
Citation: Evstigneev, M.; Afkani, M.;

Sokolovskyi, I. Limit Efficiency of a

Silicon Betavoltaic Battery with

Tritium Source. Micromachines 2023,

14, 2015. https://doi.org/10.3390/

mi14112015

Academic Editors: Dae Joon Kang

and Yongteng Qian

Received: 30 September 2023

Revised: 25 October 2023

Accepted: 27 October 2023

Published: 29 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Limit Efficiency of a Silicon Betavoltaic Battery with
Tritium Source
Mykhaylo Evstigneev 1,* , Mohammad Afkani 1 and Igor Sokolovskyi 2

1 Department of Physics and Physical Oceanography, Memorial University of Newfoundland,
St. John’s, NL A1B 3X7, Canada

2 V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Prospect Nauky, 03028 Kyiv, Ukraine
* Correspondence: mevstigneev@mun.ca

Abstract: An idealized design of a silicon betavoltaic battery with a tritium source is considered, in
which a thin layer of tritiated silicon is sandwiched between two intrinsic silicon slabs of equal width,
and the excess charge carriers are collected by thin interdigitated n+ and p+ electrodes. The opposite
sides of the device are covered with a reflecting coating to trap the photons produced in radiative
recombination events. Due to photon recycling, radiative recombination is almost ineffective, so the
Auger mechanism dominates. An analytical expression for the current–voltage curve is obtained,
from which the main characteristics of the cell, namely, the open-circuit voltage, the fill factor, and
the betaconversion efficiency, are found. The analytical results are shown to agree with the numerical
ones with better than 0.1% accuracy. The optimal half-thickness of this device is found to be around
1.5µm. The maximal efficiency increases logarithmically with the surface activity of the beta-source
and has the representative value of 12.07% at 0.1 mCi/cm2 and 14.13% at 10 mCi/cm2.

Keywords: betavoltaic effect; energy harvesting; silicon; tritium; efficiency; radiative recombination;
Auger recombination; thin-base approximation; optimization

1. Introduction

Betavoltaic batteries are long-lifetime low-power sources that convert the energy of
electrons produced in a beta-decay reaction into electricity [1–3]. They have a special niche
in industrial applications, which includes autonomous devices used in hard-to-reach areas,
such as outer space [4,5] or a human body, where beta-batteries can power up implants of
various kinds [6].

The operation principle of a beta-battery is similar to that of a solar cell [6,7]. Beta-
particles entering a semiconductor produce electron–hole pairs (EHPs), which are separated
by a pn-junction or a Schottky diode to generate an electric current. Since the energy of a
beta-electron is in the keV range, a single beta-particle creates thousands of EHPs, whereas
a photon coming from the Sun typically creates just one pair. On the other hand, the
incident photon flux from the Sun is about 106 times as high as the flux of the incident betas.
As a result, the output power density of a beta-cell is lower than that of a solar cell by at
least a factor of a thousand.

Out of all possible sources of beta-particles, tritium has a special place for several
reasons. It is environmentally friendly, because it turns into helium-3, a harmless inert
gas, and does not emit alpha- and gamma-radiation as a result of a beta-decay. It has a
relatively long half-time of 12.3 years. The maximal energy of a beta-particle emanating
from tritium is too low to create defects in the crystal lattice of the cell (although indirect
radiation damage induced by the X-rays is still possible [8]). Last but not least, tritium is
one of the most affordable beta-sources [6]. The energy EEHP to generate a single EHP by a
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beta-particle is known to scale linearly with the bandgap Eg as

EEHP = A Eg + B (1)

with A = 2.8, B = 0.5 eV according to the early work [9] and A = 1.54 and B = 1.89 eV
according to more recent data [10]. Since the highest energy that can possibly be extracted
from a single EHP is the bandgap energy, the ultimate efficiency of a beta-battery can be
estimated as [6]

ηmax =
Eg

AEg + B
. (2)

This formula suggests that one should use broad-bandgap materials for best efficiency value.
For this reason, recent studies have been focused on such materials as diamond [11,12],
silicon carbide [13–17], gallium arsenide [18], zinc oxide [19], and gallium nitrate [20]. If
one adopts Klein’s parameters [9], one obtains the ultimate efficiency of a beta-battery
based on a broad-bandgap semiconductor 1/A = 36%; using the parameters from [10], one
obtains an even more optimistic estimate of 65%, which, admittedly, is too good to be true.

In this work, we consider a silicon-based betavoltaic element in spite of the fact that
silicon has a relatively narrow band gap of 1.12 eV. It is motivated by two considerations.
First, silicon is the standard material in semiconductor technologies from microelectronics
to solar cells; hence, a silicon-based autonomous power source can be easily combined with
other semiconductor devices. Second, due to its wide use in technology, silicon is also the
most studied semiconductor material. This means that the theoretical results obtained for a
silicon beta-cell will be numerically most accurate within the model assumptions made.

Coming back to the efficiency, the estimate (2) completely ignores the recombination
losses, which can be classified into two groups. The so-called extrinsic recombination
channels, such as Shockley-Read-Hall and surface recombination [21], can be controlled by
improving the purity of the material and applying surface passivation, whereas the intrinsic
radiative and Auger recombination mechanisms cannot be turned off in this way. To obtain
a more realistic estimate of the limit efficiency than offered by Equation (2), one needs
to focus on an idealized design of a betavoltaic cell, in which all extrinsic recombination
mechanisms are non-operative, so that only the intrinsic ones remain. This approach is
standard in the evaluation of the limit efficiency value of solar cells [22–25].

The important difference between beta- and photovoltaic cells is that a radioisotope-
loaded element must be embedded into the material of a beta-battery. For example, one
may use tritiated titanium atoms [26], which necessarily will act as Shockley–Read–Hall
recombination centers. Perhaps a less detrimental alternative, which is characterized by
a lower recombination rate is to tritiate silicon directly, as described in References [27,28].
While it does not seem possible to completely eliminate extrinsic recombination in a
beta-battery, it still can be controlled by the choice of technology used to introduce the
radioisotope into the battery. In this paper, we address the question of the theoretical limit
efficiency of a beta-battery in the limit of a zero extrinsic recombination rate.

The ideal beta-cell design is described in the next section together with the mathemati-
cal formalism used for numerical evaluation of the limit efficiency. This formalism is based
on the thin-base approximation, which is employed in photovoltaics research [22–25]. One
of the main results of the present paper is that in the case of betavoltaics, this approximation
is almost exact, even if the extrinsic recombination channels are included into it by adding
the respective term in the current–voltage relation, see Equation (7) below.

In the limit of a zero extrinsic recombination rate, we show that recombination pro-
ceeds predominantly via the Auger mechanism. Based on these findings, analytical expres-
sion for the cell current-voltage curve is obtained, from which the betaconversion efficiency
is derived. Analytical results are compared with the numerical ones and are shown to
be accurate to better than 0.1%. The device efficiency turns out to be a non-monotonic
function of the cell thickness, with the optimal thickness of 3µm being practically in-
dependent of the activity of the beta source. The limiting efficiency of a Si beta cell is
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then found to increase logarithmically with the surface activity SA of the beta-source as
η = 13.1% + (0.449%) ln(SA/(1 mCi/cm2)) within a broad range of SA.

2. The Model

We focus on the idealized design of a beta-cell shown in Figure 1. A thin layer of
tritiated silicon [27,28] is sandwiched between two i-Si slabs of thickness w each, where
EHPs are produced. The beta-generated EHPs diffuse towards the outer surfaces of each
slab, which contain interdigitated heavily doped thin n+ and p+ regions. There, the
EHPs are separated: the holes are collected by the p-electrodes, and the electrons by the
n-electrodes. The regions of the same polarity are connected with one another, and the load
is applied between the n+ and p+ groups of electrodes.

�✁

✂✁

✄☎✆✝

✞ ✞

✟✠✡✄✠☛☞✌✂✍ ☛☎✆☞✌✂✍✎

Figure 1. Schematics of a beta-battery consisting of two i-Si slabs of thickness w each separated by a
thin layer of tritiated silicon. The current is collected by the heavily doped n+ (green) and p+ (orange)
interdigitated electrodes. The electrodes of the same polarity are connected with one another, and
the load is applied between the electrodes of opposite polarities. The outer surface of the battery is
covered with a reflecting coating that prevents photons produced in radiative recombination from
escaping the device; these photons are reabsorbed and recycled.

Intrinsic rather than doped silicon is chosen as the basis material of the battery in order
to minimize the recombination losses. Indeed, it has been shown that the maximal limit
efficiency of a silicon solar cell is achieved in the limit of zero doping [23], and same is true
in the case of a betavoltaic cell [3]. In this idealized model, we assume that the T/Si layer is
so thin that the self-absorption effect can be neglected. We note that the self-absorption can
be included by multiplying the efficiency obtained within our idealized model with the
ratio of the number of EHPs that enter the semiconductor per unit time to the total activity
of the source. According to [28], the maximal beta-activity that one may achieve in this way
in tritiated silicon is slightly below 20 mCi/cm2.

The device half-thickness w should be commensurate with the penetration depth of
the electrons from the high-energy part of the beta-spectrum; using the Kanaya–Okayama
formula [29], this gives 4.2µm, see also (28) below. Both surfaces are covered with an
ideally reflecting dielectric coating to prevent photons produced in radiative recombination
from escaping the cell; those photons are recycled by the cell.

Excess carrier concentration is governed by the stationary reaction–diffusion equation

D
d2∆n
dx2 −U(∆n) + G(x) = 0 , (3)

where D is the ambipolar diffusion coefficient in i-Si, U(∆n) is the net recombination rate,
and G(x) is the rate of electron–hole pair generation by the betas that originate in the
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yz-plane at x = 0. The reaction–diffusion equation is supplemented with the boundary
conditions

d∆n(x)
dx

∣∣∣∣∣
x=0

= 0 , D
d∆n(x)

dx

∣∣∣∣∣
x=w

= − J
2qe

, (4)

where J is the current density collected. The first condition follows from the symmetry
∆n(−x) = ∆n(x). The factor 1/2 in the second condition takes care of the fact that each
slab contributes only a half to the net current density J.

Instead of the interdigitated configuration, one might use single n+ and p+ layers
deposited on the opposite sides of the battery for current collection. The mathematical
treatment of such a seemingly simpler configuration, however, would be somewhat more
complicated than Equations (3) and (4), because the electric field generated by those elec-
trodes would penetrate the device at not too small voltages. Debye screening length in in-
trinsic silicon scales with excess carrier concentration as λD =

√
ε0εSikT/(2(ni + ∆n) q2

e ) ∼
(0.1µm)

√
1015 cm−3/∆n, where ε0 is vacuum permittivity, εSi = 11.7 is the dielectric con-

stant of Si, kT = 26 meV at room temperature, and ni is the intrinsic concentration. Hence,
the Debye length becomes comparable with w at ∆n of the order of 1013 cm−3, which
corresponds to a voltage of about V ∼ 0.4 V (see Equation (9) below), which is typical
in device operation. Fortunately, in the maximal-power regime, the excess concentration
∆n ∼ 1015 cm−3, implying that for w ∼ 1− 2µm Equations (3) and (4) should be reason-
ably accurate, as w � λD. This would necessitate a replacement of our description in
terms of the EHP concentration with the one that treats electrons and holes separately.
Furthermore, an electric field inside the battery may potentially break the symmetry of the
EHP generation by the beta-electrons, and therefore the battery itself would have to be
non-symmetrical. This means that instead of a single geometric parameter w, we would
have to optimize the battery performance with respect to the thicknesses of two slabs, one
to the right and the other to the left of the T/Si layer. Both complications are avoided by
the use of the interdigitated geometry in Figure 1.

3. Thin Base Approximation

Let us focus for now on the simpler case when the recombination rate is a linear func-
tion of excess concentration, U(∆n) = ∆n/τ, with the recombination time τ independent
of ∆n. Then, the solution of the reaction–diffusion Equation (3) reads

∆n(x) = C cosh
x
L
+

√
τ

D

∫ w

−w
dx′ G(x′) e−|x−x′ |/L , (5)

where the constant C is to be found from the second boundary condition (4), and where
L =
√

Dτ is the diffusion length, which can be very long (millimeters) in a pure, defect-free
silicon sample. Since the generation function G(x) goes very quickly to zero at distances x
of the order of only a few microns (see Section 4.1 below), it is sensible to take the relevant
half-thickness w to be in the micrometer range, meaning that the condition w � L is
fulfilled to very high accuracy. For this reason, we can set in (5) cosh(x/L) and e−|x−x′ |/L

to 1, resulting in the thin-base approximation

∆n(x) = ∆n = const . (6)

This approximation was originally introduced to analyze the limit efficiency of solar
cells [22], whose typical thickness of about 100µm greatly exceeds the beta-cell thick-
ness 2w. Even in the “thick” solar cells, the accuracy of the thin-base approximation against
the full solution of the reaction–diffusion Equation (3) has been confirmed, see [24].

While the condition w� L is a mathematical reason to expect that the excess carrier
profile in the beta-cell is uniform, there is also a physical reason for this. It has to do
with photon recycling. Namely, suppose that ∆n(x) is non-uniform; then, photons will be
produced in radiative recombination predominantly in the region of high and reabsorbed
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in the region of low excess carrier concentration, resulting in an overall leveling of the
concentration profile [25].

Integrating the reaction–diffusion Equation (3) from −w to w and using the boundary
condition (4) and the constancy of ∆n(x), we obtain the net current density as the difference
between the beta-generated and recombination currents,

J = Jβ − Jrec(V) , Jrec(V) = 2wqeU(∆n(V)) , (7)

the first main equation from which the J − V curve can be obtained. Here, the beta-
generated current density is given by

Jβ = qe

∫ w

−w
dx G(x) = qeSANβ(w) , (8)

where qe is the elementary charge, SA is the activity per unit surface area of the beta-
source, and Nβ is the mean number of EHPs produced by a single beta-electron in the
semiconductor. It is a monotonically increasing function, which saturates at w of the order
of a few micrometers.

The second equation gives the excess concentration based on the condition
np = n2

i eqeV/kT , where ni is the intrinsic concentration. Since in an intrinsic sample
the concentrations of electrons and holes are n = p = ni + ∆n, we have

∆n = ni(∆n) (eqeV/(2kT) − 1) . (9)

The intrinsic concentration ni weakly depends on ∆n due to the bandgap narrowing
effect [30],

ni(∆n) = ni0 e∆Eg(∆n)/(2kT) , (10)

where ∆Eg(∆n) is the bandgap narrowing size. Intrinsic concentration in i-Si at ∆n = 0
was calculated according to [31] with the temperature-dependent bandgap found in [32].

Once Equations (7) and (9) are solved numerically, the efficiency of a beta-battery is
found as a ratio of the maximal power to the power carried by the betas per unit area,

η =
J(Vm)Vm

SAEβ
, (11)

where Eβ is the average energy of a beta-particle (see (13) below), and the voltage at
maximal power Vm is numerically found from the condition d(J(V)V)/dV|V=Vm = 0. Of
interest are also the short-circuit current density JSC = Jβ, the open-circuit voltage defined
by J(VOC) = 0, and the fill factor of the J −V curve, FF = JmVm/(JSCVOC).

4. Analytical Evaluation of the Betaconversion Parameters
4.1. Generation Function

Up to a normalization constant, kinetic energy probability distribution of beta-electrons
follows from Fermi’s theory of beta decay and is given by [33]

Wβ(E) =
√

E(E + 2mec2) (E + mec2) (Emax − E)2Θ(Emax − E)
2πηS

1− e−2πηS
, (12)

where mec2 = 511 keV is electron rest energy, Θ(x) is Heaviside theta, the maximal energy
of beta-electrons corrected with respect to the recoil is Emax = 18.572 keV [33], and the
Sommerfeld parameter is expressed in terms of the fine structure constant α = 1/137.036
and kinetic energy E as ηS = αZ(E + mec2)/

√
E2 + 2Emec2 with Z = 2 being the charge
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number of the daughter nucleus. With these parameters, the average energy of a beta-
electron is found numerically to be

Eβ =

∫ Emax
0 dE E Wβ(E)∫ Emax

0 dE Wβ(E)
= 5.6898 . . . keV . (13)

Rather than using the phenomenological relation (2), we took the energy EEHP =
3.67 eV to generate a single electron–hole pair in silicon directly from the plot in Figure 16
of [10]. In principle, this value should slightly decrease with the excess concentration
∆n, because it scales linearly with the bandgap, which becomes narrower with increasing
∆n [30]. But since ∆n does not exceed 1015 cm−3, the size of the bandgap narrowing is not
bigger than 1.3 meV. With A ≈ 1.54 [10], this translates into a decrease in EEHP by a mere
2 meV. In other words, for a Si-T battery, the effect of bandgap narrowing on the generation
function can be neglected.

Once the energy of a beta-electron drops below a certain threshold value, it becomes
unable to generate the EHPs. Setting the threshold energy to 7 eV, we find the number of
EHPs produced by a beta-electron in an infinitely thick generation region w→ ∞

Nsat = (Eβ − 7 eV)/EEHP = 1548 . (14)

At finite w, the number of EHPs is smaller than this value because of the escape of some
beta-particles. Although the threshold energy of 7 eV was taken somewhat arbitrarily, its
increase by a few tens of eV affects Nsat by less than 1%.

A high-energy beta-particle in the material experiences a stopping force, which de-
pends on energy according to an empirical formula [34]

F(E) = −dE
ds

= 785
ρZ
AE

ln(1.166(kJ + E)/J) . (15)

Here, E is measured in eV, F(E) in eV/Å, the distance s is measured along the velocity of the
beta, Z = 14 and A = 28.085 are atomic charge and mass numbers, and ρ = 2.329 g/cm3 is
the density of Si, for which J = 172 eV, and k = 0.822. This formula becomes inaccurate
at electron energies below 50 eV [34]. Still, we also used it in the simulations in the range
7 eV < E < 50 eV, as the error introduced by this approximation should be quite small.

In the simulations, the main quantity of interest is the single-particle generation
function gβ(x), i.e., the average number of EHPs produced by a single beta per unit
distance. It is directly related to the generation function from (3) by

G(x) = SA gβ(x) . (16)

To compute gβ(x), we slightly modified the procedure explained in [35]. Namely, we
simulated 106 trajectories of beta-particles originating at x = 0. The initial energy of a
beta was sampled from the distribution (12), and the initial angle θ between the particle’s
velocity and the x-axes had an isotropic distribution

f (θ) = sin θ , θ ∈ (0, π/2) . (17)

To simulate a battery consisting of two identical slabs from Figure 1, we applied reflecting
boundary conditions at x = 0 and absorbing boundary conditions at x = w.

As the beta slows down due to the stopping force (15), it generates EHPs; the number
of EHPs produced in a dx-interval is

dgβ(x) = F(E) dx/(EEHP cos θ) . (18)
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From time to time, a beta particle undergoes elastic collisions with the total cross-section
derived by Henoc and Maurice [36] based on Rutherford theory with the incorporation of
screening effect:

σT
R (E) = (5.21 · 10−21 cm2)

Z2

E2
4π

α(1 + α)

(
E + mc2

E + 2mc2

)2

, α = 3.2 · 10−3 Z2/3 , (19)

with E measured in eV, Z = 14, and mc2 = 511 eV. The Mott total cross-section can be
found in Reference [37]. The probability for a beta-electron to undergo an elastic collision
at a distance s from its starting position measured along the beta velocity is governed by

dP(x)
ds

= − P(s)
λ(E(s))

(20)

where the energy of the beta decreases according to (15) and the energy-dependent mean
free path is related to the total cross-section by

λ(E) =
1

natσT(E)
(21)

with the concentration of Si atoms nat = 4.994 · 1028 cm−3.
Suppose that before a collision, a beta-particle was moving in the xy-plane at an

angle θi relative to the positive x-direction, i.e., its direction of motion was specified by a
unit vector

ûi = êx cos θi + êy sin θi . (22)

A collision results in a change of the direction of motion, but not of the energy of the
beta. To find the new direction vector û f , we proceeded in three steps. First, the angle of
propagation was changed by a random value θR found from

R =

(∫ π

0
dθ sin θ

dσ

dΩ

)−1 ∫ θR

0
dθ sin θ

dσ

dΩ
, (23)

where R is a random number uniformly distributed between 0 and 1. For the Rutherford
cross-section, the solution of this equation is particularly simple [37]:

cos θR = 1− 2αR
1 + α− R

(24)

The new direction vector in the first step becomes

û = êx cos(θi + θR) + êz sin(θi + θR) . (25)

In the second step, this vector is rotated around ûi by a random angle φ uniformly
distributed between 0 and 2π. This operation is performed with the help of a rotation
matrix R, whose components can be found in section 9.2 of [38]. Taking advantage of the
fact that û does not have a z-component, the rotation matrix is somewhat simpler than the
general form:

û f = R û ,

R =

cos φ + cos2 θ (1− cos φ) cos θ sin θ (1− cos φ) sin θ sin φ

cos θ sin θ (1− cos φ) cos φ + sin2 φ (1− cos θ) − cos θ sin φ
− sin θ sin φ cos θ sin φ cos φ

 . (26)
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In the third step, we rotate the coordinate axes so as to have the z-component of the
new direction vector û f to be zero. This is achieved by first finding the new angle between
the velocity and the x-axis,

θ f = cos−1 u f x

|u f |
, (27)

and then redefining
û f → êx cos θ f + êy sin θ f .

Both Rutherford (simpler) and Mott (more accurate) scattering cross-section were tried.
For both choices, the single-particle generation function gβ(x) turned out to be the same; it
is shown in Figure 2a for an infinite slab thickness w.
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Figure 2. (a) Single -particle generation function vs. distance from the beta-source. (b) The combi-

nation ln
(

1− Nβ(w)/Nsat

)
vs. cell half-thickness obtained in simulations (circles) and the function

f (w) from (30) (solid line).

It is perhaps somewhat surprising that gβ(x) is so robust with respect to a choice of the
scattering cross-section. We believe that this robustness has to do with the initial isotropic
distribution of the angle θ. This isotropy is not affected by the elastic scattering, no matter
which cross-section one uses. Therefore, also the generation function should depend very
little on this choice.

The largest distance that a beta-particle can travel while still being able to generate
EHPs is

wmax =
∫ Emax

7 eV

dE
F(E)

≈ 4.43µm . (28)

Actually, the generation function goes to zero even at smaller distances, because the initial
direction of motion of a beta is isotropic rather than perpendicular to the yz-plane, and
because a beta undergoes multiple elastic scatterings that make its trajectory deviate from a
straight line. It is seen in Figure 2a that already after 2µm from the surface, the generation
function drops from the original value by three orders of magnitude. From this, we can
conclude that it is sensible to focus on the relatively low values of the element half-thickness
w between 1 and 2µm.

At finite w-values, we found that numerical results for the average number of electron–
hole pairs generated by a single beta can be fitted by a simple expression:

Nβ(w) = Nsat

(
1− e f (w)

)
(29)
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with f (w) decreasing almost linearly with w within the relevant w-range, as found from a
cubic fit of ln

(
1− Nβ(w)/Nsat

)
:

f (w) = − w
w0

+ 0.07417
(

w
w0

)2
− 0.007737

(
w
w0

)3
, w0 = 0.2413µm . (30)

The high accuracy of this fit is evident from Figure 2b. At w > wmax, the number of the
betagenerated EHPs must be exactly equal to Nsat, which implies that f (w > wmax) should
be equal to −∞. But the error of the cubic approximation (30) is negligibly small for all
practical purposes.

4.2. Recombination Rate

Since we are interested in the limit efficiency of a beta-battery, we assume that the only
two recombination channels operative are radiative and Auger recombination, ignoring
the Shockley–Read–Hall and surface recombination mechanisms.

The Auger recombination rate in i-Si is

UA = CA(∆n)(ni + ∆n)3 − CA(0)n3
i , (31)

with the ambipolar Auger coefficient CA ≈ 2.1 · 10−30 cm6/s, as reported in [39,40]. Due
to the Debye screening by free carriers, the coefficient CA depends on the concentration
of electrons and holes via a correction factor of the order of (∆n/Nre f )

2 with the reference
concentration Nre f = 4 · 1017 cm−3 [40]. Although we included this factor in our numerical
calculations, it affects the value of UA by not more than 0.01%, because the highest excess
carrier concentration in the open-circuit regime is of the order of 1015 cm−3.

The surfaces of the battery are assumed to be covered with a perfectly reflecting
dielectric coating, which prevents the photons produced in radiative recombination events
from leaving the cell. Those photons may be either reabsorbed by free charge carriers or by
valence electrons, which become promoted into the conduction band. The former process is
described by the free carrier absorption coefficient αFCA, given by an empirical expression
from [41]. The radiative recombination rate in an intrinsic semiconductor is, then, given by

Ur = Br,e f f (∆n) (ni(∆n) + ∆n)2 − Br,e f f (0)n2
i0 ,

Br,e f f (∆n) =
∫ ∞

0
dE αBB(E)

n2
r (E)
c2

8πE2

h3n2
i (∆n)

e−E/kT αFCA(E, ∆n)
αBB(E) + αFCA(E, ∆n)

. (32)

Here, ni(∆n) is given by (10), αBB(E) is the band-to-band absorption coefficient, nr(E) is
the refractive index of silicon [42], and h is Planck’s constant. The term that multiplies
the ratio αFCA/(αBB + αFCA) in the effective recombination coefficient Br,e f f follows from
Würfel’s generalization of Planck’s radiation law [43], while this ratio signifies the fraction
of photons that are lost due to reabsorption by free carriers.

4.3. Analytical Approximation of the Current-Voltage Curve
4.3.1. Recombination Current

In most radiative recombination events, photons with energy E ≈ Eg + kT are pro-
duced. At such energies, the band-to-band absorption coefficient αBB is of the order of
1 cm−1 [42]. On the other hand, the free carrier absorption coefficient can be estimated as
αFCA ≈ (10−17 cm2)(ni + ∆n), as follows from Equation (7) of [41]. Hence, the ratio of the
absorption coefficients from (32) can be estimated as

αFCA
αBB + αFCA

≈ (10−17 cm3)(ni + ∆n) . (33)

Even at the highest relevant ∆n of the order of 1015 cm−3, this ratio is only about 10−2. Tak-
ing it outside of the integral in (32) and performing integration numerically at T = 298.15 K,
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we find that the radiative recombination rate depends on excess carrier concentration in a
way similar to Auger recombination rate, namely,

Ur ≈ (5 · 10−32 cm6)∆n3 (34)

at ∆n � ni. Since the prefactor of 5 · 10−32 cm6 is about the same as the discrepancy
between the values of CA reported in [39,40], viz. 2.11 · 10−30 and 2.06 · 10−30 cm6, radiative
recombination in a beta-cell from Figure 1 proceeds much slower than Auger recombination.

With this in mind, we approximate the recombination current in (7) with a simpler
expression that involves the Auger channel only:

J̃rec(V) = 2wqeCA0 n3
i0(e

qeV/(2kT) − 1)3 . (35)

Here, the ∆n-dependence of Auger recombination constant and intrinsic concentration are
neglected; they are both taken at V = 0 and ∆n = 0. We further neglected the terms related
to the intrinsic concentration in the Auger recombination rate (31).

To compensate for the effects that are not included in J̃rec, we introduce a fixed param-
eter K ≈ 1 in the expression for the current density, which now becomes

J(V) = Jβ − KJ̃rec(V) . (36)

The constant K is chosen so as to correctly reproduce the J−V curve in the vicinity of some
reference voltage Vr, which is sensible to choose close to the open-circuit value, i.e., from
the condition J̃rec(Vr) = Jβ. This gives

Vr =
2kT
qe

ln

( SANβ

2wCA0n3
i0

)1/3

+ 1

 , K =
Jrec(Vr)

J̃rec(Vr)
. (37)

For the parameter range considered here (w between 0.1 and 100µm and CA between 0.1
and 100 mCi), the constant K varied by only a few percent around the value K = 1.13.

Figure 3 demonstrates the high accuracy of the approximate J −V relation (36) with
K = 1.13 (solid line) as compared to the numerical results (symbols). Even taking the
simplest value K = 1 (dashed lines), the discrepancy between analytical and numerical
results is not too poor, as the approximate analytical curve turns out to be horizontally
shifted relative to the numerical counterpart by only about 2 mV. With K = 1, the accuracy
of all relevant betaconversion parameters would be about 0.5%, whereas with K = 1.13,
the betaconversion parameters discussed below differ from the numerically precise values
only in the fourth or fifth significant figure.
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Figure 3. Current–voltage curve of an ideal Si/T beta-battery with the source activity SA =

5 mCi/cm2 at T = 25 ◦C for three values of cell half-thickness, as indicated in the legend. Sym-
bols: numerical solution of Equations (7) and (9) with the net recombination rate given by the sum of
Auger (31) and radiative (32) contributions. Solid lines: approximate analytical expression (36) with
K = 1.13. Dashed lines: (36) with K = 1.
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4.3.2. Betaconversion Parameters

By setting the current (36) to zero, we obtain the open-circuit voltage

VOC =
2kT
qe

ln
(
(X/K)1/3 + 1

)
, (38)

where we used the expression (8) for Jβ and introduced the variable

X =
SANβ(w)

2wCA0n3
i0

. (39)

Focusing on the practically relevant case of the maximal-power voltage notably
exceeding the thermal voltage, Vm � kT/qe, we neglect 1 in the brackets of (35) and
find the voltage at maximal power by setting the derivative of P(V) = J(V)V = JβV −
2KwqeCA0n3

i0e3qeV/(2kT)V to zero. The result reads

Vm =
2kT
3qe

(
WL

(
e1X/K

)
− 1
)

, (40)

where Lambert’s function is defined by the condition WL(x) eWL(x) = x; an efficient numer-
ical algorithm to compute it is presented in [44].

Substituting (39) into the current density expression and using the definition of WL(x),
we find

Jm = qeSANβ(w)

(
1− 1

WL(e1X/K)

)
. (41)

Finally, the efficiency of a beta-battery is given by

η =
2kTNβ(w)

3Eβ

(
WL
(
e1X/K

)
− 1
)2

WL(e1X/K)
. (42)

An interesting prediction of these formulae is that the voltages VOC and Vm, as well
as the ratio ηEβ/(Nβ(w)kT), do not depend on the source surface activity SA and cell
half-thickness w separately, but rather on their combination (39). This is indeed con-
firmed in Figure 4, which shows the numerical results of Equations (7)–(9), where the
approximation-free recombination rate is given by the sum of Equations (31) and (32)
(symbols), and analytical formulae (38), (40) and (42). The agreement between the two sets
of data is obvious.
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Figure 4. Open-circuit voltage and voltage at maximal power normalized to thermal voltage, kT/qe,
and betaconversion efficiency normalized to the ratio kTNβ(w)/Eβ, as functions of the parameter
X from (39). Solid lines: analytical formulae (38), (40) and (42) with K = 1.13; symbols: numerical
results obtained for surface activity values SA = 0.1, 1, 10, and 100 mCi/cm2. When generating the
numerical data, the half-thickness w of the cell varied between 0.1 and 500µm.
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4.4. Optimal Thickness and Maximal Efficiency

Shown in Figure 5a is the dependence of the betaconversion efficiency on cell half-
thickness at three different values of surface activity SA = 0.1, 1, and 10 mCi/cm2. It is seen
that these curves are non-monotonic and develop a maximum at around wopt = 1.5µm. The
origin of this non-monotonicity is easy to understand. Initially, increasing the half-thickness
results in a larger number of beta-electrons that are able to deposit all of their energy in
the cell rather than fly out of the cell. As the thickness increases above the value (28), the
total number of EHPs produced per unit time does not grow with w anymore; however, the
excess concentration of the EHPs decreases with w, resulting in a reduction of efficiency.
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Figure 5. (a) Betaconversion efficiency of an ideal cell vs. cell half-thickness for three values of
the surface activity of beta-source. Symbols: numerical results; lines: analytical approximation.
(b) Optimal half-thickness that maximizes cell efficiency vs. surface activity of the beta-source,
obtained using (44). (c) Maximal cell efficiency vs. surface activity of the beta source.

Setting the derivative of η(w) with respect to w to zero, we obtain after some algebra an
equation that determines the optimal half-thickness, at which the efficiency is maximized:

WL

(
e1

2KCA0n3
i0

Nβ(wopt)

wopt
SA

)
= g(wopt) , g(w) =

1− e− f (w)

f ′(w)w
. (43)

An analytical solution of this transcendental equation for wopt is not attempted here. Instead,
we use the definition of Lambert’s W-function to express surface activity of the beta source
at which a particular optimal thickness wopt is realized:

SA =
2KCA0n3

i0wopt

e1Nβ(wopt)
g(wopt) eg(wopt) . (44)

One can use wopt as a parameter, whose substitution into (44) gives the corresponding
surface activity. Substitution of the so-obtained SA and wopt into (42) gives the maximal
efficiency ηmax. The results of these calculations are shown in Figure 5b. It is seen that the
optimal thickness wopt varies extremely weakly with the surface activity, changing by less
than 5% as SA changes by three orders of magnitude.

The maximal efficiency increases logarithmically with SA. Fitting the curve from
Figure 5b gives

η = 13.1% + (0.449%) ln
SA

1 mCi/cm2 . (45)

In fact, to obtain the ηmax vs. SA dependence, one may take a constant value of wopt around
1.5µm; the resulting values of ηmax will change at most in the fourth significant figure.

5. Conclusions

Silicon is an interesting candidate material for betavoltaic applications not only due
to its wide availability, but also due to its long lifetimes of excess charge carriers that
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can be achieved by producing pure, defect-free samples. In this work, we discussed the
performance of a silicon-based beta-cell coupled to a tritium source of beta particles. In
this design, the tritiated silicon layer is sandwiched between two intrinsic Si slabs of equal
thickness, and interdigitated p- and n-type regions are produced on the two surfaces of the
battery for current collection. The choice of i-Si as the base region material is motivated by
its lower recombination rate as compared to the p- or n-doped Si, and the interdigitated
electrode geometry is preferred in order to eliminate the electric field that would exist in
the battery if simple planar p- and n-electrodes were deposited on its opposite sides.

To calculate the limit betaconversion efficiency, we neglected the effect of the parasitic
shunt and series resistance and the extrinsic recombination mechanisms. Out of the only
two remaining recombination channels are radiative and Auger recombination, the former
is effectively turned off by coating the device surface with a reflective layer, which prevents
the photons from escaping the cell. Those photons are reabsorbed by the semiconductor,
typically with the generation of a new electron–hole pair; only a small part of photons is
lost due to the free charge carrier absorption.

The advantage of the thin-base approximation used in this work lies in the fact that
it does not rely on a solution of a differential equation for the position-dependent excess
concentration profile, which is assumed to be uniform. Because of the small size of a
beta-battery and due to the effect of photon reabsorption, the thin-base approximation
is an adequate tool to analyze betavoltaic power sources. In fact, we expect that it can
also be used to analyze the efficiency of the beta-batteries based on other semiconductor
materials with a beta source in the presence of the extrinsic Shockley–Read–Hall, surface,
and space–charge region recombination mechanisms. When only intrinsic (radiative and
Auger) recombination is operative, this analysis is greatly simplified by the fact that
the radiative recombination rate in the presence of photon recycling scales with excess
concentration in the same way as the Auger recombination rate, allowing one to combine
the two contributions to the recombination current into a single term and making it possible
to develop an accurate analytical approximation scheme.

The efficiency of this beta-battery depends non-monotonically on the cell thickness
and develops a maximum at the optimal thickness 2wopt = 3µm, practically independent
of the surface activity of the beta-source. The maximal efficiency of the cell, on the other
hand, increases logarithmically with source activity from about 12.1% to 14.1% as activity
is raised from 0.1 to 10 mCi/cm2.

This has the following implication with respect to a beta-cell performance. As the
beta-source becomes depleted over the years, its activity SA decreases exponentially. Si-
multaneously, the efficiency of the cell η ∝ ln SA will be decreasing linearly in time, and
hence the output power of the cell, Pout ∝ SA η(SA), is expected to decrease faster than
exponentially.
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