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Abstract: As demand for haptic feedback increases, piezoelectric materials have become one of the
best candidate materials due to their small size, high electromechanical coupling coefficient, and
fast response. A stacked piezoelectric cymbal vibrator is proposed based on the common cymbal-
type transducer, which is composed of a piezoelectric stack to drive and a cymbal disk to amplify
displacement. A coupling theoretical model between the piezoelectric stack and the cymbal-type
structure is established. The longitudinal and radial displacements of the stacked piezoelectric cymbal
vibrator are calculated in the low frequency range (<1000 Hz) by the theoretical model and the finite
element method. The theoretical and numerical results are in good agreement. The results show
that the radial displacement can be converted into longitudinal displacement and then effectively
amplified by the cymbal disk with an amplification ratio of 30. The feature is conducive to its
widespread application in the field of consumer electronics.

Keywords: cymbal vibrator; piezoelectric stack; transfer-matrix method; finite element method;
displacement amplification

1. Introduction

With the advancement of science and technology, the information and internet in-
dustries have developed rapidly. In recent years, technologies such as smart wearable
devices and virtual reality have begun to enter people’s lives, and people’s demand for
bionic tactile feedback is increasing. Many companies have also shifted their focus to
haptic feedback [1–4]. At present, most of the vibration motors in consumer electronic
products are realized by electromagnetic driving, such as the eccentric vibrating motor
and linear vibrating motors commonly used in smart phones. These motors can simulate
press feedback by electromagnetic vibration, which can achieve a similar effect without
mechanical structure, and improve the reliability of the structure while enhancing the
waterproof property of the structure [5–8]. However, electromagnetic motors are prone to
electromagnetic interference and can only work within the natural frequency range [9]. In
contrast, piezoelectric vibration motors do not produce electromagnetic interference, have
a wider working frequency, and have a richer vibration effect [10–12]. However, because
of their small size, piezoelectric materials make it difficult to produce large displacements
and accelerations, so the vibration is weak [13–16]. The cymbal transducer is a type of
transducer composed of two cymbal-shaped structures and a piezoelectric ceramic, which
has the advantages of a simple structure, small size, and wide frequency band. At the same
time, due to the amplification of the displacement by the cymbals, the whole structure
has a high electromechanical coupling coefficient [17,18]. Traditional cymbal transducers
are usually made of single-layer piezoelectric ceramics [17], but single-layer ceramic has
a low electromechanical coupling coefficient, and the displacement or generated voltage
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is relatively small even with an amplification structure. Piezoelectric stacks have the ad-
vantages of precise control, sensitive response, and large output force; hence, they have
wide applications in semiconductor technology, aerospace, image processing, astronomy,
and other fields [19–23]. Piezoelectric stacks are made by sintering multiple layers of
ceramics into a layered structure, which is further electrically connected in parallel or series
between the layers. Under the same voltage or force, piezoelectric stacks can generate
greater displacement or a higher voltage than those with a single layer. Therefore, stacked
structures are often chosen as structures for piezoelectric devices.

In previous studies, cymbal transducers were often used as sensors and were widely
applied in underwater communication, sonar, micro-electromechanical, and medical fields [18,
24–29]. Many scholars have conducted corresponding research on cymbal transducers.
After analyses and optimization, cymbal transducers were achieved with a good equivalent
piezoelectric coefficient and power generation effect [30–35]. However, most research
was mainly conducted through experiments or finite element simulations [17,31,36–38].
Cymbal transducers lack theoretical analysis, especially without considering the coupling
between piezoelectric stacks and cymbals [39–42]. The vibration characteristics of cymbal
transducers are still not revealed.

In this paper, we propose a novel cymbal vibrator suitable for tactile feedback vibration,
which uses a piezoelectric stack to drive two cymbal disks to vibrate, effectively increasing
the vibration displacement. Firstly, the vibration characteristics of piezoelectric stacks and
cymbal disks are studied, respectively, under given boundary conditions. Then, by setting
continuity coupling conditions, a voltage-displacement theoretical model of the whole
structure is established, which agrees well with the simulation result below 1000 Hz.

2. Theoretical and Simulation Analysis of Piezoelectric Stack

As shown in Figure 1, the stacked cymbal vibrator is composed of a piezoelectric stack
and two cymbal disks. The circular piezoelectric stack is installed in the middle of the
cymbal vibrator. The lower edge of the cymbal disk is bonded to the stack, while a small
hole is introduced at the top of the cymbal disk to maintain air pressure balance and reduce
noise [43].
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As shown in Figure 2, the circular piezoelectric stack consists of piezoelectric layers
colored yellow and electrode layers colored blue, alternately. The polarization directions of
adjacent piezoelectric layers are opposite, as shown by the arrows. The upward polarization
direction is along the positive z-axis. The thicknesses of each electrode layer and each
piezoelectric layer are denoted by h1 and h2, respectively. The diameter of the stack actuator
is represented by 2R. PZT-5H is chosen as the piezoelectric material. Silver is chosen as
the electrode material for the piezoelectric stack due to its good conductivity. The major
material parameters are listed in Table 1. Other material parameters are also cited in
reference [44].
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Table 1. Parameters of the piezoelectric stack.

Materials
Density ρ

(kg/m3)
Young’s

Modulus E2
(GPa)

Poisson
Ratio µ2

Piezoelectric Constants
(C/m2) Thickness

(µm)e31 e33 e15

PZT-5H 7500 \ \ −6.5 23.3 17 45
silver 10,490 73 0.38 \ \ \ 5

2.1. Theoretical Analysis of Piezoelectric Stack

The linear constitutive relation of piezoelectric materials can be described by the
second type of piezoelectric equation [44].

Ti = cE
ijSj − ekiEk

Dm = emjSj + εS
mkEk

(1)

where Ti and Sj are the stress and strain tensors with i, j = 1, 2, 3, . . ., 6, and Dm and Ek are
the electric displacement and electric field vectors with m, k = 1, 2, 3. cE

ij are the stiffnesses

under a constant electric field, eki are the piezoelectric stress constants, εS
mk and are the

clamped dielectric constants.
To the cylindrical coordinate system, (r, θ, z) corresponds to (1, 2, 3) so that the

positive poling direction corresponds to 3. The motion of an axisymmetric stack satisfies

uθ = 0,
∂

∂θ
= 0 (2)

Therefore, the displacement of the disk can be expressed by the radial displacement
u1(r, z, t) and the longitudinal displacement w1(r, z, t), where t is the time. The normal
strain Srr, Sθθ , Szz, and the shear strain Szr can be expressed by the following geometric
equations.

Srr =
∂u1

∂r
, Sθθ =

u1

r
, Szz =

∂w1

∂z
(3)

2Szr =
∂u1

∂z
+

∂w1

∂r
(4)

In the piezoelectric layer, the relationship between the electric field Ez and the electric
potential φ(z, t) is given by

Ez = −
∂φ

∂z
(5)

The electrical displacement satisfies the Gauss theorem.

Di,i = 0 (6)
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The piezoelectric layer also satisfies the equilibrium differential equation.

∂Trr

∂r
+

Trr − Tθθ

r
+

∂Tzr

∂z
= ρ1

∂2u1

∂t2

∂Tzr

∂r
+

Tzr

r
+

∂Tzz

∂z
= ρ1

∂2w1

∂t2

(7)

Substituting the geometric Equations (3) and (4) into the constitutive Equation (1), the
expressions of stresses Tij and electric displacement Dz are obtained.

Trr = cE
11

∂u1

∂r
+ cE

12
u1

r
+ cE

13
∂w1

∂z
+ e31

∂φ

∂z

Tθθ = cE
12

∂u1

∂r
+ cE

11
u1

r
+ cE

13
∂w1

∂z
+ e31

∂φ

∂z

Tzz = cE
13

∂u1

∂r
+ cE

13
u1

r
+ cE

33
∂w1

∂z
+ e33

∂φ

∂z

Tzr = cE
44

(
∂u1

∂z
+

∂w1

∂r

)
Dz = e31

∂u1

∂r
+ e31

u1

r
+ e33

∂w1

∂z
− ε33

∂φ

∂z

(8)

For the thin plate, the normal stress in the thickness direction cannot depart much
from zero. Thus, it is assumed to vanish throughout Tzz = 0. From the third formula in
Equation (8), we obtain

∂w1

∂z
= −

cE
13

cE
33

∂u1

∂r
−

cE
13

cE
33

u1

r
− e33

cE
33

∂φ

∂z
(9)

Then, the Equation (8) can be rewritten as

Trr = cp
11

∂u1

∂r
+ cp

12
u1

r
+ ep

31
∂φ

∂z

Tθθ = cp
12

∂u1

∂r
+ cp

11
u1

r
+ ep

31
∂φ

∂z

Tzr = cE
44

(
∂u1

∂z
+

∂w1

∂r

)
Dz = ep

31
∂u1

∂r
+ ep

31
u1

r
− ε

p
33

∂φ

∂z

(10)

where
cp

11 = cE
11 −

(
cE

13
)2
/

cE
33, cp

12 = cE
12 −

(
cE

13
)2
/

cE
33

ep
31 = e31 − cE

13e33
/

cE
33, ε

p
33 = εS

33 − e33
/

cE
33

(11)

Substituting Equation (10) into Equation (7) yields

cp
11

(
∂2u1

∂r2 +
1
r

∂u1

∂r
− u1

r2

)
= ρ1

∂2u1

∂t2 (12)

For a steady-state problem with an angular frequency ω, it becomes

∂2u1

∂r2 +
1
r

∂u1

∂r

(
ξ2

1 −
1
r2

)
u1 = 0 (13)

where ξ1 =
√

ω2ρ1/cp
11. Then, the general solution of u1 is

u1 = BJ1(ξ1r)eiωt (14)
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where B is an integration constant. i is an imaginary unit. J1 is the first Bessel function of
the first order.

As an isotropic material, the silver electrode is then studied. Its physical parameters
are distinguished by subscript 2. Its stresses can also be obtained [45,46].

σr2 = λ

(
∂u2

∂r
+

u2

r
+

∂w2

∂z

)
+ 2G

∂u2

∂r

σθ2 = λ

(
∂u2

∂r
+

u2

r
+

∂w2

∂z

)
+ 2G

u2

r

σz2 = λ

(
∂u2

∂r
+

u2

r
+

∂w2

∂z

)
+ 2G

∂w2

∂z

τzr2 = G
(

∂u2

∂z
+

∂w2

∂r

)
(15)

where u2 and w2 are the displacements in radial and thickness directions of the electrodes,
respectively, λ and G are Lamé constants, and G is also the shear modulus of the electrodes,
which can be expressed in terms of Young’s modulus and Poisson’s ratio.

λ =
µ2E2

(1 + µ2)(1− 2µ2)
, G =

E2

2(1 + µ2)
(16)

Similarly, the normal stress of the electrode in the thickness direction is assumed
σz2 = 0 to be from Equation (15), we have

∂w2

∂z
= − λ

λ + 2G

(
∂u2

∂r
+

u2

r

)
(17)

Then, Equation (15) can be rewritten as

σr2 = λ
p
1

∂u2

∂r
+ λ

p
2

u2

r

σθ2 = λ
p
2

∂u2

∂r
+ λ

p
1

u2

r

τzr2 = G
∂u2

∂z

(18)

where

λ
p
1 = λ + 2G− λ2

λ + 2G

λ
p
2 =

2Gλ

λ + 2G

(19)

The expression of u2 can be obtained as

u2 = AJ1(ξ2r)eiωt (20)

where ξ2 =
√

ω2ρ2/λ
p
1 . A is an integration constant.

For the multilayer piezoelectric stack, the radial displacements at the interface between
the piezoelectric layer and the electrode layer satisfy the continuity condition as

u1 = u2 (21)

Boundary condition at the cylindrical surface of r = R, the radial resultant force
satisfies

n
(∫ h1

0
Trrdz +

∫ h2

h1

σr2dz
)
= 0 (22)



Micromachines 2023, 14, 2039 6 of 18

where n is the layer number of the piezoelectric layers. From Equations (3), (9), and (17),
the strains Szz and εzz can be expressed by their respective radial displacements. Then, the
displacement wz in the thickness direction can be further calculated by

wz = nh1Szz + (n + 1)h2εzz (23)

2.2. Analyses of the Piezoelectric Stack

As shown in Figure 3, the structure of the circular stack is composed of 19 piezoelectric
layers and 20 electrode layers. The stack diameter is 2R = 15 mm, the piezoelectric layer
thickness is h1 = 45 µm, the electrode layer thickness is h2 = 5 µm, and the total thickness is
955 µm. The structure is modeled in Solidworks 2020 software. The piezoelectric layer and
the electrode layer are connected by binding. The model is then imported into the ANSYS
Workbench for calculation, where the design modeler is applied to preprocess the structure.
For the multilayer piezoelectric stack, material properties are assigned in the ACT plug-in.
Alternating voltages applied to electrode layers are +V and −V, as shown in Figure 2. For
the boundary condition on the bottom, displacements in the thickness direction of all nodes
are set to 0; moreover, for nodes on their circular edges, circumferential displacements are
also set to 0. Hexahedral mesh is used, and the element size is 0.5 mm, and the results have
good convergence under this element size.
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Figure 3. The piezoelectric stack model in Ansys Workbench.

2.2.1. Static Analysis

Static analysis is performed on the Workbench. A voltage difference of 80 V is applied
to the piezoelectric layers.

Figure 4 shows the displacements of the structure in the radial direction with a max-
imum value of 3.2 µm in (a); while the displacement in the thickness direction has a
maximum value of 0.89 µm in (b). It can be noted that the radial displacement is one order
of magnitude greater than the longitudinal displacement. If the radial displacement is
transformed and amplified into a longitudinal displacement, a larger longitudinal displace-
ment can be obtained. The electric potential distribution of the piezoelectric stack is shown
in Figure 5. Each piezoelectric layer has an electric potential gradient and is therefore
subjected to an electric field.
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2.2.2. Harmonic Response Analysis

The harmonic analysis is performed by using the harmonic response module in Work-
bench with the full method. The global damping is set to 0.01. The boundary conditions
are the same as for the static analysis. A sinusoidal voltage is applied in a certain frequency
range. Figure 6 shows the radial displacement response of the stack in the frequency range
from 10 kHz to 150 kHz under an 80 V voltage, calculated by theory and simulation, respec-
tively. In order to correspond to the finite element calculation, the same material damping
η = 0.01 is taken in the theoretical calculation [44]. As can be seen from the figure, the theo-
retical results agree well with the simulation values in the resonance region. The structure
exhibits a resonance frequency of around 130 kHz. Figure 7 shows the comparison results
of the longitudinal displacement under the same conditions. The resonance frequencies
predicted by the two methods are very close, which mutually verifies the correctness of the
calculation results. However, amplitudes do not match well at the resonant frequency. The
phenomenon mainly stems from the difference between these two models. The theoretical
model is an axisymmetric model that meets Equation (2). Therefore, the circumferential
displacement is assumed to be 0. However, the finite element model is a three-dimensional
model with circumferential displacement not equal to 0. Therefore, circumferential dis-
placement affects radial displacement and thickness direction displacement, especially
around the fundamental frequency of the piezoelectric stack. Fortunately, the operating
frequency is much lower than the fundamental frequency.
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3. Theoretical Model and Simulation of the Cymbal Disk

In the cymbal vibrator, when a voltage is applied to the piezoelectric element, the
element not only produces longitudinal displacement but also contracts radially. The upper
and lower cymbal disks can amplify the lateral shrinkage displacement and transfer it to
the longitudinal direction by using the triangular amplification principle, which greatly
increases the longitudinal displacement [47]. Then, the overall structure can obtain a
high electromechanical coupling coefficient. In previous studies, the cymbal plate was
usually regarded as a disc-shaped membrane spring and was calculated using the Almen–
Laszlo formula [40]. The limitation of the method is that the displacement amplification
ratio cannot be obtained. It is because the relationship between longitudinal force and
longitudinal displacement is only considered; the radial force and deformation at the
bottom are neglected by simplification [48]. Therefore, at first, we take all forces and
displacements into account for the cymbal disk, then investigate the coupling between the
piezoelectric stack and the cymbal disk.

3.1. Theoretical Model of the Cymbal Disk

As shown in Figure 8, the cymbal disk consists of a top plane, a conical shell, and
a bottom. The cymbal disk has a small hole at the top. The air fills the cavity formed
by the cymbal disk and piezoelectric ceramics. But due to the presence of the hole, we
neglect the effect of air pressure. Because the displacement amplification effect is generated
by the conical shell, while the other two parts have little impact on the amplification, the
investigation is focused on the conical shell. The conical shell model and coordinate systems
are shown in Figure 9. Unless otherwise stated, the material and specific dimensions are
listed in Table 2.
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Table 2. Material parameters and dimensions of the thin conical shell.

Material Density ρ
(kg/m3)

Young’s
Modulus E (GPa)

Poisson
Ratio µ

α (◦) r0 (mm) r1 (mm) h (mm) hS (mm)

304SS 7750 193 0.31 86 1.5 7 0.48 0.1

As an axisymmetric conical shell model, its circumferential displacement v and deriva-
tive with respect to the circumference can be considered as

v = 0,
∂

∂Θ
= 0 (24)

Then, the governing equations of the conical shell are simplified as [49]

1
s

∂(sNs)

∂s
− NΘ

s
+ ρhω2u = 0

− 1
s tan α

NΘ +
1
s

∂(sQs)

∂s
+ ρhω2w = 0

(25)
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where u and w are displacements in s and ς directions, Ns, NΘ, Ms, MΘ, and Qs are the
normal forces, bending moments, and shear forces under the corresponding coordinate
axes, respectively. These forces and moments can be described as

Ns = D
[

∂u
∂s +

µ
s
(
u + w

tan α

)]
NΘ = D

[
1
s
(
u + w

tan α

)
+ µ ∂u

∂s

]
Ms = −K

[
∂2w
∂s2 + µ

s
∂w
∂s

]
MΘ = −K

[
1
s

∂w
∂s + µ ∂2w

∂s2

]
Qs =

1
s

(
Ms + s ∂Ms

∂s

)
− MΘ

s

(26)

with

D =
Eh

1− µ2 , K =
Eh3

12(1− µ2)
(27)

Substituting Equation (26) into Equation (25) yields

D
(

∂2u
∂s2 + 1

s
∂u
∂s −

u
s2 +

µ
tan α

1
s

∂w
∂s −

w
s2 tan α

)
+ ρhω2u = 0

K
(

∂4w
∂s4 + 2

s
∂3w
∂s3 − 1

s2
∂2w
∂s2 + 1

s3
∂w
∂s

)
+ D

tan α

(
u
s2 +

µ
s

∂u
∂s +

w
s2 tan α

)
− ρhω2w = 0

(28)

In order to solve these two ordinary differential equations with variable coefficients,
the edge of the shell is divided into m segments. In any j-th small segment, the coordinate s
can be taken as the coordinate sj (j = 1, 2, 3, . . ., m) of its midpoint. Then, the coefficients of
these two differential equations become constants. The general solution is

u =
6
∑

i=1
Ai(ϑi)eϑis, w =

6
∑

i=1
qi(ϑi)Ai(ϑi)eϑis

qi(ϑi) = −
[

s2
j ρhω2

D +
(

s2
j ϑ2

i + sjϑi − 1
)](

µsjϑi−1
tan α

)−1 (29)

where Ai(ϑi) is an undetermined coefficient. Six roots ϑi are obtained by the following
equation.∣∣∣∣∣∣

µsjϑ−1
tan α

(
ρhω2

D + ϑ2
)

s2
j + sjϑ− 1

Ksjϑ
(

s3
j ϑ3 + 2s2

j ϑ2 − sjϑ + 1
)
+

Ds2
j

tan2 α
− s4

j ρhω2 µs2
j (1+µsjϑ)

tan α

∣∣∣∣∣∣ = 0 (30)

From Equations (26) and (29), we have

Uj = PjAj (31)

with

Uj =
[

u w ϕ Ns Ms Qs
]T

j

Aj =
[

A1 A2 A3 A4 A5 A6
]T

j

Pj =



eϑ1s eϑ2s eϑ3s eϑ4s eϑ5s eϑ6s

q1eϑ1s q2eϑ2s q3eϑ3s q4eϑ4s q5eϑ5s q6eϑ6s

q1ϑ1eϑ1s q2ϑ2eϑ2s q3ϑ3eϑ3s q4ϑ4eϑ4s q5ϑ5eϑ5s q6ϑ6eϑ6s

Ns1 Ns2 Ns3 Ns4 Ns5 Ns6
Ms1 Ms2 Ms3 Ms4 Ms5 Ms6
Qs1 Qs2 Qs3 Qs4 Qs5 Qs6


j

(32)
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where T denotes matrix transposition, ϕ = ∂w/∂s.

Nsi = D
[

ϑieϑis +
µ

s

(
eϑis +

qieϑis

tan α

)]
Msi = −K

(
qiϑ

2
i eϑis +

µ

s
qiϑieϑis

)
Qsi = −K

(
qiϑ

3
i eϑis +

1
s

qiϑ
2
i eϑis − 1

s2 qiϑieϑis
) (33)

From continuity conditions on the interface between the j-th and (j+1)-th segments, we
have Pj+1(jL/m)Aj+1 = Pj(jL/m)Aj. The transfer matrix from the first to the last segment
can be obtained as

Am = PA1
U1(0) = P1(0)A1, at s = 0
Um(L) = Pm(L)Am, at s = L

(34)

where P =
m−1
∏
j=1

P−1
j+1(jL/m)Pj(jL/m). U1(0) and Um(L) are the boundary conditions at

the top and bottom of the rotating shell, respectively. All undetermined constants can be
solved when six boundary conditions are prescribed.

3.2. Results and Discussion of Cymbal Disk

As illustrated in Figure 8, the boundary conditions are applied at the bottom, repre-
sented by the color yellow: displacement in the z direction is set to zero, i.e., uz(L) = 0, and
excitation by radial displacement ur(L). Equation (35) gives the expressions of ur and uz. As
a free end, the top of the cymbal disk has the boundary conditions: Ns(0) = Ms(0) = Qs(0).
Equation (36) is obtained from the corresponding boundary conditions at the top and
bottom of the cymbal disk.

ur(s) = u(s) sin α + w(s) cos α
uz(s) = −u(s) cos α + w(s) sin α

(35)

U1(0) =
[

u(0) w(0) ϕ(0) 0 0 0
]T

Um(L) =
[

u(L) w(L) 0 Ns Ms Qs
]T (36)

Analytical solutions are obtained by the transfer matrix method. The number m of
segments is taken as 100 to maintain good convergence. The displacement response, uz(0),
at the top of the cymbal disk is obtained under different excitations of radial displacements,
ur(L).

Static analyses are further carried out by FEM on the Workbench. The mesh is divided
by an element size of 0.01 mm to obtain a convergent solution. As a kind of stainless steel,
304SS is selected as a cymbal material because of its easy processing, low cost, and high
strength. The boundary condition of the finite element is similar to that of the theory. The
results are compared between FEM and theory, as shown in Figure 10. For the cymbal disk,
when a radial displacement is applied at the bottom, longitudinal displacement is generated
at the top, which is even more than ten times the radial displacement. For example, when
the radial displacement at the bottom is 10 µm, a longitudinal displacement of nearly
160 µm is generated on the top, thus the magnification ratio is close to 16. Therefore, the
conical shell plays a role in displacement amplification. Finite element results take the
average displacement of the top plane as shown in Figure 1, which is slightly larger than
theoretical results. The maximum error between the finite element value and the theoretical
value is about 8%. The reason is that the influence of the top plane on the displacement is
neglected in theoretical analysis.
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4. Overall Analysis of the Stacked Piezoelectric Cymbal Vibrator

Theoretical and numerical models of stack and cymbal have been studied in the above
two sections, respectively. An overall analysis of the stacked piezoelectric cymbal vibrator
is further made by considering the coupling between the piezoelectric stack and the cymbal
disk.

4.1. Coupling between Piezoelectric Stack and Cymbal Disk

At the interface between the piezoelectric stack and cymbal disk, displacements meet
the continuity condition.

u1(r1) = ur(L) (37)

where u1 and ur represent radial displacements of the electrode layer in the piezoelectric
stack and the bottom of the cymbal disk, respectively.

The radial force generated by the upper and lower surfaces of the piezoelectric stack
and the force at the bottom of the cymbal disk satisfy the equilibrium equation.

n
(∫ h1

0
Trrdz +

∫ h2

h1

σr2dz
)
+ 2F = 0 (38)

where F is the radial force with which the piezoelectric stack acts on the bottom of the
cymbal.

From Equations (23) and (35), the total longitudinal displacement, uT, of the structure
is written as

uT = wz + 2uz(0) (39)

where wz is the longitudinal displacement of the piezoelectric stack, and uz(0) is the
longitudinal displacement of the top of the cymbal disk.

4.2. Overall Analysis and Comparison

For the boundary conditions of the overall finite element model of the overall vibrator,
the bottom is fixed and the top is free. Furthermore, interfaces between the cymbal and
the stack are set as binding contacts. The electrical boundary conditions are illustrated
in Figure 2. A static analysis of the overall model is performed. Radial and longitudinal
displacements of the overall vibrator under different voltages are obtained. Similarly,
harmonic response analysis is also performed to obtain the displacement response of the
vibrator at different frequencies. Figure 11 shows the longitudinal displacement response
of the vibrator when excitation of voltage 80 V under static analysis. The maximum
longitudinal displacement is 77.796 µm.
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The theoretical model is also calculated and compared with the simulation results.
Figures 12 and 13 show the displacement response of the vibrator versus frequency under
voltages of 10 V, 50 V, and 80 V, respectively. As can be seen from the figures, the theoretical
results are in good agreement with the finite element numerical values. Because the
excitation frequency is far less than the natural frequency, the response displacement
basically does not change with the increase in the excitation frequency. As a result of the
simplification of radial displacement, the result has a large error above 800 Hz. However,
at the normal operating frequency (<500 Hz) of the vibrating motor, the theoretical solution
is in good agreement with the finite element solution.
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model ignores the effect of circumferential displacement, but the finite element model does
not. In addition, the overall vibrator has a lower fundamental frequency than that of the
piezoelectric stack. Therefore, the driving frequency is closer to the fundamental frequency.
Moreover, for a large driving voltage of 80 V, a large circumferential displacement will be
generated, and its impact on radial displacement and thickness direction displacement is
also greater.

The cymbal disk effectively converts the radial displacement into longitudinal dis-
placement, with a ratio of about 1:30 of radial displacement to longitudinal displacement. It
can be noted that the cymbal structure plays an important role in amplifying displacement.

4.3. Influence of Cymbal Parameters on Total Longitudinal Displacements of the Overall Vibrator

An analysis is further conducted on the influence of the dimensions and materials of
the cymbal disk on the vibration performance of the overall vibrator based on a theoretical
model. The harmonic driving voltage with an amplitude of 80 V and a frequency of 100 Hz
is adopted.

Figure 14 shows the effect of the thickness of the cymbal disks on the total longitudinal
displacement of the vibrator at different angles. It can be noted that the thicker the cymbal
disk, the smaller the total longitudinal displacement. It is because the stiffness of the cymbal
increases with increasing thickness. The deformation then decreases under the same force.
Furthermore, for a thin cymbal with a thickness less than 0.2 mm, the larger the inclination
angle, the greater the impact of thickness on the total longitudinal displacement.

Figure 15 illustrates total longitudinal displacement versus angle α for different thick-
nesses. The maximum displacement appears at different angles for different thicknesses.
The maximum displacement is achieved at α = 88.5◦ for the 0.1 mm-thick cymbal disk. With
the increase in thickness, the angle corresponding to maximum displacement decreases
gradually. In addition, when the thickness reaches 0.35 mm, the total longitudinal displace-
ment decreases monotonically with the increase in angle in the graph. When the cymbal
disk with a fixed thickness is actuated by the piezoelectric stack with the same voltage
amplitude and frequency, the longitudinal displacement of the cymbal disk increases with
the increase of the coupled radial force and radial displacement. However, as the angle α
increases, the coupled radial force increases, but the coupled radial displacement decreases.
Under these two effects, the maximum longitudinal displacement occurs.
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In order to investigate the influence of materials on the total longitudinal displacement
of the vibrator, several common metal materials are adopted in the calculation. Their mate-
rial parameters are listed in Table 3. Figure 16 demonstrates total longitudinal displacement
versus thickness for different materials of the cymbal disk. For all materials, total longi-
tudinal displacements decrease with an increase in the cymbal disk thickness. Among all
materials, aluminum alloy has the largest displacement because it has the smallest Young’s
modulus. On the contrary, the smallest displacement is obtained by stainless steel since it
has the largest Young’s modulus.

Table 3. Material parameters of metallic materials.

Materials Aluminum Alloy Titanium Alloy Copper Stainless Steel

Density (kg/m3) 2770 4620 8960 7750
Young’s modulus (GPa) 71 96 120 193

Poisson ratio 0.33 0.36 0.34 0.31
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The influence of different factors on the total longitudinal displacement of the vibrator
has been investigated. But in practical applications, more factors need to be considered to
determine the configuration. For example, a large displacement can be obtained by the thin
cymbal. Nevertheless, too thin a cymbal is prone to high stress; Too small an angle would
make manufacturing difficult; High-strength materials tend to cost more.
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5. Conclusions

A theoretical model of the stacked piezoelectric cymbal vibrator was proposed to
investigate the coupling between the piezoelectric stack and cymbal disk. The theoretical
model overcomes the limitation that the Almen–Laszlo formula cannot calculate the dis-
placement amplification ratio. The theoretical model was calculated by the stress relaxation
method and the transfer matrix method. The theoretical model was validated using the
finite element method. The influence of the dimensions and materials of the cymbal disk
on the vibration performance of the overall vibrator was investigated based on a theoretical
model. Amplification ratios of 30 were obtained from radial displacement to longitudinal
displacement.
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