear second-order ordinary differential equation. It is similar to the charac-
teristic equation for steady vibration for a multi-degree-of-freedom system with only one
non-zero eigenvalue. It has a general solution of the form:

ũ0 = C0 + C1x3 + a0

[
c6ek0x3 + c12e−k0(x3+h)

]
, (27)

with the traction
t̃0 = TC1 + k0b0

[
c6ek0x3 − c12e−k0(x3+h)

]
, (28)
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where

C0 = [c1, c2, c3, c4, c5, c5]
T ,

C1 = [c7, c8, c9, c10, c11, c11]
T ,

k0 =

√
q
(

p0µ
p
33

Dp
33

+
n0µn

33
Dn

33

)
|T3|
−|T4|

,

a0 =

[
−
(

T−1
3

)
1j

Tj4,−
(

T−1
3

)
2j

Tj4,−
(

T−1
3

)
3j

Tj4, 1,− p0µ
p
33

Dp
33

, n0µn
33

Dn
33

]T
,

b0 =
[
0, 0, 0, |T4|

|T3|
, 0, 0

]T
.

(29)

Here, c1 to c12 are undetermined coefficients, T3 and T4 are the third and fourth prin-
cipal submatrix of T, k0 is the non-zero eigenvalue, and a0 is the corresponding eigenvector.
With this consideration, Equation (24) takes the form:

I1
uC0 + I1

t TC1 +
(
I1

ua0 + k0I1
t b0
)
c6 + (I1

ua0 − k0I1
t b0)e−k0h c12 =

A1
0

2 ,

I2
uC0 − I2

uC1h + I2
t TC1 +

(
I2

ua0 + k0I2
t b0
)
e−k0h c6 + (I2

ua0 − k0I2
t b0)c12 =

A2
0

2 .
(30)

These represent twelve equations to be solved for twelve unknown parameters. The
problem is solvable when both the upper and lower surfaces are defined by generalized
displacement boundary conditions or when one is replaced by a surface with stress bound-
ary conditions. As expected, if both surfaces are described by applying generalized stress
conditions, there will be an undetermined translation due to the premise of the equilibrium
of the physical fields. For example, tractions on both surfaces should be equal due to the
force balance. In this situation, zero generalized displacements can be set on the midpoint
(x3 = −h/2) and used as a supplementary condition [23,26]; this can be written as:

I1
t I2

t

[
C0 −

h
2

C1 + a0e−
k0h

2 (c6 + c12)

]
= 0. (31)

This allows for the solving of all twelve undetermined coefficients, irrespective of the
kind of boundary conditions provided.

2.4.2. The Solution for the Exponential Loading Terms

The exponential terms in the boundary conditions given in Equation (25) can be
written for the αth term from the basic solution based on the Stroh formalism given in
Equation (22). This provides that the displacement ũα is the Stroh formalism solution for
ξ = αk as:

ũα =
6

∑
β=1

[
cαβaαβe−iαk(x1+pαβx3) + dαβ

¯
aαβe−iαk(x1+pαβx3+pαβh)

]
, (32)

and the associated traction

t̃α =
6

∑
β=1

(−iαk)
[

cαβbαβe−iαk(x1+pαβx3) + dαβ

¯
bαβe−iαk(x1+pαβx3+pαβh)

]
. (33)

Substituting these into Equation (24) provides the twelve relations for calculating the
undetermined coefficients cαβ and dαβ. These relations are:

6
∑

β=1

(
I1

uaαβ − iαkI1
t bαβ

)
cαβ +

6
∑

β=1

(
I1

u
¯
aαβ + iαkI1

t bαβ

)
e−iαkpαβhdαβ = A1

α + iB1
α,

6
∑

β=1

(
I2

uaαβ − iαkI2
t bαβ

)
eiαkpαβhcαβ +

6
∑

β=1

(
I2

u
¯
aαβ + iαkI2

t bαβ

)
dαβ = A2

α + iB2
α.

(34)
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2.4.3. The General Solution

Combining the results from Equations (27) and (32) and using the Fourier series ex-
pansion provides a general periodic solution given the constants calculated from Equations
(30) and (34). This results in a generalized periodic displacement and the x3-surface traction
in the form:

ũ = C0 + C1x3 + a0

[
c6ek0x3 + c12e−k0(x3+h)

]
+Re

∞
∑

α=1

6
∑

β=1

[
cαβaαβe−iαk(x1+pαβx3) + dαβ

¯
aαβe−iαk(x1+pαβx3+pαβh)

]
,

t̃ = TC1 + k0b0

[
c6ek0x3 − c12e−k0(x3+h)

]
+Re

∞
∑

α=1

6
∑

β=1
(−iαk)

[
cαβbαβe−iαk(x1+pαβx3) + dαβ

¯
bαβe−iαk(x1+pαβx3+pαβh)

]
.

(35)

2.5. Degeneration from PSCs to Piezoelectric and Elastic Solutions

The analysis method proposed can be used to solve similar problems for degenerate
forms of PSC materials, such as piezoelectric semiconductors (p- or n-type) and simple
piezoelectric and elastic materials. In these degenerations, the dimensions of the generalized
displacement vector and generalized stress tensor in Equation (8) reduce to 5, 4, and 3,
accordingly. For example, the general solution for a thick piezoelectric plate is given by:

ũpiezo = C∗0 + C∗1 x3 + Re
∞
∑

α=1

4
∑

β=1

[
c∗αβa∗βe−iαk(x1+p∗βx3) + d∗αβ

¯
a
∗
βe−iαk(x1+p∗βx3+p∗βh)

]
,

t̃piezo
= T∗C∗1 + Re

∞
∑

α=1

4
∑

β=1
(−iαk)

[
c∗αβb∗βe−iαk(x1+p∗βx3) + d∗αβ

¯
b
∗

βe−iαk(x1+p∗βx3+p∗βh)
]

.
(36)

Here, C∗0 and C∗1 are undetermined four-dimensional vectors and
[
a∗β b∗β

]T
and pβ

are the eigenvectors and eigenvalues of Stroh’s problem for the piezoelectric material,
which has been proposed in refs. [49,57].

3. Numerical Example for a PSC Plate under Four-Point Bending

The following demonstrates the proposed solution method applied to a transversely
isotropic zinc oxide (ZnO) plate under four-point bending. ZnO is a widely studied PSC
material, with its properties described in Table 1, as given in [58]. The axis of trans-
verse isotropy of ZnO is assumed to be aligned with the x3-axis of the plate so that the
planes of isotropy are horizontal while the axis of transverse isotropy is vertical. The drift
and diffusion of holes and electrons are assumed isotropic (i.e., µ

p,n
11 = µ

p,n
33 , µ

p,n
13 = 0;

Dp,n
11 = Dp,n

33 , Dp,n
13 = 0). The carrier mobilities µ

p,n
33 and carrier diffusion constants Dp,n

33 are
selected to satisfy the Einstein relation:

µ
p
ij

Dp
ij
=

µn
ij

Dn
ij
=

q
kBT

= 38.46 V−1, (37)

where kB is the Boltzmann constant and T is the absolute temperature, here taken to be
300 K. This ratio will be used instead of carrier mobilities and carrier diffusion constants
during the calculation.

Our purpose is to study the physical field distributions of a PSC plate under bending
conditions. We consider a PSC plate of nanoscale with the dimensions h = 0.05 µm and
L = 1.2566 µm and with applied local traction distributions on the upper and lower surface.
A four-point bending-like load is applied to the positive half-segment of the plate and the
inverse is applied to the negative half-segment. Due to the symmetry, only the response on
the positive half-segment is presented here.
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Table 1. Material coefficients of ZnO.

Stiffness (1010 N/m2)

c11 c33 c44 c66 c13
20.97 21.09 4.247 4.43 10.51

Piezoelectric Stress Constants (C/m2) Dielectric Constants (10−11 F/m2)

e15 e31 e33 ε11 ε33
−0.48 −0.573 1.32 7.57 9.03

For the demonstration, we consider the mechanical four-point loading setup, as is
schematically shown in the diagram given in Figure 3, which is electrically isolated and with
no current flow. This mechanical loading induces a bending response that is characterized
by the partition of the beam into three segments that include two transition shoulders
and one constant-moment central segment. The two transition shoulders are constant
shear load segments that result in linearly increasing moments, which start from zero
and increase toward the center. The central segment is a zero-shear load segment that
results in a constant (pure) moment. As such, the demonstration simultaneously shows
the multi-physics interactions for segments at a constant shear load and constant bending
moment.
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Figure 3. Schematic diagram of four-point bending.

To capture mechanical four-point bending in the analysis, the point loads are modeled
as triangular distributed loads of height σ0 and width h. As shown in Figure 3, the loads
on the lower surface are fixed and centered around points x1 = h/2 and x1 = (L− h)/2
while those on the upper surface will be varied by selecting the loading distance d while
keeping the loading symmetrical about the midpoint x1 = L/2. This loading method
preserves continuity in the traction load on each of the two surfaces and preserves the
centrosymmetric loading of the positive and negative half-axis. In the demonstration, the
peak distributed stress is taken as σ0 = 1× 106 N/m2. Using the function H(x), this is
defined as:

H(x) =

{
1− 2|x|

h , x ∈
[
− h

2 , h
2

]
,

0, else.
(38)

By this take, d = L/4, which means the loads on the upper surface are centered around
points x1 = L/8 and x1 = 3L/8. The specific four-point bending PSC plate boundary
conditions used are:

t3(x1,−h) = −σ0

[
H
(

x1 +
3L
8

)
+ H

(
x1 +

L
8

)
+ H

(
x1 − h

2

)
+ H

(
x1 − L−h

2

)]
,

t3(x1, 0) = −σ0

[
H
(

x1 +
L−h

2

)
+ H

(
x1 +

h
2

)
+ H

(
x1 − L

8

)
+ H

(
x1 − 3L

8

)]
,

D3(x1,−h) = D3(x1, 0) = 0,
Jp
3 (x1,−h) = Jp

3 (x1, 0) = 0,
Jn
3 (x1,−h) = Jn

3 (x1, 0) = 0,

(39)

with the initial concentrations set as p0 = n0 = 5× 1021 m−3. The Fourier series expansion
of the boundary conditions, given in Equation (25), were truncated at appropriate α to
ensure the results have sufficient accuracy and that the solution converges. Here, the distri-
bution of the electric displacement component D3 is chosen as the object of the convergence
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study. We incremented α from 0 to 150 using increments of 10. The relative error εD was
generated by comparing the results of two consecutive calculations, as defined by:

εD =
max

∣∣∣D(α)
3 − D(α−10)

3

∣∣∣
maxD(α)

3 −minD(α)
3

.

Figure 4 shows the relationship between the relative error εD and α. The results show
consistent convergence when α is greater than 50. The value of εD is less than 1% when α is
greater than 100. In subsequent calculations, we take α = 100.
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The distribution of the physical fields in the positive half-axis is shown in Figure 5.
The zero points of displacement and potential are located at the center of the lower surface.
Figure 5a provides the displacement component u3 and Figure 5e shows the distribution
of the stress component σ33, both working along the thickness direction. As shown in
Figure 5b, the electromechanical coupling of the material makes the potential distribution
decay from the outside to inside of the plate. This change shows a sharp transition near
the top and bottom boundaries and tends to be uniform inside the beam. The electric
displacement is shown in Figure 5f and indicates extreme values that change sharply
around the mechanical loading points. The perturbation of electron concentration ∆n,
shown in Figure 5d, indicates a similar distribution to the electric potential; meanwhile, the
perturbation of hole concentration ∆p, indicated in Figure 5c, shows similar but opposite
values. This follows from the fact that there is no outward/inward current density on the
surface and that the drift and diffusion of the particles are uniform. Hence, the gradient of
the concentrations of the holes and electrons will be consistent with the electric field. In
summary, the mechanical load creates a complex electric field and carrier concentration
distribution in the PSC plate, which is the result of the multi-physics interactions.

We next consider the special circumstance of d = 0 so that the two center loads merge.
This creates three-point bending and results in maximally expanding the two shoulder
segments and eliminating the central constant moment segment. As a result, the three-point
bending condition better exposes the multi-physics interaction when the beam is under a
constant shear load and a linearly varying bending moment that is at its maximum at the
center of the beam. For three-point bending, the boundary stress distributions in Equation
(39) are replaced with:

t3(x1,−h) = −σ0

[
2H
(

x1 +
L
2

)
+ H

(
x1 − h

2

)
+ H

(
x1 − L−h

2

)]
,

t3(x1, 0) = −σ0

[
H
(

x1 +
L−h

2

)
+ H

(
x1 +

h
2

)
+ 2H

(
x1 − L

2

)]
.

(40)

The distributions of the same physical fields described for four-point bending in
Figure 5 are shown for three-point bending in Figure 6. Comparing these two figures, one
can see that local loading applied on the surface diffusely changes the potential and the
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carrier concentration distributions. Physically, the piezoelectricity and the conductivity of
the PSC material are related to the carrier concentration; however, the carrier distribution is
related to the potential distribution. This reflects the complex multi-field coupling effects in
the PSC material. Comparing these two examples, the minimum value of the potential in the
four-point bending appears at the center of the constant moment segment while it appears
in the three-point bending, due to the disappearance of the constant moment segment, at
the two positions with the minimum value of the potential that are symmetrically located
close to the center.
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The distributions of the same physical fields described for four-point bending in Figure 5 
are shown for three-point bending in Figure 6. Comparing these two figures, one can see 
that local loading applied on the surface diffusely changes the potential and the carrier 

Figure 5. Distributions of physical fields in the four-point bending state: (a) mechanical displacement
u3, (b) electric potential ϕ, (c) perturbation of hole concentrations ∆p, (d) perturbation of electron
concentrations ∆n, (e) stress component σ33, (f) electric displacement D3.
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4. The Discussion of the Theoretical Solution

A theoretical solution has been developed here that allows the evaluation of the full
field response of PSC plates under periodic loads. This solution is based on the Fourier
series expansion of the boundary conditions and uses an extended Stroh’s method to
construct the solution. The following shows some of the characteristics of this solution
corresponding to the constant term and exponential terms.

4.1. Influence of the Constant Boundary Condition

There is a part of the solution that comes from the constant terms. This part exhibits
physical field properties that are more intuitive and are prominent when the PSC plate
is subjected to uniform loads applied along the x3 direction. For general elastic and
piezoelectric materials, these terms result in physical fields that are constant or linearly vary.
However, exponential terms appear in this part of the solution for the PSC plate, which
causes the attenuation of physical fields from each surface toward the center. In Equation
(29), the expression with factor k0 indicates that these exponential terms are produced by
the multi-field coupling effect of the PSC plate and that the attenuation will be more intense
when the concentrations of the two types of carriers are larger. Moreover, the electric
displacement component is the only non-zero quantity in b0, which reveals that the electric
field delivers the coupling effect. An example of the PSC plate under uniform tensile stress
derived from refs. [23,39] is used to verify this conjecture. It should be noted that, in this
problem, there are no concentrated charges and there are no currents flowing through the
two surfaces of the plate; thus, the boundary conditions for the problem are:

t3(−h) = t3(0) = σ0,
D3(−h) = D3(0) = 0,
Jn
3 (−h) = Jn

3 (0) = 0.
(41)

The thickness of the plate in this case is increased to h = 0.5 µm in order to clearly show
the change in physical fields in the thickness direction; we have used σ0 = 1× 106 N/m2.
The material considered is an n-type PSC with two different initial carrier concentrations,
n0 = 1× 1022 m−3 and n0 = 1× 1023 m−3. In addition, for the same load, the cases that
degenerate to piezoelectric and purely elastic materials are also considered. Figure 7 shows
the distribution of the physical fields along the x3 axis for different initial concentrations and
for the special cases of a purely piezoelectric plate and a purely elastic plate. Figure 7a,b
show the mechanical displacement and strain, demonstrating how the PCS provides
transitions from the piezoelectric at the boundaries towards the purely elastic area at
the center. This transition is more abrupt as n0 increases. The transition of the PSC
response to the piezoelectric on approaching the boundary is seen also in Figure 7e,f for,
respectively, the electric field and electric displacement. As indicated in Figure 7e, the
electric field for the PSC develops (becomes non-zero) as one moves to the boundaries
while the electric displacement for the PSC is zero at the boundaries and becomes non-zero
as one moves to the interior of the bar, indicating that the dominance of the piezoelectricity
effect in the PSC attenuates from the surface to the interior, with the transition being more
pronounced as n0 becomes larger. The electric potential shown in Figure 7c indicates that
the electromechanical coupling in this material is weaker than that of general piezoelectric
materials and it decays with the increase in n0. Figure 7d shows that a larger n0 makes the
perturbation of electron concentrations more concentrated on the surfaces. Combined with
the response in Figure 7e, this indicates that the conductivity of the material is exaggerated
while the piezoelectricity is weakened.
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4.2. The Effect of Reciprocal Length ξ

Other than the part of the solution that comes from the constant term, the balance
corresponds to the influence of the remaining exponential terms, which are related to the
loading period length. The following analysis is based on solving an extended Stroh’s
eigenvalue problem. It can be theoretically shown that all the eigenvalues are non-real;
hence, the solution selects a sinusoidal distribution along the x1 direction and a decay
along the x3 direction. Whether the decay is exponential or has an oscillation depends
on whether the eigenvalue is complex or pure imaginary. For linear elastic and piezoelec-
tric materials, these eigenvalues only depend on material parameters; whereas, for PSC
materials, they also vary with the characteristic reciprocal length ξ. To evaluate this, we
study the transversely isotropic PSC material used in the previous section. The zero of the
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determinant of the coefficients of Equation (18) gives us the reduced characteristic equation
for the eigenvalue problem as:(

p2 + 1
)2(

c44 p2 + c66

)
(θK1(p)− K2(p)) = 0, (42)

where K1(p), K2(p), and θ are given as:

K1(p) =
∣∣∣∣ c44 p2 + c11 (c13 + c44)p
(c13 + c44)p c33 p2 + c44

∣∣∣∣, K2(p) =

∣∣∣∣∣∣
c44 p2 + c11 (c13 + c44)p (e31 + e15)p
(c13 + c44)p c33 p2 + c44 e33 p2 + e15
(e31 + e15)p e33 p2 + e15 −

(
ε33 p2 + ε11

)
∣∣∣∣∣∣

θ = q2(p0+n0)
kBTξ2 .

The influence of the reciprocal length on the imaginary and real components of the
eigenvalues is shown in Figure 8. As the eigenvalues appear in conjugate pairs, in this
figure, only the eigenvalues with positive imaginary components are displayed. The figure
indicates that three eigenvalues are invariant to changes in the reciprocal parameter. These
are the double eigenvalues (p1,2 = i) that correspond to the drift and diffusion of holes
and electrons and the eigenvalue (p3 = i

√
c66/c44) that corresponds to the independent

displacement component u2. The other three eigenvalues, as shown in the last term of
Equation (42), depend on the coefficient θ, which is inversely proportional to the square
of the characteristic reciprocal length. When θ is large enough, two of these eigenvalues
(p4, p5) tend to the roots of the equation K1(p) = 0. It can also be shown that under

this condition, one eigenvalue (p6) is close to i
√

θ/
(
ε33 + e2

33/c33
)
. Conversely, when θ is

close to 0, these three eigenvalues tend to be the roots of the equation K2(p) = 0, which
contains real components. In fact, it can be shown that K1(p) and K2(p) are the Stroh’s
eigenvalue problems of the corresponding elastic and piezoelectric materials, respectively.
Therefore, we can conclude that the piezoelectricity of the PSC material will increase with
the characteristic reciprocal length ξ. In other words, the local physical field changes will
enhance the electromechanical coupling of the material.
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4.3. Influence of the Periodic Boundary Conditions

To demonstrate the effect of the period length, we consider a PSC plate with sinusoidal
electrical displacement on the upper surface and with a lower surface with zero electric
potential. For this demonstration, we set the mechanical traction and current flow equal
to zero on both surfaces of the plate. Applying the inverse loads on the negative half-axis
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segment of the plate is unnecessary in this case. Hence, the boundary conditions on the
plate are:

t3(x1,−h) = t3(x1, 0) = 0,
ϕ(x1,−h) = 0,
D3(x1, 0) = D0 cos αkx1,
Jp
3 (x1,−h) = Jp

3 (x1, 0) = 0,
Jn
3 (x1,−h) = Jn

3 (x1, 0) = 0.

(43)

The same dimensions for the plate are used as those in the previous example and
D0 = 1× 10−6 C/m2. The parameter α is used to control the period length of the sinusoidal
function. In this case, the series solution degenerates to only one term, which exactly
corresponds to α. Figure 9 shows the response for α = 3 using the general solution given
by Equation (29). These indicate that the sinusoidal electrical field on the upper surface
causes similar sinusoidal distributions of the electrical parameters, such as those seen
in Figure 9b for the electric potential ϕ and in Figure 9f for the electric displacement
component D3. These electrical parameters are largest on the upper surface and gradually
decrease along the plate thickness to vanish on the lower surface. As noted before, the
concentration of electrons in Figure 9d shows the same distribution as the electric potential,
while the opposite is true for the concentration of holes indicated in Figure 9c. Due to
the electromechanical coupling effect of the structure, the sinusoidal electrical field on the
upper surface induces an increasing mechanical displacement u3 along the lower surface
as shown in Figure 9a. However, the stress component σ33, shown in Figure 9e, indicates a
distribution that fluctuates with the largest fluctuation in the middle of the plate.
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Figure 9. Distributions of physical fields under a sinusoidal electrical field (α = 3) applied on the
upper surface: (a) mechanical displacement u3, (b) electric potential ϕ, (c) perturbation of hole
concentrations ∆p, (d) perturbation of electron concentrations ∆n, (e) stress component σ33, and
(f) electric displacement D3.

The effect of the size of the fluctuation in the sinusoidal electrical field is demonstrated
in Figure 10 by varying α. The figure shows the variation along the thickness variable
x3 at x1 = 0. On this line, the displacement is shown in Figure 10a, which gradually
changes with increasing α from monotonically increasing to oscillating, which verifies
the previous discussion on the eigenvalues. With increasing α, stress σ33 shows higher
fluctuation between the free stress boundaries on the two surfaces (Figure 10e), and, with
the peak σ33, they are moving from the middle to the upper surface of the plate. Increasing
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α induces electric components that have smaller amplitudes on the upper surface. This
can be seen, for example, in the electric potential ϕ (Figure 10b) and the perturbations of
electron and hole concentrations ∆p and ∆n (Figure 10c,d). The electric displacement D3
decays faster with increasing α from the set value at the upper surface. These indicate
that the effect of the higher-order periodic parts of the electric field on the generalized
displacement is gradually weakened; however, the solution also induces the development
of larger internal stresses in the plate.
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Figure 10. Distribution of physical fields at x1 = 0 along the x3 axis: (a) mechanical displacement
u3, (b) electric potential ϕ, (c) perturbation of hole concentrations ∆p, (d) perturbation of electron
concentrations ∆n, (e) stress component σ33, and (f) electric displacement D3.

In general, the physical field distributions in PSC plates will always show a trend
that indicates non-linear changes from the surfaces toward the interior. This is seen, for
example, for the electric potential, which changes sharply near the surface but is flat in the
central region while the potential displacement is more likely to increase in the interior.
In the solution, as a result of the Fourier series expansion of the boundary conditions,
the components with varying eigenvalues have different degrees of attenuation. The
extent to which the physical fields interact with each other, which is due to the multi-field
coupling effect of the PSC material, typically results in more complicated distributions of
the response terms.
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5. Conclusions

An analytical formulation for calculating the physical field distributions in a thick
PSC plate under arbitrary boundary conditions has developed using an extension of Stroh
formalism. This extension incorporates the additional fields in the PSC plate. The method,
which is based on the Fourier series expansion of the boundary terms, is developed for
piezoelectric semiconductor responses and applied to constructing a general solution
for a thick PSC plate. The examples of a plate with mechanical four-point bending and
a plate with a limit to three-point bending are used to demonstrate the physical field
distributions in a thick PSC plate. Results show that the mechanical loads cause complex
physical field distributions inside the plate. Among them, the carrier concentrations show
the same distribution as the electric potential when there is no outward/inward current.
Subsequently, the effects of the initial carrier concentration and reciprocal length on the
theoretical solution are discussed; they are related to the physical properties of the material.
Uniform tension is studied to evaluate the difference between the PSC, pure elastic, and
pure piezoelectric materials. This is conducted in the context of evaluating the effect of
changing the initial carrier concentration on the material properties. Results show that
a high initial carrier concentration will weaken the piezoelectricity of the material and
make the physical field variation more concentrated at the surfaces. The effect of the
characteristic reciprocal length on the eigenvalues is studied analytically and the results
show that the material exhibits more piezoelectricity as the characteristic reciprocal length
increases, causing some of the physical fields to oscillate. The example of applying a
variable period sinusoidal electric field on the upper surface further verifies this observation.
The examples and discussions indicate that the method is suitable for considering and
understanding the effects of complex boundary conditions, particularly when accurate
physical field distributions in the plate are required. After building more complicated
boundary conditions, more relationships among electric fields, carrier redistributions,
and piezoelectricity for PSC may be discovered. The method can also be considered for
extension to address dynamic problems by including time items and bias electric field
items in a manner similar to that given in refs. [37,38]. In addition, the ability to easily
parameterize the loading allows the method to be used for PSC nanodevice design.
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