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Abstract: In this work, high-frequency forced vibrations of lateral field excitation (LFE) devices with
stepped electrodes based on monoclinic crystals GdCOB are modeled, and the influence laws of the
device parameters (the step number, size, and thickness of the stepped electrodes) on the energy-
trapping effects of the device are revealed. The results show that the step number has a significant
effect on the energy-trapping effect of the device: with the increase in the step number, the stronger
energy-trapping effect of the device can be obtained; with the increase in the thickness difference of
two layers of electrodes, the energy-trapping effect of the device becomes stronger; with the increase
in the difference of the electrode radius, the energy-trapping effect of the device is enhanced gradually.
The results of this work can provide an important theoretical basis for the design of stepped-electrode
LFE resonators and sensors with high-quality factors based on monoclinic crystals.

Keywords: lateral field excitation; stepped electrodes; monoclinic crystals; energy trapping

1. Introduction

Piezoelectric bulk acoustic wave devices are widely used in gas-phase and liquid-
phase sensing due to their high accuracy, stability, and consistency [1–8]. Conventional
piezoelectric bulk acoustic wave devices rely on a thickness-field-excitation (TFE) mode,
in which electrodes are plated on the top and bottom surfaces of a crystal plate, and the
resulting effective electric field is in the direction of the thickness of the crystal plate [9–12].
Previous research on piezoelectric devices operating in has shown some problems: (1) it
is not easy to package the device after it is fabricated; (2) when used in a liquid phase
or other corrosive environments, the electrodes of the device are exposed to the outer
environment, which accelerates the corrosion of the electrodes and shortens the service life
of the device [13]. The lateral field excitation (LFE) mode has been proposed in recent years,
for which two electrodes are located on the surface of a crystal plate; thus, the direction
of the generated effective electric field is parallel to the surface of the crystal plate [14–17].
The LFE devices not only solve the problems of packaging and the short service life of TFE
devices but also bring some advantages, such as the following: (1) The resonance damping
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of the device under the lateral field is smaller, so that the energy-trapping effect of the
device is better and the corresponding sensing sensitivity is higher. (2) By changing the
angle of the lateral electric field, the electromechanical coupling coefficient of the LFE device
can be improved, and the frequency stability of the device can be obviously enhanced.

Because the density of the electrode material is usually much greater than that of the
crystal material, the thickness-shear vibration energy in the partially electrode piezoelectric
crystal plate is limited to the area covered by the electrodes, and the phenomenon of
exponentially attenuating the vibration amplitude with the increase in distance from the
electrode is called energy trapping [18–22]. The energy-trapping effect directly determines
the resonance quality factor of piezoelectric bulk acoustic wave devices, which is closely
related to the stability of the devices and is particularly important for bulk acoustic wave
sensing. The methods to obtain good energy trapping mainly include optimizing electrode
shape, but the improvement in the energy-trapping effect is very limited [23]. In recent
years, stepped electrodes have been proposed to improve the energy-trapping effect of
devices, and the crystal plate with stepped electrodes excited by TFE has been proven to
have a better energy-trapping effect [24]. However, the existing studies on bulk acoustic
wave devices with stepped electrodes mainly focus on the TFE mode, and for the LFE
mode, due to the complex electric field and displacement distribution, the influences of the
stepped electrode on the energy-trapping effect are not clear, and the corresponding design
criteria are lacking.

In this work, using the Mindlin plate theory, we established a theoretical model of
high-frequency vibrations of LFE piezoelectric bulk acoustic wave devices with stepped
electrodes based on monoclinic GdCOB crystals, which have more stable electromechanical
properties over the temperature range of 20 to 1000 ◦C, low dielectric loss [25], and analyzed
the influences of stepped electrodes on the energy-trapping characteristics of LFE bulk
acoustic wave devices.

2. Governing Equation

The schematic diagram of the LFE device with a two-layer stepped electrode based on
GdCOB crystals is shown in Figure 1. The thickness of the crystal plate is 2h, the length
is 2L, and the density is ρ. The thickness of the upper and lower layers of electrodes is
2h0 and 2h1, respectively, and the density is ρ′. The normal direction of the crystal plate is
along the x2 axis, where x3 axis is determined from x1 and x2 axes by the right-hand rule,
the crystal plate is symmetric about x1 = 0, and unbounded in the x3 orientation.
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Figure 1. The GdCOB crystal plate with stepped electrodes under lateral field excitation. Figure 1. The GdCOB crystal plate with stepped electrodes under lateral field excitation.

The a < |x1| < b, c < |x1| < d regions are covered with single-layer electrodes, the
b < |x1| < c region is covered by double-layer electrodes, and the device electrodes exert
an alternating voltage of ±V exp(iωt), which generates an electric field of E1(x1, t) in the
|x1| < a region.
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According to the Mindlin plate theory, the following assumptions are made for the
displacements and potentials in the non-electrode region of the plate [26,27]:

u3 ∼= x2u(1)
3 (x1, t), u2 ∼= u(0)

2 (x1, t), φ ∼= φ(1)(x1, t), u1
∼= x2u(1)

1 (x1, t), (1)

where u(1)
1 (x1, t) is the thickness shear strain, u(1)

3 (x1, t) is the thickness-twist strain, u(0)
2 (x1, t)

is the bending strain, and φ(1) is the electric potential. Considering only the wave prop-
agation in the x-direction, the partial derivative of x3 in the equation of motion is set
to 0.

For LFE bulk acoustic wave devices based on monoclinic crystals, the motion equations
for the non-electrode region are as follows [28]:

k1k3C64u(1)
3,1 + k2

1C66(u
(0)
2,11 + u(1)

1,1 ) + k1e26φ
(1)
,1 = ρ

..
u(0)

2 ,

C51u(1)
1,11 + C55u(1)

3,11 + e15φ
(1)
,11 −

3
h2 [k2

3C44u(1)
3 + k1k3C46(u

(0)
2,1 + u(1)

1 ) + k3e24φ(1)] = ρ
..
u(1)

3 ,

C11u(1)
1,11 + C15u(1)

3,11 + e11φ
(1)
,11 −

3
h2 [k1k3C64u(1)

3 + k2
1C66(u

(0)
2,1 + u(1)

1 ) + k1e26φ(1)] = ρ
..
u(1)

1 ,

e11u(1)
1,11 + ε11φ

(1)
,11 + e15u(1)

3,11 −
3
h2 [−ε22φ(1) + k3e24u(1)

3 + k1e26(u
(0)
2,1 + u(1)

1 )] = 0,

(2)

where k1 =
√

π2

12 k3 =
√

π2·C3
12·C44

, C3 = (C22 + C44 −
√
(C22 − C44)

2 + 4·C24
2)/2.

For the electrode region, since the stiffness of the electrode has a negligible effect on
the device when the device operating frequency is below 100 MHz, the electrodes on the
crystal plate can be assumed to be rigidly adhered, and the electrode mass is the only
influencing factor [29]. Thus, the concept of mass ratio is introduced:

R =
ρ′h′

ρh
<< 1. (3)

In Equation (3), h and h′ correspond to half of the crystal and electrode thicknesses,
respectively, and the value of the mass ratio R is much less than 1. The governing equations
for the electrode region are as follows:

k1k3C64u(1)
3,1 + k2

1C66(u
(0)
2,11 + u(1)

1,1 ) + k1e26φ
(1)
,1 = ρ(1 + R)

..
u(0)

2 ,

C51u(1)
1,11 + C55u(1)

3,11 −
3
h2 [k2

3C44u(1)
3 + k1k3C46(u

(0)
2,1 + u(1)

1 ) + k3e24φ(1)] = ρ(1 + 3R)
..
u(1)

3 ,

C11u(1)
1,11 + C15u(1)

3,11 −
3
h2 [k1k3C64u(1)

3 + k2
1C66(u

(0)
2,1 + u(1)

1 ) + k1e26φ(1)] = ρ(1 + 3R)
..
u(1)

1 ,

e11u(1)
1,11 − ε11φ

(1)
,11 + e15u(1)

3,11 −
3
h2 [−ε22φ(1) + k3e24u(1)

3 + k1e26(u
(0)
2,1 + u(1)

1 )] = 0,

(4)

where k
2
1 = k2

1(1 + R), k
2
3 = k2

3(1 + R).

3. Forced Vibrations of Finite Crystal Plates

Since the plate is symmetric at about x1 = 0 and an antisymmetric voltage is applied to
the electrode plate, the electromechanical coupling field is also symmetric or antisymmetric
at about x1 = 0. Therefore, only half of the crystal plate is considered in this work.
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3.1. Central Non-Electrode Area (0 < x1 < a)

According to the standing wave assumption of the finite plate, the displacement and
potential of the crystal plate under forced vibrations are given as

u(0)
2 = A1 sin(ξx1 − wt),

u(1)
3 = A2 cos(ξx1 − wt),

u(1)
1 = A3 cos(ξx1 − wt),

φ(1) = A4 cos(ξx1 − wt),

(5)

where A1 − A4 are constants to be determined. Substituting Equation (5) into Equation (2)
yields a fourth-order linear equation on A1 − A4. The determinant of the coefficient matrix
must be zero for nontrivial solutions, which yields a fourth-order polynomial in terms of ξ2.

Solving this polynomial yields four roots, which can be expressed as (ξ(m))
2
, where m = 1–4.

Therefore, the corresponding solution of the linear equation with respect to the non-zero
solution ξ(m) is β

(m)
p , where m = 1–3. β

(m)
p is determined by the ratio of the amplitudes

A1 − A4. The following symmetric solutions can be built:
u(0)

2

u(1)
3

u(1)
1

φ(1)

 =
4

∑
m=1

C(m)


β
(m)
1 sin(ξ(m)x1)

β
(m)
2 cos(ξ(m)x1)

β
(m)
3 cos(ξ(m)x1)

β
(m)
4 cos(ξ(m)x1)

, (6)

where C(1) − C(4) are unknown constants.

3.2. Area Covered by a Single-Layer Electrode (a < x1 < b, c < x1 < d)

In the area covered by a single-layer electrode layer, the corresponding displacement
and electrical-potential assumptions need to be added by a specific solution:

u(0)
2 = A1eiξ1x1 eiwt,

u(1)
3 = A2eiξ1x1 eiwt + ũ(1)

3 ,

u(1)
1 = A3eiξ1x1 eiwt + ũ(1)

1 ,

φ(1) = A4eiξ1x1 eiwt + φ̃(1)

(7)

Substituting Equation (7) into Equation (4) yields a fourth-order linear equation about
A1 − A4. A1 − A4 has a non-zero solution, namely the coefficient matrix determinant is
zero, which yields a quadratic equation of ξ

2
1. Four pairs of non-zero solutions can be

obtained by solving the equation, denoted as ξ1
(m) (m = 1–8). With respect to the non-zero

solution, the corresponding solution of the linear equation is β
(m)
p , where m = 1–4. β

(m)
p

is determined by the ratio of the amplitudes A1 − A4. Then, the following solutions can
be built: 

u(0)
2

u(1)
3

u(1)
1

φ(1)

 =
8

∑
m=1

C1
(m)


β1

(m)eiξ1
(m)x1

β2
(m)eiξ1

(m)x1

β3
(m)eiξ1

(m)x1

β4
(m)eiξ1

(m)x1

+


0
B1
B2
B3

, (8)
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where C1
(1) − C1

(8) are unknown constants, and the B1, B2 and B3 satisfy the following equations:

[−12·(k1)
2·C66

π2 + c66Ω2·(1 + 3R1)]B1 − 12k1k3C64
π2 B2 = 12·k1·e26·V

π2L ,

(−12·k1·k3·C64
π2 )B1 + [−12(k3)

2
C44

π2 + c66Ω2·(1 + 3R1)]B2 = 12·k3·e24·V
π2L ,

B3 = V/L.

(9)

3.3. Area Covered by the Double-Layer Electrodes (b < x1 < c)

For the area covered by the double-layer electrodes, the fourth-order linear equation
of A1− A4 can be obtained. Four pairs of non-zero solutions can be obtained by solving the

equation, denoted as (ξ̂(m))
2

(m = 1–8); Now, the following general symmetric solutions
can be built: 

u(0)
2

u(1)
3

u(1)
1

φ(1)

 =
8

∑
m=1

Ĉ(m)


β̂1

(m)eiξ̂(m)x1

β̂2
(m)eiξ̂(m)x1

β̂3
(m)eiξ̂(m)x1

β̂4
(m)eiξ̂(m)x1

+


0
B̂1
B̂2
B̂3

, (10)

where Ĉ(1)–Ĉ(8) are unknown constants, and B̂1, B̂2 and B̂3 satisfy the following equations:

[−12·(k1)
2·C66

π2 + c66Ω2·(1 + 3R2)]B̂1 − 12k1k3C64
π2 B̂2 = 12·k1·e26·V

π2L ,

(−12·k1·k3·C64
π2 )B̂1 + [−12(k3)

2
C44

π2 + c66Ω2·(1 + 3R2)]B̂2 = 12·k3·e24·V
π2L ,

B̂3 = V/L.

(11)

3.4. External Non-Electrode Area (d < x1 < e)

For the external non-electrode area, the displacement and electrical potential are
assumed as follows:

u(0)
2 = A1eiξ̃x1 eiwt

u(1)
3 = A2eiξ̃x1 eiwt

u(1)
1 = A3eiξ̃x1 eiwt

φ(1) = A4eiξ̃x1 eiwt

(12)

Substituting Equation (12) into Equation (4) yields a fourth-order linear equation of
A1 − A4. For a non-zero solution, the coefficient matrix determinant is zero, which yields a
polynomial equation of degree four of ξ̃2. A fourth-order polynomial about ξ2 is obtained.
Solving this polynomial yields eight roots, which can be expressed as (ξ̃)

m
(m = 1–8). With

respect to the non-zero solution (ξ̃)
m

, the corresponding solution of the linear equation is
β
(m)
p . β

(m)
p is determined by the ratio of the amplitudes of A1 − A4. Then, the following

general symmetric solutions can be built:
u(0)

2

u(1)
3

u(1)
1

φ(1)

 =
8

∑
m=1

C̃(m)


β̃
(m)
1 sin(ξ̃(m)x1)

β̃
(m)
2 cos(ξ̃(m)x1)

β̃
(m)
3 cos(ξ̃(m)x1)

β̃
(m)
4 cos(ξ̃(m)x1)

, (13)

where C̃(1) − C̃(8) is the unknown constant, and β̃
(m)
4 = 1.
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3.5. Boundary and Continuity Conditions

For the right half of the plate shown in Figure 1, the boundary and continuous condi-
tions are shown below.

At x1 = a, the continuity conditions are

u(0)
2 (x1 = a−) = u(0)

2 (x1 = a+)
u(1)

3 (x1 = a−) = u(1)
3 (x1 = a+)

u(1)
1 (x1 = a−) = u(1)

1 (x1 = a+)
T(0)

6 (x1 = a−) = T(0)
6 (x1 = a+)

T(1)
5 (x1 = a−) = T(1)

5 (x1 = a+)
T(1)

1 (x1 = a−) = T(1)
1 (x1 = a+)

D(1)
1 (x1 = a−) = D(1)

1 (x1 = a+)
φ(1)(x1 = a−) = φ(1)(x1 = a+)

(14)

At x1 = b, the continuity conditions are

u(0)
2 (x1 = b−) = u(0)

2 (x1 = b+)
u(1)

3 (x1 = b−) = u(1)
3 (x1 = b+)

u(1)
1 (x1 = b−) = u(1)

1 (x1 = b+)
T(0)

6 (x1 = b−) = T(0)
6 (x1 = b+)

T(1)
5 (x1 = b−) = T(1)

5 (x1 = b+)
T(1)

1 (x1 = b−) = T(1)
1 (x1 = b+)

D(1)
1 (x1 = b−) = D(1)

1 (x1 = b+)
φ(1)(x1 = b−) = φ(1)(x1 = b+)

(15)

At x1 = d, the continuity conditions are

u(0)
2 (x1 = d−) = u(0)

2 (x1 = d+)
u(1)

3 (x1 = d−) = u(1)
3 (x1 = d+)

u(1)
1 (x1 = d−) = u(1)

1 (x1 = d+)
T(0)

6 (x1 = d−) = T(0)
6 (x1 = d+)

T(1)
5 (x1 = d−) = T(1)

5 (x1 = d+)
T(1)

1 (x1 = d−) = T(1)
1 (x1 = d+)

D(1)
1 (x1 = d−) = D(1)

1 (x1 = d+)
φ(1)(x1 = d−) = φ(1)(x1 = d+)

(16)

At x1 = e, the continuity conditions are:

T(0)
6 (x1 = e−) = 0

T(1)
5 (x1 = e−) = 0

T(1)
1 (x1 = e−) = 0

D(1)
1 (x1 = e−) = 0

(17)

The unknown constants C(1) − C(4), C1
(1) − C1

(8), Ĉ(1) − Ĉ(8), and C̃(1) − C̃(8) can be
obtained by substituting Equations (6), (8), (10), and (13) into Equations (14)–(17), and the
corresponding displacement solutions and electric potential solutions can be achieved. The
charge Qe and dynamic capacitance C can be obtained as follows:

Qe = −D(1)
1 (x = a)·2w, C = Qe

2V ,
C0 = 4ε11hw

2c ,
(18)
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where C0 is the static capacitance.

4. Mode Coupling Analysis

In this section, parameters of the resonators are set as 2h = 0.06138 mm, a0 = 0.3069 mm ,
a1 = 0.5831 mm , a2 = 1.1969 mm , a3 = 1.4731 mm , L = 2.6516 mm, w = 2.1483 mm,
R1 = 0.008, R2 = 0.018. The material parameters of GdCOB with the cut of (zxw)− 30◦ [19]
have been obtained. For GdCOB crystals, Q = 103 is utilized in the performed computations
considering damping from material, air, and mounting.

Figure 2 shows the calculated curve of the capacitance ratio vs. normalization fre-
quency. Resonance capacitance C is normalized by C0 = 4ε11hp/(2c), namely capacitance
ratio Cr is obtained. ω0 represents the main frequency of the thickness-twist mode of
an un-electrode plate and is utilized as a normalizing frequency, which is calculated by
ω0 = (π/2h)

√
c66/ρ. Three main resonance frequencies Modes 1–3 in Figure 2 can be

observed, namely 0.9862 ω0, 1.0085 ω0, and 1.0339 ω0, respectively. In order to find the
mode with the best energy-trapping characteristics, it is necessary to plot the strain distribu-
tions of the thickness-twist mode u(1)

3 (x1) and bending mode u(0)
2 (x1) for three frequency

points. The vibration characteristics for each frequency value are then analyzed. Figure 3a
shows the thickness-twist mode (TT1) strain diagram, in which the TT1 strain amplitude
corresponding to Mode 1 is large and concentrated in the electrode area, the vibration in
the area uncovered by the electrode decays rapidly, and the vibration at the boundary of
the resonator tends to be 0, which is a good energy-trapping effect. While the TT1 strain
amplitude of Mode 2 and Mode 3 is small, and there is a node for the vibrations in the
electrode area, which is not good for the energy-trapping effect. From the strain distribution
plots of the bending modes (F1) shown in Figure 3b, it can be found that the vibration
amplitude of the F1 mode corresponding to Mode 1 is very weak, thus the influence of
flexure vibrations on thickness-twist vibration is negligible. While the vibration amplitudes
of bending modes corresponding to Mode 2 and Mode 3 are larger. Therefore, Mode 1 is
ideal for device applications.
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5. The Influences of Stepped Electrodes on the Energy-Trapping Effect of GdCOB
LFE Devices

The effects of single- and triple-step electrodes on the energy-trapping effect of GdCOB
LFE piezoelectric devices are considered and compared with those of the double-step
electrodes. The device with double-step electrodes is shown in Figure 1, and those with
single-step and triple-step electrodes are shown in Figure 4a,b, respectively.
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Here, only the region of x1 > 0 is considered, and the crystal plate has a thickness of 2h
and a length of 2L. The densities of the piezoelectric substrate material and the electrodes
are ρ and ρ′, respectively. Since the results in Section 4 show that for Mode 1 of GdCOB
with the cut of (zxw)− 30◦, the coupling between the TT1 mode and F1 mode is very weak,
in the two-dimensional equations, we only consider the pure TT1 mode [24].

The governing equation is reduced to

C55u(1)
3,11 − ρω2

∞u(1)
3 = ρ(1 + 3R)

..
u(1)

3 , (19)

where

ω2
∞ =

π2

4h2
c44
ρ

, R(x) =
2ρ′h′(x1)

ρh
. (20)

For simple harmonic motion with frequency ω, the governing equation becomes

C55u(1)
3,11 − ρ[(1 + 3R)ω2 −ω2

∞]u(1)
3 = 0. (21)

5.1. Single-Step Electrodes

For the device with single-step electrodes, as shown in Figure 4a, the electrode thick-
ness is satisfied

2h(x) =


0, 0 < x1 < a0
2h0, a0 < x1 < a1
0, a1 < x1 < l

(22)

For the region of x1 > 0, the corresponding governing equations and boundary
conditions are as follows:

u(1)
3,11 +

ρ
C55

(ω2 −ω2
∞)u(1)

3 = 0, (0 < x1 < a0, a1 < x1 < l),

u(1)
3,11 +

ρ
C55

[(1 + 3R0)(ω
2 −ω2

0)]u
(1)
3 = 0, (a1 < x1 < a2).

(23)

u(1)
3,1 (0) = 0, u(1)

3 (l) = 0,

u(1)
3 (a−0 ) = u(1)

3 (a+0 ), u(1)
3,1 (a−0 ) = u(1)

3,1 (a+0 ),

u(1)
3 (a−1 ) = u(1)

3 (a+1 ), u(1)
3,1 (a−1 ) = u(1)

3,1 (a+1 ),

(24)

where
R0 = 2ρ′h0

ρh ,

ω2
0 = ω2

∞
(1+3R0)

< ω2
∞

(25)

when ω is in the range of (ω0, ω∞), the vibrations of the device will be concentrated in the
electrode region. Here, we consider the case for ω0 < ω < ω∞. The corresponding motion
governing equations are as follows:

u(1)
3,11 + β2u(1)

3 = 0, (0 < x1 < a0, a3 < x1 < a4),

u(1)
3,11 − β2

0u(1)
3 = 0, (a1 < x1 < a2),

(26)

where
β2

0 = ρ
C55 (1 + 3R0)(ω

2 −ω2
0) > 0,

β2 = ρ
C55 (ω

2
∞ −ω2) > 0.

(27)
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The expression for the symmetric displacements can be written as follows:

u(1)
3 = C0 cos(βx1), 0 < x1 < a0,

u(1)
3 = C1 exp[−β0(x1 − a0)], a0 < x1 < a1,

u(1)
3 = C2 cos[−β(x1 − a2)] + C′2 sin[−β(x1 − a2)] a1 < x1 < a2.

(28)

Substituting Equation (29) into the corresponding boundary condition in Equation (24) yields

C0 cos(βa0) = C1,
−βC0 sin(βa0) = β1C1,
C1 exp(−β0(a1 − a0)) = C2,
−β0C1 exp(−β0(a1 − a0)) = −βC′2.

(29)

The determinant of the coefficient matrix should be zero for nontrivial solutions, namely∣∣∣∣∣∣∣∣
cos(βa0) −1 0 0
−βsin(βa0) β0 0 0
0 exp[−β0(a1 − a0)] −1 0
0 −β0 exp[−β0(a1 − a0)] 0 −β

∣∣∣∣∣∣∣∣ = 0 (30)

5.2. Triple-Step Electrodes

For the device with triple-step electrodes, as shown in Figure 4b, the electrode thickness
is satisfied

2h(x) =



0, 0 < x1 < a0
2h2, a0 < x1 < a1
2h1, a1 < x1 < a2
2h0, a2 < x1 < a3
2h1, a3 < x1 < a4
2h2, a4 < x1 < a5

0, a5 < x1 < l

(31)

For the region of x1 > 0, the corresponding governing equations and boundary
conditions are

u(1)
3,11 +

ρ
C55

(ω2 −ω2
∞)u(1)

3 = 0, (0 < x1 < a0, a5 < x1 < l)

u(1)
3,11 +

ρ
C55

[(1 + 3R2)(ω
2 −ω2

2)]u
(1)
3 = 0, (a0 < x1 < a1, a4 < x1 < a5)

u(1)
3,11 +

ρ
C55

[(1 + 3R1)(ω
2 −ω2

1)]u
(1)
3 = 0, (a1 < x1 < a2, a3 < x1 < a4)

u(1)
3,11 +

ρ
C55

[(1 + 3R0)(ω
2 −ω2

0)]u
(1)
3 = 0, (a2 < x1 < a3)

(32)

u(1)
3,1 (0) = 0, u(1)

3 (l) = 0

u(1)
3 (a−0 ) = u(1)

3 (a+0 ), u(1)
3,1 (a−0 ) = u(1)

3,1 (a+0 ),

u(1)
3 (a−1 ) = u(1)

3 (a+1 ), u(1)
3,1 (a−1 ) = u(1)

3,1 (a+1 ),

u(1)
3 (a−2 ) = u(1)

3 (a+2 ), u(1)
3,1 (a−2 ) = u(1)

3,1 (a+2 ),

u(1)
3 (a−3 ) = u(1)

3 (a+3 ), u(1)
3,1 (a−3 ) = u(1)

3,1 (a+3 ),

u(1)
3 (a−4 ) = u(1)

3 (a+4 ), u(1)
3,1 (a−4 ) = u(1)

3,1 (a+4 ),

u(1)
3 (a−5 ) = u(1)

3 (a+5 ), u(1)
3,1 (a−5 ) = u(1)

3,1 (a+5 ),

(33)
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where
R0 = 2ρ′h0

ρh > R1 = 2ρ′h1
ρh > R2 = 2ρ′h2

ρh ,

ω2
0 = ω2

∞
(1+3R0)

< ω2
1 = ω2

∞
(1+3R1)

< ω2
2 = ω2

∞
(1+3R2)

< ω2
∞.

(34)

when ω is at the range (ω0, ω∞), the vibrations of the device are concentrated in the
electrode region. Here, we consider the case for ω0 < ω < ω∞.

The corresponding motion governing equations are as follows:

u(1)
3,11 − β2

0u(1)
3 = 0, (a2 < x1 < a3),

u(1)
3,11 + β2

2u(1)
3 = 0, (a0 < x1 < a1, a4 < x1 < a5)

u(1)
3,11 + β2

1u(1)
3 = 0, (a1 < x1 < a2, a3 < x1 < a4)

u(1)
3,11 + β2u(1)

3 = 0, (0 < x1 < a0, a5 < x1 < l)

(35)

where
β2

0 = ρ
C55 (1 + 3R0)(ω

2 −ω2
0) > 0,

β2
1 = ρ

C55 (1 + 3R1)(ω
2 −ω2

1) > 0,

β2
2 = ρ

C55 (1 + 3R2)(ω
2 −ω2

2) > 0,

β2 = ρ
C55 (ω

2
∞ −ω2) > 0.

(36)

The expression for the symmetric displacements can be written as

u(1)
3 = C0 cos(βx1), 0 < x1 < a0,

u(1)
3 = C1 cos[β2(x1 − a0)] + C′1 sin[β2(x1 − a0)], a0 < x1 < a1,

u(1)
3 = C2 cos[β1(x1 − a1)] + C′2 sin[β1(x1 − a1)], a1 < x1 < a2,

u(1)
3 = C3 exp[−β0(x1 − a2)], a2 < x1 < a3,

u(1)
3 = C4 cos[β1(x1 − a3)] + C′4 sin[β1(x1 − a3)], a3 < x1 < a4,

u(1)
3 = C5 cos[β2(x1 − a4)] + C′5 sin[β2(x1 − a4)], a4 < x1 < a5,

u(1)
3 = C6 exp[−β(x1 − a5)] + C′6 exp[−β(x1 − a5)], a5 < x1 < l.

(37)

Substituting Equation (37) into the corresponding boundary condition Equation (33) yields

C0 cos(βa0) = C1,
−βC0 sin(βa0) = β2C′1,
C1 cos[β2(a1 − a0)] + C′1 sin[β2(a1 − a0)] = C2,
−β2C1 sin[β2(a1 − a0)] + β2C′1 cos[β2(a1 − a0)] = β1C′2,
C2 cos[β1(a2 − a1)] + C′2 sin[β1(a2 − a1)] = C3,
−β1C2 sin[β1(a2 − a1)] + β1C′2 cos[β1(a2 − a1)] = −β0C3,
C3 exp(−β0(a3 − a2)) = C4,
−β0C3 exp(−β0(a3 − a2)) = β1C′4,
C4 cos[β1(a4 − a3)] + C′4 sin[β1(a4 − a3)] = C5,
−β1C4 sin[β1(a4 − a3)] + β1C′4 cos[β1(a4 − a3)] = β2C′5,
C5 cos[β2(a5 − a4)] + C′5 sin[β2(a5 − a4)] = C6,
−β2C5 sin[β2(a5 − a4)] + β2C′5 cos[β2(a5 − a4)] = −βC6 − βC′6,

(38)

The determinant of the coefficient matrix should be zero for nontrivial solutions, namely
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos(βa0) −1 0 0 0 0

−βsin(βa0) 0 −β2 0 0 0

0 cos[β2(a1 − a0)] sin[β2(a1 − a0)] −1 0 0

0 −β2 sin[β2(a1 − a0)] β2 cos[β2(a1 − a0)] 0 −β1 0

0 0 0 cos[β1(a2 − a1)] sin[β2(a1 − a0)] −1

0 0 0 −β1 sin[β1(a2 − a1)] −β1 sin[β1(a2 − a1)] β0

0 0 0 0 0 exp[−β0(a3 − a2)]

0 0 0 0 0 β0 exp[−β0(a3 − a2)]

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

0 −β1 0 0 0 0

cos[β1(a4 − a3)] sin[β1(a4 − a3)] −1 0 0 0

−β1 sin[β1(a4 − a3)] β1 cos[β1(a4 − a3)] 0 −β2 0 0

0 0 cos[β2(a5 − a4)] sin[β2(a5 − a4)] −1 0

0 0 −β2 sin[β2(a5 − a4)] β2 cos[β2(a5 − a4)] β β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(39)

Au is selected as the electrode material of the device, and the parameters of the GdCOB
LFE bulk acoustic wave device are set as follows:

ρ = 3819 kg/m3, c44 = 55.87× 109 N/m2, a0 = 0.3069 mm, a1 = 0.5831 mm,
a2 = 1.1969 mm, a3 = 1.4731 mm, L = 2.6516 mm, ρ′ = 19300 kg/m3, h = 0.0614 mm

(40)

To evaluate the energy-trapping effect, strain distributions in the x1 direction are
calculated by Equations (37)–(39), and a comparison of the energy-trapping effect is shown
in Figure 5, from which it can be seen that for triple-step electrodes, more strain energy is
more centralized compared with those of the other two types; thus, its energy-trapping
effect is better than others.
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Au is selected as the electrode material of the device, and the parameters of the 
GdCOB LFE bulk acoustic wave device are set as follows: 
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To evaluate the energy-trapping effect, strain distributions in the 1x  direction are 
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Figure 5. Influences of the electrode type on the energy trapping of the GdCOB LFE device. Strain
distribution of the three-layer stepped electrode indicated by the blue line in the figure is more
centralized compared with those of the other two types.
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In order to check the influences of electrode parameters on the energy trapping of
the device, the changes of a single electrode parameter (electrode radius difference and
electrode thickness difference) are introduced, and the vibration distributions of the main
mode are plotted. The results are shown in Figure 6 (electrode radius difference) and
Figure 7 (electrode thickness).

For the case of double-step electrodes, only the radius of the upper electrode is changed,
and the radius of the lower electrode is kept for 24 h. The ∆r1− 0 represents the radius
difference between the lower and upper electrodes. From Figure 6a, it is shown that when
the radius difference increases, a better energy-trapping effect can be obtained. For the
case of triple-step electrodes, firstly, the radius of the middle and bottom electrodes is kept
for 18 h and 24 h, respectively. Only the radius of the upper electrode is changed, and the
∆r1− 0 represents the radius difference between the middle and upper electrodes. The
results are shown in Figure 6b, from which it is shown that when ∆r1− 0 is smaller, the
energy-trapping effect is better. Secondly, the radius of the upper and bottom electrodes is
kept for 8 h and 24 h, respectively. Only the radius of the middle electrode is changed, and
the ∆r2− 1 represents the radius difference between the bottom and middle electrodes. The
results are shown in Figure 6c, from which it is also shown that a larger radius difference
leads to a better energy-trapping effect.

For the case of double-step electrodes, only the thickness of the upper electrode is
changed, and the radius of the lower electrode is kept for 0.008 h. The ∆h1− 0 represents
the thickness difference between the lower and upper electrodes. From Figure 7a, it is
shown that when the thickness difference increases, a better energy-trapping effect can be
obtained. In the case of triple-step electrodes, Firstly, the radius of the middle and bottom
electrodes is kept for 0.0015 h and 0.0008 h, respectively. Only the radius of the upper
electrode is changed, and the ∆h1− 0 represents the radius difference between the middle
and upper electrodes. The results are shown in Figure 7b, from which it is also shown that
a larger radius difference leads to a better energy-trapping effect. The radius of the upper
and middle electrodes is kept for 0.0026 h and 0.0015 h, respectively. Only the radius of the
bottom electrode is changed, and the ∆r2− 1 represents the radius difference between the
bottom and middle electrodes. The results are shown in Figure 6c, and it can be seen that
the thicker the electrodes are, the better the energy-trapping effect is; however, the effect
is relatively weaker compared to Figure 7b. Therefore, for the step-electrode LFE device,
changing the radius difference and thickness difference can lead to a better energy-trapping
effect of the device.
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electrodes: only the radius of the upper electrode is changed, and the radius of the lower electrode is
kept for 24 h. (b) Three-layer stepped electrodes: the radius of the middle and bottom electrodes is
kept for 18 h and 24 h, respectively. Only the radius of the upper electrode is changed. (c) Three-layer
stepped electrodes: the radius of the upper and bottom electrodes is kept for 8 h and 24 h, respectively.
Only the radius of the middle electrode is changed.
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Figure 7. Influences of electrode thickness difference on TT1 strain distribution u(1)
3 . (a) Double-step

electrodes: only the thickness of the upper electrode is changed, and the radius of the lower electrode
is kept for 0.008 h. (b) Three-layer stepped electrodes: the thickness of the middle and bottom
electrodes is kept for 0.0015 h and 0.0008 h, respectively, and only the thickness of the upper electrode
is changed. (c) Three-layer stepped electrodes: the thickness of the upper and middle electrodes is
kept for 0.0026 h and 0.0015 h, respectively, and only the thickness of the bottom electrode is changed.

6. Conclusions

In this paper, high-frequency forced vibrations of the LFE device with stepped elec-
trodes based on monoclinic GdCOB crystals are investigated. The dynamic capacitance
ratio is calculated, and the influences of the number, size, and thickness of stepped elec-
trodes on the energy-trapping effect of the device are analyzed. The results show that the
number of electrode layers has an obvious influence on the energy-trapping effect of the
device; namely, with an increase in the number of electrode layers, the energy-trapping
effect of the device becomes stronger. With the increase in electrode thickness difference,
the corresponding device energy-trapping effect becomes stronger. With the increase in the
electrode radius difference, the energy-trapping effect of the device is gradually enhanced.
The results of this paper can provide a reliable theoretical basis for the parameter design of
LFE devices with stepped electrodes for good energy-trapping effects.
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