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Abstract: We present the mean time to failure (MTTF) of on-wafer AlGaN/GaN HEMTs under
two distinct electric field stress conditions. The channel temperature (Tch) of the devices exhibits
variability contingent upon the stress voltage and power dissipation, thereby influencing the long-
term reliability of the devices. The accuracy of the channel temperature assumes a pivotal role in
MTTF determination, a parameter measured and simulated through TCAD Silvaco device simulation.
Under low electric field stress, a gradual degradation of IDSS is noted, accompanied by a negative
shift in threshold voltage (∆VT) and a substantial increase in gate leakage current (IG). Conversely,
the high electric field stress condition induces a sudden decrease in IDSS without any observed shift
in threshold voltage. For the low and high electric field conditions, MTTF values of 360 h and 160 h,
respectively, were determined for on-wafer AlGaN/GaN HEMTs.

Keywords: AlGaN/GaN HEMTs; electric field; stress voltage; mean time to failure; channel temperature

1. Introduction

The AlGaN/GaN transistors exhibit favorable attributes for high-frequency power ap-
plications owing to their substantial band gap of 3.4 eV, exceptional breakdown field around
3.5 MV/cm, low on-state resistance, and effective heat dissipation capabilities [1–5]. In the
absence of doping, the AlGaN/GaN heterostructure demonstrates a significant conduction
band discontinuity. This, when coupled with the influences of piezoelectric polarization
and spontaneous polarization, gives rise to the creation of a high-density two-dimensional
electron gas (2-DEG) [6–8]. These features make AlGaN/GaN HEMTs uniquely suited
for demanding applications that require high-power handling, high-frequency opera-
tion, and robust performance even in extreme conditions [9–14]. These advanced devices
have emerged as key components in the field of electronics and power electronics, of-
fering a wide range of benefits that make them indispensable in numerous cutting-edge
applications [15–18]. AlGaN/GaN HEMTs have revolutionized power electronics. Their
ability to handle high voltages and currents efficiently, along with their high-speed switch-
ing capabilities, has made them ideal for applications like power amplifiers, DC–DC
converters, and power supplies [19–22]. They enable the development of compact and
energy-efficient power electronic systems [23]. In the realm of radio frequency (RF) and
microwave electronics, AlGaN/GaN HEMTs offer exceptional high-frequency performance,
low noise characteristics, and high-power output [24–27]. These transistors are critical
components in radar systems, wireless communication infrastructure, and satellite commu-
nications [28,29].

The wide bandgap confers substantial robustness against diverse manifestations of
electrical overstress, encompassing direct current (DC), electrostatic discharge (ESD), and
radio frequency (RF) stressors [30–33]. Hence, ensuring reliability emerges as a pivotal
concern necessitating meticulous consideration throughout the developmental or material
growth phases [34]. The mean time to failure (MTTF) serves as a critical parameter in
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assessing the longevity of devices within the context of long-term reliability. Subsequently,
the mean time to failure (MTTF) can be extrapolated from the heightened test temperature to
the standard operational temperature, typically hovering around 150 ◦C for gallium nitride
(GaN) devices [7,35]. In terms of reliability categories, long-term reliability (around 1000 h
according to JEDEC standard) at a three-temperature DC test is most used to determine
device reliability [36]. Conducting measurements across various junction temperatures (at
least three temperatures) facilitates the determination of activation energies (Ea) through
the application of the Arrhenius equation. Long-term high-power 50 V DC stress was
induced on Lg = 0.5 µm devices with an output current of 150 mA/mm (7.5 W/mm) for a
duration of 816 h at channel temperature Tch = 280 ◦C, 300 ◦C, and 330 ◦C [37]. The initial
drop in output drain current was observed at 24 h, and the period of stability was around
100–200 h. Beyond this point, the output current relative to time significantly decreased.
After a comprehensive physical failure analysis, the emergence of crystallographic defects
was ascertained within the entirety of the gate width in the AlGaN layer. This occurrence
can be attributed to the manifestation of the inverse piezoelectric effect [38,39]. However,
the analysis did not yield an estimation of the mean time to failure (MTTF).

The failure mechanism analysis of GaN-based HEMTs involves short-term reliability
studies (<24 h), as conducted by various research groups [30,40]. Notably, hot-electron
degradation has been well established in GaAs-based HEMTs, and similarly, the hot-
electron effect remains a predominant degradation mechanism in GaN HEMTs. The
aforementioned study investigated the hot-electron effect through DC short-term tests
(<150 h) across diverse HEMT structures. The electroluminescence (EL) intensity exhibited
a non-monotonic ‘bell-shaped’ trend when correlated with VGS while maintaining the VDS
constant. Furthermore, a long-term accelerated test was conducted, spanning up to 3000 h,
on a specific device at distinct bias points (VGS = 0 V, VDS = 6 V, (on state); VGS = −9 V,
VDS = 32 V (off state); VGS = −4 V, VDS = 25 V (semi-on state)). Notably, under the semi-on
state condition, a substantial degradation in transconductance (gm) was observed compared
with the other conditions, indicating the presence of the hot-electron effect within the
channel. In spite of a thorough examination of the degradation mechanism, the evaluation
did not result in the computation of the mean time to failure (MTTF).

Numerous additional research groups have undertaken investigations involving three-
temperature DC accelerated Arrhenius test aging, from which activation energies have been
deduced [31,41,42]. High-temperature operating (HTO) tests were conducted by subjecting
the devices to a consistent power dissipation of 6 W/mm. These tests were performed at
varying channel temperatures of 204 ◦C, 232 ◦C, and 260 ◦C, all maintained under the same
voltage condition (VDS = 25 V), over an approximate duration of 3000 h [43]. However, a
comprehensive analysis of activation energy and MTTF was notably absent from the study.

Under a consistent voltage condition of VDS = 30 V, a high-temperature operating life
(HTOL) test was executed for approximately 2000 h. This test encompassed three distinct
channel temperatures: 210 ◦C, 225 ◦C, and 250 ◦C. The outcomes revealed a mean time to
failure (MTTF) of 1.87 × 106 h at a temperature of 200 ◦C, along with activation energy
(Ea) of 1.8 eV [44]. An accurate estimation of the channel temperature is of paramount
importance for determining the precise mean time to failure (MTTF) values in GaN HEMTs.
Employing a constant bias of VDS = 50 V and a power dissipation rate of 4 W/mm, devices
were subjected to stress testing at three distinct base temperatures: Tb = 160 ◦C, 175 ◦C,
and 190 ◦C. However, the resulting MTTF values diverged based on the peak channel
temperature (measured through Raman thermography) and the average temperature
(measured via IR thermography). Specifically, two distinct MTTF values emerged: 109 h
and 106 h [45].

Given the array of proposed stressors, degradation mechanisms, and associated degra-
dation signatures, it is important to distinguish the precise stressors responsible for induc-
ing particular effects. All prior investigations were carried out on packaged GaN HEMT
devices. Limited long-term reliability studies exist on GaN epitaxial wafers or on-wafer
devices [46]. In the current study, we investigated the extraction of activation energy and
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MTTF values under two distinct stress conditions, denoted as high and low electric field
stress in on-wafer devices.

Assessing the reliability of gallium nitride high-electron-mobility transistors (GaN
HEMTs) under various electric field stress conditions is crucial for several reasons: Under-
standing how GaN HEMTs behave under different electric field stress conditions allows for
the optimization of their performance and operational lifetime [47,48]. By identifying stress
conditions that may lead to degradation, manufacturers can develop strategies to mitigate
these effects and design devices that operate more reliably and durably. As we mentioned
previously, GaN HEMTs are often used in high-power, high-frequency, and critical appli-
cations such as aerospace, defense, telecommunications, and power electronics. In these
applications, device failures can have serious consequences, including system downtime,
mission failures, or costly repairs. Assessing reliability helps prevent unexpected failures
and ensures the uninterrupted operation of these systems [49,50]. In some applications,
GaN HEMTs are used in safety-critical systems, where their failure could pose significant
risks to human safety or the environment [51–56]. Reliability assessments under different
stress conditions help identify potential failure modes and enable the implementation of
safety measures and redundancies to mitigate these risks.

The paper is structured as follows: Section 2 presents the materials and methods
employed, Section 3 encompasses the results and subsequent discussion, and Section 4
encapsulates the concluding remarks.

2. Materials and Methods

The epitaxial layer structures were synthesized utilizing a low-pressure metal–organic
chemical vapor deposition (MOCVD) technique on 3-inch sapphire wafers measuring
430 µm in thickness. This epitaxial configuration comprised an Al0.25Ga0.75N barrier layer
(20 nm), a Ga-polarity GaN channel layer (150 nm), and a high-resistance GaN layer (2.4 µm)
positioned atop the sapphire substrate. The schematic and process flow can be observed in
Figure 1a,b, respectively. The device fabrication encompassed mesa isolation etching, the
establishment of source–drain ohmic contacts, and gate patterning. Mesa isolation etching
was executed employing a reactive ion etching (RIE) system. Following this, standard
Ti/Al/Ni/Au (25/160/40/100 nm) metallization was applied to the source and drain
regions to form ohmic contacts. These contacts were then subjected to rapid thermal
annealing (RTA) at 830 ◦C for 30 s within an N2 environment, facilitating the formation of
contacts on the AlGaN/GaN epi-structure. Metallization was achieved through the lift-off
technique. Subsequently, photolithography was employed to pattern the Schottky gate
contacts. The Schottky gate contacts, composed of Ni/Au (20/300 nm), were fabricated
using e-beam evaporation. For surface passivation, an Al2O3 layer (3 nm) was deposited.
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Figure 2 represents output characteristics of GaN HEMTs device of gate length,
Lg = 3 µm, source to drain distance, Lsd = 7 µm and gate width, Wg = 50 µm. The out-
put characteristics show that at very high drain voltage (VDS > 20 V) with an increase of
gate voltage from VGS = −1 V to 2 V leads to a decrease in output drain current (IDSS)
because of self-heating effects [57]. To gain insights into the influence of temperature and
characteristics on stress performance and electrical behavior, we conducted evaluations
using a BA1500 and a 4155C semiconductor parameter analyzer (Keysight Technologies,
Santa Rosa, CA, USA). These instruments were linked to a probe station (MS TECH
5500) (MSTECH, Gyeonggi, Republic of Korea) equipped with a temperature-controlled
(Temptronic TP03000) (inTEST Thermal Solutions GmbH, Deutschland, Germany) heating
plate, ensuring precise temperature control during the I–V (current–voltage) characteristic
measurements. The experimental setup and characterization procedures of the devices are
displayed in Figure 3.
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MTTF Determination Method

Given the fact that many applications demand device lifetimes spanning several years,
accelerated-life tests serve as essential tools for efficiently gathering reliability data within
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a practical timeframe. Among the myriad factors used for accelerating degradation in
electronic devices, temperature emerges as one of the foremost contributors, as substan-
tiated by extensive historical evidence within the semiconductor industry. One common
approach to modeling semiconductor device reliability is to use the Arrhenius model. This
model is based on the assumption that the rate of device failures is exponentially related to
temperature and can be expressed as follows:

λ = Ae(
Ea
kT ) (1)

where λ is the failure rate, A is a material constant, Ea is the activation energy (a measure
of the energy barrier for failure mechanisms), k is the Boltzmann constant, and T is the
absolute temperature (in Kelvin).

This equation outlines the connection between temperature and the rate at which
the device degrades due to a specific failure mechanism. The semiconductor industry
has widely embraced this equation as a guiding principle for overseeing device operation
under diverse temperature conditions. The Arrhenius model allows for the determination
of an acceleration factor (AF), which relates the failure rate at elevated stress conditions
(Tstress) to the failure rate at normal operating conditions (Tnormal):

AF = e(
Ea
kT )(

1
Tnormal

− 1
TStress

)
(2)

One crucial assumption in this methodology is that failure mechanisms are thermally
activated, and the Arrhenius model accurately describes the relationship between tem-
perature and failure rate. The accuracy of MTTF calculations relies on the validity of the
acceleration factor and the assumption that failure mechanisms under accelerated testing
conditions are representative of those under normal operating conditions. The channel
temperature (Tch) of the device plays a vital role in determining the activation energy and
acceleration factor. Temperature variations can significantly influence device reliability,
so precise temperature measurements and control are essential during accelerated testing.
Accurate measurement and control of channel temperature are critical, as temperature
variations directly impact device reliability and influence the activation energy used in the
model. The methodology also assumes that failure mechanisms are thermally activated and
can be accelerated under stress conditions, making the calculated MTTF values relevant to
real-world device performance.

In this study, we delineate two distinct stress zones, each characterized by specific
combinations of high current and low electric field, as well as low current and high
electric field. To comprehensively investigate these zones, we carefully selected specific
bias conditions. Specifically, we opted for two distinct bias zones: one at a low voltage
(VDS = 10 V) and another at a higher voltage (VDS = 25 V), each accompanied by power
dissipation rates of 2 W/mm and 1.25 W/mm, respectively. These selected bias parameters
are concisely summarized in Table 1. Additionally, we conducted experiments at three
varying base temperatures: Tb = 150 ◦C, 170 ◦C, and 190 ◦C. The determination of channel
temperature for each bias condition is discussed in detail within the Results and Discussion
section of this study.

Table 1. Selected test condition for determination of MTTF values.

Sample
Quantity

Stress Voltage,
(VDS (V))

Current,
(IDS (mA/mm))

Power,
(P (W/mm))

5 10 200 2

5 25 50 1.25
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3. Results

Figure 4a,b represent the bias stress condition of low electric field (VDS = 10 V and
VGS = 1.3 V set for 200 mA/mm, power dissipation, P = 2 W/mm) and high electric field
(VDS = 25 V and VGS = −1 V set for 50 mA/mm, power dissipation, P = 1.25 W/mm).
Under the low electric field stress condition, the device operates in a fully on-state condition,
and a conspicuous self-heating effect is evident in the output characteristics (Figure 2).
Consequently, this scenario closely resembles a high-power state condition. Conversely,
during the high electric field stress condition, the device is in an off state, resulting in a
minimal self-heating effect. This aligns with a high-voltage state in the off-state mode.
Figure 5a shows the electric field simulation of stress voltage VDS = 10 V and 25 V. A
negligible electric field variation is evident inside the AlGaN barrier. Figure 5b illustrates
the electric field simulation inside the GaN channel. At the gate edge to the drain side, the
electric field increased 1.2 times higher at VDS = 25 V than at VDS = 10 V. As we mentioned
above, stress condition VDS = 25 V, VGS = −1 V is in the off-state mode. Therefore, a
negative voltage is applied to the gate of the GaN HEMT. This negative voltage creates a
strong electric field that pushes electrons away from the channel region. The high electric
field in the off state extends through the GaN material and depletes the 2DEG, preventing
the flow of electrons in the channel. In the on-state condition (VDS = 10 V, VGS = 1.3 V),
a less negative (or even positive) voltage is applied to the gate of the GaN HEMT. This
reduces the electric field across the device. The reduced electric field allows the 2DEG to
accumulate or populate near the interface between the GaN and AlGaN layers.
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The channel temperatures were computed using the DC or electrical method as out-
lined in Reference [58] and are illustrated in Figure 6 for the device characterized by a
gate length, Lg = 3 µm; source-to-drain distance, Lsd = 7 µm; and gate width, Wg = 50 µm.
Across a range of gate voltages, specifically from VGS = 0 V to 2 V, the disparity in channel
temperature (Tch) remained negligible. For 2 W/mm and 1.25 W/mm power dissipation,
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channel temperature rise (Tch) was approximately 60 ◦C and 38 ◦C, respectively, from the
base plate temperature (Tb).
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TCAD simulations were conducted to verify the channel temperature against the
measurement data, as presented in Figure 7.

In the context of TCAD (technology computer-aided design) simulation, specific mesh
settings were defined for precise modeling. The mesh width was established at 50 microns,
with the primary spacing in the x-plane set at 0.25 µm for the source and drain metal regions.
Similarly, the mesh spacing for the source-to-gate (Lsg) and gate-to-drain (Lgd) regions was
set at 0.25 µm. In the y-plane, the meshing ranged from 0 to 0.50 µm, with a spacing of
0.1 µm. This area covered the “air” region (region number 1). Beyond that, the AlGaN
barrier (region number 2) extended from 0.50 to 0.520 µm, with an aluminum composition
of 0.25% and a mesh spacing of 0.01 µm. The GaN channel (region number 3) spanned
from 0.520 to 0.670 µm, also with a mesh spacing of 0.01 µm. The buffer region (region
number 4) ranged from 0.670 to 3.070 µm and was uniformly doped with carbon (p-type),
maintaining a mesh spacing of 0.01 µm. The AlN nucleation layer (region number 5) was
extremely thin, from 3.070 to 3.018 µm. Finally, the sapphire substrate (region number 6)
was in the range from 3.180 µm to the end of the device. Three electrodes were defined
as source (y·min = 0.40 µm, y·max = 0.65 µm), drain (y·min = 0.40 µm, y·max = 0.65 µm),
and gate (y·min = 0.40 µm, y·max = 0.50 µm). The work functions for these electrodes were
specified as 5.20 eV, 4.0 eV, and 4.0 eV for gate, source, and drain, respectively.

In the simulation process, the high-field mobility was computed utilizing the Farah-
mand modified Caughey–Thomas (FMCT) and GANSAT models, while the low-field
mobility was determined using the Albrecht model. Various physical models, including
Schottky–Read–Hall (SRH), Fermi–Dirac statistics (FLDMOB), CONMOB, Fermi, and KP,
were considered in the model definition. The polarization parameter was set to 0.952.

To account for self-heating effects, a lattice temperature model (lat. temp) was incorpo-
rated for channel temperature estimation in TCAD modeling, where the substrate is stated
as ‘’thermalcontact num = 1”, with the specific region defined as region number 5, external
temperature (ext.temp) set as 300 K, and adjusted thermal resistance (Rth = 1/α).

Additionally, the Selberherr impact ionization model (Impact selb) parameters, namely
an1, an2, bn1, bn2, ap1, ap2, bp1, and bp2, were set to specific values, namely 2.9 × 108,
2.9 × 108, 3.4 × 107, 3.4 × 107, 2.9 × 108, 2.9 × 108, 3.4 × 107, and 3.4 × 107, respectively.
These parameters are essential for accurately modeling the device’s behavior and perfor-
mance in the simulation environment.
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Figure 7. (a) TCAD simulation of the device at VDS = 10 V and (b) VDS = 25 V.

Figure 7a depicts the simulation results for a device under VGS = 0 V and VDS = 10 V
conditions while maintaining a base plate temperature of Tb = 300 K (27 ◦C). Notably, the
highest channel temperature recorded was 327 K (54 ◦C) in close proximity to the gate edge.

Similarly, when the device was biased at VDS = 25 V with the same gate voltage,
VGS = 0 V, the corresponding channel temperature escalated to 360 K (87 ◦C), as illustrated
in Figure 7b. This change corresponds to an approximate temperature increase of 33 ◦C.
Consequently, the temperature variation within the channel is contingent upon the stress
voltage conditions. To determine the changes in channel temperature (Tch) resulting from
fluctuations in drain currents, we conducted experiments to observe the behavior of drain
currents under different temperature conditions. Our findings indicated a consistent
linear decrease in drain current across various temperature settings [29]. Additionally,
we computed power levels (IDS × VDS) from the output characteristics of the device.
Subsequently, we normalized the drain current data relative to different temperatures
and power levels. These normalized values were used to construct graphs in Figure 8
(measurement data), representing the relationship between channel temperatures and
power levels.
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Figure 8. Measurement data (averaged from all three-gate voltages and TCAD simulation) show very
close agreement to determine channel temperature.

Notably, this exhibits a remarkable congruence between the TCAD simulation out-
comes and our measurement data.

3.1. Low Electric Field with High Current Stress Experiment

Figure 9a presents the transfer characteristics (characterization at VDS = 10 V) at
low electric field stress condition at VDS = 10 V and output current level maintained
to IDS = 200 mA/mm for power dissipation of P = 2 W/mm. At a constant base plate
temperature of Tb = 150 ◦C the channel temperature was estimated as Tch = 215 ◦C. After
84 h of stress, IDS and gm dropped around 30 mA/mm and 18 mS/mm, respectively. At the
same time, gate leakage current IG (defined at VGS = −10 V, VDS = 10 V) increased from
3.3 × 10−4 to 0.034 mA/mm, as shown in Figure 8b. The threshold voltage negatively
shifted around ∆VT = −0.16 V. After 175 h of stress, IDS and gm decreased more around
38 mA/mm and 31 mS/mm, respectively, from the initial value (Figure 8). At the same
point, the leakage current increased from the initial value of 3.3 × 10−4 to 0.051 mA/mm,
and the threshold voltage shift was around ∆VT = −0.31 V from the initial value.
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Figure 9. (a) Transfer characteristics after and before stress voltage VDS = 10 V; (b) Schottky charac-
teristics depict gate leakage current after stress at the channel temperature, Tch = 215 ◦C.

Figure 10a shows the output characteristics before and after stress of 84 h and 175 h.
On-resistance (Ron) increased around ∆Ron = 20 Ω·mm at VGS = 0 V after 84 h of stress,
and no change was observed until 175 h. The failure time is defined at IDSS degradation
up to 15%. All the degradation in the other two base plate temperatures (Tb = 170 ◦C and
190 ◦C) are depicted in Table 2.
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Table 2. Lifetime calculation at different base plate temperatures for low electric field stress.

Base Plate
Temperature (Tb) ◦C

Corresponding
Channel Temperature

(Tch) ◦C
Condition Lifetime (h)

(15% Degradation)

150 215 VDS = 10 V, 175

170 230 ID = 200 mA/mm 147

190 240 P = 2 W/mm 120

3.2. High Electric Field with Low Current Stress Experiment

Figure 11a shows the transfer characteristics at high electric field stress VDS = 25 V,
IDS = 50 mA/mm, and the power dissipation set at 1.25 W/mm. After 36 h of stress,
there seemed a slight increase in the output current from 387 mA/mm to 401 mA/mm
at the base plate temperature of Tb = 150 ◦C. The maximum transconductance (gmax) also
showed negligible change. But at the same time, the leakage current IG increased from
9.12 × 10−5 mA/mm to 3.86 mA/mm, whereas no shift was observed in the threshold
voltage (∆VT), as shown in Figure 11b. After 62 h of stress, the output current (IDS) de-
creased around 84 mA/mm from its initial value, and gm also decreased from 337 mS/mm
to 313 mS/mm (almost 24 mS/mm). However, no change was observed in the leakage cur-
rent. Table 3 illustrates the degradation observed at the other two base plate temperatures,
namely Tb = 170 ◦C and 190 ◦C.
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Table 3. Lifetime calculation at different base plate temperatures for high electric field stress.

Base Plate
Temperature (Tb) ◦C

Corresponding
Channel Temperature

(Tch) ◦C
Condition Lifetime (h)

(15% Degradation)

150 188 VDS = 25 V, 62

170 208 ID = 50 mA/mm 36

190 228 P = 1.25 W/mm 15

Figure 12a illustrates the output characteristics prior to and following stress periods
of 36 h and 62 h. After 32 h of stress, IDSS exhibited an increase, but this trend reversed
after 62 h of stress. Notably, the on-state resistance (Ron) demonstrated an increase of
approximately ∆Ron = 60 Ω·mm at VGS = 0 V after 32 h of stress, with no noticeable
alteration observed until the 62 h stress point. The degradation observed at the other two
base plate temperatures, i.e., Tb = 208 ◦C and 228 ◦C, is depicted in Table 3.
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Figure 12. (a) Output characteristics before and after the stress of VDS = 25 V; (b) on-resistance
characteristics before and after stress voltage at VDS = 25 V.

Figure 13a demonstrates the degradation of Idss (which is defined at VDS = 5 V and
VGS = 2 V) in three different channel temperatures calculated for the VDS = 10 V bias
condition. No abrupt degradation behavior of Idss was observed in high temperatures.
However, under high-stress voltage conditions (VDS = 25 V), the device’s stability was
compromised, lasting no more than 15 h at Tch = 228 ◦C, as depicted in Figure 13b.
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Figure 13. (a) IDSS degradation at low electric field stress voltage VDS = 10 V and (b) high electric
stress voltage VDS = 25 V.

Figure 14 illustrates the MTTF values calculated for three different channel temper-
atures under specific voltage stress conditions. To calculate the activation energy, the
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well-known Arrhenius equation of mean time to failure (MTTF) can be expressed as fol-
lows [26]:

MTTF = e−( Ea
KT )

ln[MTTF] = − Ea
kT

(3)

Here, MTTF = mean time to failure; k = Boltzmann constant, 8.6173 × 10−5 eV K−1;
and Ea = activation energy (eV). From the slope of Equation (3), activation energy (Ea) can
be calculated.
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Under the low electric field stress condition (VDS = 10 V), the calculated activation
energy was Ea = 0.32 eV, yielding an extrapolated lifetime MTTF = 360 h. Conversely,
under the high electric field stress condition (VDS = 25 V), the estimated activation energy
was Ea = 0.54 eV, resulting in MTTF = 160 h. The possible degradation or failure at low
electric field and high current stress is related to the diffusion process (Ea = 0.32 eV). This
diffusion can lead to the formation of conductive paths or short circuits within the device,
increasing leakage current and reducing the breakdown voltage. For the high electric field
and low current stress, this degradation is related to the hot-electron effect or electron
trapping (Ea = 0.54 eV) [59]. The obtained mean time to failure (MTTF) values for GaN high-
electron-mobility transistors (HEMTs) are significant indicators of device reliability and can
provide insights into their performance under different electric field stress conditions. In
general, MTTF represents the expected time for a device to fail under specified conditions.
It is a critical parameter for assessing device reliability. We calculated MTTF values for
on-wafer GaN HEMTs under both low (VDS = 10 V) and high (VDS = 25 V) electric field
stress conditions. These values indicate how long, on average, the devices can be expected
to operate before a significant number of them fail. The lower MTTF under high electric
field stress (160 h) suggests that the devices are more prone to failure when subjected to
higher voltage stress, which is consistent with accelerated aging in high-stress conditions.

Our MTTF values were validated only for on-wafer/bare-wafer devices. The MTTF
for on-wafer devices typically represents the reliability of the semiconductor material it-
self, without considering packaging and external factors. On the other hand, the MTTF
for packaged devices takes into account not only the intrinsic reliability of the semicon-
ductor material but also the effects of packaging, assembly, and the device’s operational
environment. Packaged devices typically have a longer MTTF than bare wafers because
their packaging contributes to their robustness and resilience. In summary, comparing the
MTTF of a bare-wafer device with a packaged device is not a straightforward apples-to-
apples comparison.
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4. Conclusions

The presentation of MTTF data for on-wafer devices was contingent upon specific
electric field conditions. The accurate determination of channel temperature assumes a
critical role in the precise estimation of MTTF values. Furthermore, degradation param-
eters exhibited variations based on the specific stress voltage or electric field conditions.
Moreover, when calculating MTTF for on-wafer devices, distinct electric field conditions
yielded different values. These intricate details merit thorough consideration as they hold
the potential to significantly enhance the long-term reliability of AlGaN/GaN HEMTs.
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59. Kuball, M.; Ťapajna, M.; Simms, R.J.T.; Faqir, M.; Mishra, U.K. AlGaN/GaN HEMT device reliability and degradation evolution:
Importance of diffusion processes. Microelectron. Reliab. 2011, 1, 2. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.microrel.2005.07.081
https://doi.org/10.1109/IRPS48203.2023.10118131
https://doi.org/10.1109/WiPDA56483.2022.9955286
https://escies.org/download/webDocumentFile?id=62230
https://doi.org/10.1109/NEMO51452.2022.10038964
https://doi.org/10.1109/TED.2015.2501838
https://doi.org/10.1109/ECCE.2019.8913081
https://doi.org/10.1109/APEC.2019.8722299
https://doi.org/10.1109/TED.2019.2926781
https://doi.org/10.1109/IRPS.2016.7574608
https://doi.org/10.1109/TED.2020.2974508
https://doi.org/10.1109/TED.2019.2933362
https://doi.org/10.23919/EOSESD.2017.8073423
https://doi.org/10.1109/IRPS.2018.8353595
https://doi.org/10.3390/mi13010106
https://doi.org/10.3390/ma15238415
https://doi.org/10.1016/j.microrel.2010.08.014

	Introduction 
	Materials and Methods 
	Results 
	Low Electric Field with High Current Stress Experiment 
	High Electric Field with Low Current Stress Experiment 

	Conclusions 
	References

