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Abstract: In this study, we present the energy absorption capabilities achieved through the application
of hybrid lattice structures, emphasizing their potential across various industrial sectors. Utilizing
Ti-6Al-4V and powder bed fusion (PBF) techniques, we fabricated distinct octet truss, diamond, and
diagonal lattice structures, tailoring each to specific densities such as 10, 30, and 50%. Furthermore,
through the innovative layering of diverse lattice types, we introduced hybrid lattice structures
that effectively overcome the inherent energy absorption limitations of single-lattice structures. As
a result, we conducted a comprehensive comparison between single-lattice structures and hybrid
lattice structures of equal density, unequivocally showcasing the latter’s superior energy absorption
performance in terms of compression. The single-lattice structure, OT, showed an energy absorption
of 42.6 J/m3, while the reinforced hybrid lattice structure, OT-DM, represented an energy absorption
of 77.8 J/m3. These findings demonstrate the significant potential of hybrid lattice structures, par-
ticularly in energy-intensive domains such as shock absorption structures. By adeptly integrating
various lattice architectures and leveraging their collective energy dissipation properties, hybrid
lattice structures offer a promising avenue for addressing energy absorption challenges across diverse
industrial applications.

Keywords: hybrid lattice structures; energy absorption; additive manufacturing (AM); powder bed
fusion (PBF)

1. Introduction

In the automobile, ship, and aerospace industries, materials are required to be
lightweight and have high mechanical properties because of fuel efficiency and the safety
of passengers [1–4]. To address these requirements of high mechanical properties as well
as lightweight, lattice structures have been used. Lattice structures have various charac-
teristics due to their porous geometry compared to solid structures in terms of specific
strength and energy absorption [5–7]. According to Maxwell’s stability criterion, lattice
structures were classified into two types: stretch- and bending-dominant structures. Gen-
erally, the stretching-dominated structures represent higher strength and stiffness than
bending-dominated structures. Bending-dominated structures are statically unstable and
with high compliance [8–10].

In several studies, the effects of single-lattice structures on PBF parts were investigated
with respect to mechanical strength and lightweight [11–13]. Based on characteristics that
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resist certain forces of lattice structures, a model with high strength and lightweight was
devised [14]. Additionally, a shift block support for the turbine blade of a hovercraft was
additive-manufactured (AMed) using lattice structures to reduce its weight in equivalent
mechanical performance compared to solid parts [4]. In addition, lightweight injection
molding was designed using lattice structures. Researchers fabricated the lightweight
injection mold with a reduced weight of up to 79% using lattice structures, both stretch-
and bending-dominant, and succeeded even in the injection molding test [5]. Automobile
components also were optimally designed using lattice structures for AM while maintaining
their original mechanical properties. Lightening the weight of automobile components
it leads to positive effects in terms of fuel efficiency improvement [15,16]. In aerospace,
in 2015, lattice structures were used to reduce the weight of satellites. The weight of the
commutations satellite’s bracket was lowered by up to 35% compared to the previous
bracket through lattice structures [17]. Furthermore, in the case of hybrid lattices with a
combination of single-lattice structures, hybrid lattices were fabricated by inserting the unit
cell of the lattice into the main single-lattice structure [18]. Another hybrid lattice structure
was composed of a combination of two different single-lattice structures together in one unit
cell [19,20]. There is also a study that implemented hybrid lattice structures by arranging
the same single-lattice structure regularly with different densities [21]. When single-lattice
structures with two different characteristics were mixed, the mechanical properties of all
the hybrid lattice structures were improved.

Despite the increasing interest and application of lattice structures, several challenges
remain. Previous research has often focused on the properties and benefits of individual
lattice structures, but comprehensive investigations into their limitations, especially in real-
world applications, are limited. There has been an increasing demand for structures that
can combine the benefits of multiple lattice types, especially in high-impact environments
where energy absorption is crucial. Moreover, while many studies have emphasized the
advantages of single-lattice structures, there is a gap in understanding how combining
different structures can potentially overcome inherent limitations or provide synergistic
benefits. Thus, the fundamental studies that have structurally increased mechanical prop-
erties using a stacked lattice-by-lattice structure without collapse at the interface between
different lattices are not enough.

Here, we structurally enhanced energy absorption using hybrid lattice structures
for application in various industries. Under optimum laser conditions, the octet-truss,
diamond, and diagonal lattice structures were AMed as single-lattice structures according
to density. Furthermore, hybrid lattice structures were designed to break through the
inherent limitations in terms of the energy absorption of single-lattice structures by stacking
the lattice by lattice. Our study clearly demonstrated that hybrid lattice structures were
superior to the single-lattice ones in terms of energy absorption despite having the same
density. Thus, hybrid lattice structures can be used in crashworthy structures that require a
lot of energy absorption.

2. Experimental Section
2.1. PBF-Based 3D-Printing Processes

The lattice structures were fabricated using a commercially available PBF system (DMP
flex 350, 3D Systems, Rock Hill, SC, USA) and Ti-6A-4V (LaserForm Ti Gr23, 3D Systems,
USA) powder, which had a mean particle size of 33 µm. All processes were carried out in
an argon atmosphere within an oxygen concentration of 3 ppm to prevent the oxidation
of Ti-6Al-4V. The laser power, scan speed, layer thickness, and hatching distance were
determined, according to our previous research’s parameters, to be 125 W, 2800 mm/s,
30 µm, and 110 µm, respectively [5]. The scan strategy was set as a 10 × 10 mm2 chessboard
pattern. The interlayer rotation angle was 67◦.
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2.2. Design for Lattice Structures

The lattice structures used were octet-truss (OT), diamond (DM), and diagonal (DG),
as shown in Figure 1a. OT was chosen as a stretch-dominant structure. The OT has
more struts in its unit cell than any other lattice structure. DM was chosen as a bending-
dominant structure. Since the DM has a small number of struts, the thickness of the struts
increased significantly when increasing the density, compared to other lattice structures.
DG corresponds to bending-dominant structures theoretically according to Maxwell’s
stability criterion. DG was chosen because it has z-axis struts that resist compression. All
single-lattice structures consisted of OT, DM, and DG according to densities of 10, 30, and
50%, as shown Figure 1b. In particular, the internal space began to become clogged when
the density reached 50% in the case of OT, so 50% was set as the maximum density [5]. The
hybrid lattice structures were designed by mixing the OT, DM, and DG with a density of
30%, as shown in Figure 1c. Because OT is structurally stable with many struts in a unit
cell, OT was placed at the bottom in the hybrid lattice structures for stable deposition. As
shown in Figure 1a, OT has 5 nodes, such as the vertex and center in the upper surface.
It is shown that these nodes can support the center node of DM and the vertex nodes of
DG. All lattice structures were designed using 3DXpert 16 (3D Systems, USA) software and
consisted of 1 × 1 × 1 mm3 unit cells in the compression specimens.
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2.3. Compression Tests

The compression specimens were fabricated according to ISO 13314: Mechanical
testing of metals—Ductility testing—Compression test for porous and cellular metals. The
compression test was conducted at a cross-head speed of 2 mm/min using a universal
testing machine (AGS-X 300kN, Shimadzu, Kyoto, Japan). All of the compression tests
were performed using three specimens without post-processing. The compression strength
was calculated by dividing the cross-section (12.7 × 12.7 mm2) of the specimen by the force
displayed by the load cell of the universal testing machine. The value of energy absorption
under the stress–strain curve becomes Equation (1):

W =
∫ εm

0
σdε (1)

where ε, εm, and σ are strain, up to strain, and stress, respectively [5].

3. Results and Discussions
3.1. Compression Behavior of Single-Lattice Structures

Figure 2 shows the stress–strain curve for the compression test of the single-lattice
structures with various densities (10, 30, and 50%). The yellow dots in the graph indicate
the moment immediately after the start of the compression test, after plastic deformation,
and after the end of the compression test, respectively. The specimen at the moment of the
yellow dot is shown below the graph. The compression behavior of the lattice structures
can be expressed as one of three: (i) the onset of plasticity, (ii) plateau stress, and (iii)
densification [11,22].
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Figure 2. Stress–strain curves of lattice structures for OT with a density of (a) 10%, (b) 30%, and (c)
50% in compression test. (i: region before onset of plasticity point, ii: region of plateau stress, and
iii: densification).

Figure 2 shows the stress–strain curves of OT according to density. The stress–strain
curves of OT for the 10, 30 and 50% densities represent the stress drop after the onset of
plasticity points of approximately 45, 237, and 331 MPa, respectively. In general, the OT,
stretch-dominant structures, show oscillation during plastic deformation in compression
load [23,24]. In this study, the stress shows an oscillation curve at plateau stress because it
corresponds to the partial fracture of the struts. The densification region is not noticeable
in 10 or 30% density OT, while it is significant in the 50% density OT.

The stress–strain curves of the 10, 30, and 50% density DM show points of onset of
plasticity at approximately 64, 138, and 257 MPa, respectively, as shown in Figure 3. The
DM, bending-dominant structures, have significant plateau stress keeping the onset of
plasticity-level stress without stress drop like OT [25,26]. The 10% density DM is brittle
fracture after plateau stress, the 30 and 50% DMs show increasing stress after plateau stress
as densification.
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In the stress–strain curves of DG, as shown in Figure 4, the graphs of the 10 and 30%
density DM show the onset of plasticity as the highest stress at approximately 133 and 244
MPa, respectively. In addition, the onset of plasticity of 10 and 30% appear blunt like DM,
not sharp like OT. Furthermore, the plateau stress regions show short and insignificant
behavior because the z-direction struts of the DG lead to early brittle failure during the
compression test.
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iii: densification).

All lattice structures with a 50% density showed the phenomenon of plateau stress,
and densification appeared simultaneously. Furthermore, they represent a strain shorter
than the 30% density samples, except DG. In other words, because the density was relatively
high, the structures were packed under the compression load, which leads to early brittle
fracture. DG with a 50% density is ambiguous at the starting point of the onset of plasticity
and has a behavior similar to the compression behavior of the solid structure. The value
for ultimate compression strength (UCS) and energy absorption of all lattices is shown in
Figure 5.
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3.2. Compression Behavior of Hybrid Lattice Structures

As mentioned in Section 3.1, OT with a 10% density easily collapsed with a low
UCS of 45 MPa and a low strain of 0.07. In addition, all lattice structures with a 50%
density showed stress–strain behavior similar to that of a solid structure after the onset of
plasticity. Lattice structures with a 30% density represented stress–strain curve behavior
similar to that of lattice structures in terms of the onset of plasticity and plateau stress.
In addition, lattice structures with a density of 30% have a low standard deviation in
terms of UCS and the energy absorption between them. In the case of 30%, UCS and
energy absorption showed standard deviations of 37.9 MPa and 3.9 J/mm3, respectively
(standard deviations for UCS/energy absorption of 10% and 50%: 46.1 MPa/3.2 J/mm3

and 53.3 MPa/19.4 J/mm3). Accordingly, the density of the hybrid lattice structures
was selected for the single-lattice structures with a 30% density to show the compressive
behavior of lattice structures. Figure 3 represents an AMed hybrid structure and the stress–
strain curves for the compression test of the hybrid lattice structures. In the 30% density
single-lattice structure, the DG had the best UCS, while the DM had the weakest UCS.
Accordingly, from the photograph of the specimen in the stress–strain curve, DM collapsed
before OT, as shown in Figure 6a, and OT collapsed before DG, as shown in Figure 6b. The
compression behavior of the hybrid lattice structures showed the single-lattice structures’
compression behavior in the order of the fracture of the single lattices composing the hybrid
lattice structures. Thus, since the compression behavior of the two single lattices occurred
sequentially, it showed a superior energy absorption [18].
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3.3. Compression Behavior of Hybrid Lattice Structure with a Reinforcement

The stress–strain curves of the hybrid lattice structure with the added reinforcement
exhibited behavior similar to that of the previous configurations. In the OT-DM hybrid
lattice structure, preferential yielding of DM occurred before OT, as observed in the previous
tests. Similarly, in the OT-DG hybrid lattice structure, OT yielded before DG, as shown
in Figure 7. However, the key aspect of interest in this section is the energy absorption of
the different configurations. The energy absorption values of the single-lattice structures,
hybrid lattice structures, and hybrid lattice structures with added reinforcement were
compared.
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The results showed that the hybrid lattice structures with reinforcement displayed
the highest energy absorption among the tested configurations, as shown in Figure 8. The
solid center-plate reinforcement contributed to an additional increase in energy absorption,
thereby further enhancing the mechanical properties of the hybrid lattice structures. These
findings highlight the potential of controlling and manipulating the energy absorption
properties of lattice structures through the addition of reinforcements. By modifying
the geometry and characteristics of the reinforcement, it becomes possible to tailor the
mechanical properties and energy absorption capacity of hybrid lattice structures to specific
application requirements.

Overall, Section 3.3 emphasizes the significance of the reinforcement approach in
enhancing the energy absorption capabilities of hybrid lattice structures. The results suggest
that this approach can be effectively utilized to achieve desired mechanical properties and
optimize energy absorption in lightweight structures for various industrial applications.
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4. Conclusions

In this study, the authors investigated the compression behavior and energy absorption
of single-lattice structures and hybrid lattice structures fabricated using AM with Ti-6Al-4V.
The lattice structures were designed based on OT, DM, and DG. The main findings and
conclusions of the study are as follows:

1. Hybrid lattice structures, which combined different lattice types (OT, DM, and DG),
demonstrated higher energy absorption than single-lattice structures of the same den-
sity. This indicates that the hybrid configuration overcomes the inherent limitations
of single-lattice structures in terms of energy absorption.

2. Single-lattice structures exhibited distinct compression behaviors depending on their
dominant structural characteristics. OT structures, representing stretch-dominant
structures, showed oscillation during plastic deformation. DM structures, represent-
ing bending-dominant structures, exhibited plateau stress without a stress drop, while
DG structures showed the blunt onset of plasticity and early brittle failure due to
z-direction struts.

3. Among single-lattice structures, DG with a 50% density displayed behavior similar
to that of solid structures after the onset of plasticity, indicating early brittle fracture.
On the other hand, OT with a 30% density demonstrated the best UCS and energy
absorption, while DM with a 30% density exhibited the weakest UCS among the 30%
density structures.

4. Hybrid lattice structures composed of OT-DM and OT-DG combinations exhibited
the sequential collapse of the single lattices, leading to superior energy absorption
compared to single-lattice structures. This indicates that hybrid configurations can
enhance energy absorption capability by utilizing the specific properties of individual
lattice types.

5. To further enhance energy absorption, a solid center plate was added as reinforcement
between the lattice structures. The enhanced hybrid lattice structures demonstrated
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the highest energy absorption among the tested configurations, highlighting the po-
tential to control energy absorption by modifying the geometry of the reinforcement.

Based on these findings, it can be concluded that hybrid lattice structures fabricated
using AM techniques have the potential to serve as lightweight and energy-absorbing
structures in various industries, including the automotive, aerospace, and shipbuilding
industries. The ability to control and optimize energy absorption through hybrid configura-
tions and reinforcement opens up new possibilities for crashworthy structures that require
high energy absorption capabilities.
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