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Abstract: The highly-oriented structures in biological tissues play an important role in determining
the functions of the tissues. In order to artificially fabricate oriented nanostructures similar to
biological tissues, it is necessary to understand the oriented mechanism and invent the techniques
for controlling the oriented structure of nanobiomaterials. In this review, the oriented structures in
biological tissues were reviewed and the techniques for producing highly-oriented nanobiomaterials
by imitating the oriented organic/inorganic nanocomposite mechanism of the biological tissues were
summarized. In particular, we introduce a fabrication technology for the highly-oriented structure
of nanobiomaterials on the surface of a rubbed polyimide film that has physicochemical anisotropy
in order to further form the highly-oriented organic/inorganic nanocomposite structures based on
interface interaction. This is an effective technology to fabricate one-directional nanobiomaterials by
a biomimetic process, indicating the potential for wide application in the biomedical field.

Keywords: biomimetic synthesis; biomaterials; orientation; rubbed polyimide; collagen; mesoporous
silica

1. Introduction

Biomimetics is the field of science that aims to imitate the excellent functions and
shapes of biological tissues to synthesize materials and apply them to engineering and
medical fields. For example, as shown in Figure 1a, it is well known that nacre of abalone
is a type of hybrid material consisting of calcium carbonate (CaCO3) and protein matrix [1].
The hierarchical structures in the nacre of abalone consist of a layered plate-like aggregate
of nanocrystalline aragonite which is glued by organic matrix layers. The exoskeleton
of crayfish also has a similar hybrid structure which mainly consists of α-chitin/protein
microfibril frameworks and amorphous CaCO3 [2]. Inspired by these special structures in
biomineralization, the synthetic technology of CaCO3/polymer hybrids has been devel-
oped. In the process of biomimetic synthesis of CaCO3, the polymer films such as chitin [3],
chitosan [4] and poly(vinyl alcohol) [5] were used as insoluble organic templates. The
CaCO3 films were formed on the organic templates with the soluble additives of acidic
polymers such as poly(acrylic acid), poly(aspartic acid), and poly(glutamic acid). Then,
acidic macromolecules caused the aggregation of Ca2+, leading to the nucleation of CaCO3.
As a result, these thin CaCO3 crystalline films were composed of assembled nanocrystals
with radially oriented c -axis.

The frustule of diatom is composed of amorphous porous silica [6–8]. The frustule
consists of areolae which are honeycombs of hexagonal chambers. One side of the areola
is covered by one or two dense porous membranes (cribrum and cribellum) [6]. Based on
this structure, the porous silica nanostructures were widely researched. in particular, meso-
porous silica (MPS) materials were synthesized through a sol–gel process where surfactants
acting as structure-directing agents were used to produce mesoporous structures [9–11].
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The MPS materials also have regularly arranged pores (size range of 2~50 nm) with a
uniform diameter, large specific surface area (up to 1000 m2/g), pore volume (>0.9 cm3/g),
and their surface can be easily functionalized with various functional groups, such as
organic and metal species to enhance their biocompatibility [12], as shown in Figure 1b.

Tooth enamel is a highly mineralized tissue in the body where a very hard, thin,
translucent layer of calcified tissue covers the entire anatomic crown of the tooth [13]. Tooth
enamel is very hard because it is roughly composed of 95~98% inorganic materials mainly
contained in apatite crystals. These apatite crystals contain trace minerals such as lead,
fluoride, strontium and magnesium. The enamel of teeth is covered with organized slender
apatite nanocrystals which are composed of highly-oriented bundles parallel to the c-axis of
the nanocrystals. Artificial enamel-like apatite crystals have been widely applied for dental
applications. For example, as shown in Figure 1c, enamel-like fluorapatite (FA) crystals
were prepared on a poly(vinyl alcohol) (PVA) sheet by immersion in simulated body fluid
containing fluoride ions [14]. The FA crystals obtained with multistep crystal growth on
the PVA sheet were thicker than 100 µm. The high-density nucleation of FA crystals was
caused by the interaction between the relatively high concentration of inorganic ions in
simulated body fluid and abundant OH groups on the PVA sheet surface. Subsequently, the
crystal growth of FA nanorods grew along the c-axis direction in simulated body fluid with
a low concentration of inorganic ions. Using this multistep epitaxial growth method, the
enamel-like crystals composed of c-axis oriented nanorods were obtained with diameters
below 300 nm.

Matrix vesicles play an indispensable role in the process of biomineralization. In detail,
osteoblasts secrete extracellular matrix vesicles equipped with a variety of membrane
transporters and enzymes, which are necessary for the initial nucleation and subsequent
growth of calcium phosphate crystals. Inspired by the biomineralization process of matrix
vesicles, the unique calcium phosphate (CP)/L-α-phosphatidylcholine phospholipid vesicle
(PV) hybrid film was developed [15]. As shown in Figure 1d, the CP hybridized with PV
was formed on poly(styrene) tissue cultures which have transparency, unique structures,
and good stability against sterilization treatments. Moreover, the osteoblasts cultured on
the CP/PV hybrid films exhibited high osteogenic activities [16].
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Figure 1. Illustration of the various biomimetic syntheses and their structures inspired by (a) nacre of
the abalone shell, (b) frustule of diatom, (c) tooth enamel, (d) matrix vesicle shell (Reprinted with
permission from Ref. [16]. ©2018, The Japan Society of Vacuum and Surface Science Publication).

In order to further understand the mechanisms of biomineralization and crystal de-
position, the nucleation and growth of inorganic compounds and biomimetic synthesis
of inorganic/organic composite in gel systems have been researched [17–24]. Several gel



Micromachines 2022, 13, 1358 3 of 22

systems have been explored including gelatin hydrogel, iota-carrageenan gel, starch gel, etc.
For example, a method for biomimetic synthesis of CP crystals through single and double
diffusion techniques in gel systems has been reported [19–24]. The morphology of synthe-
sized CP crystals depends on the pH value and concentration of gel, ion concentration and
diffusion type [20–22]. The nucleation and growth of brushite and octacalcium phosphate
crystals were controlled in an iota-carrageenan gel and showed different morphologies [20].
The brushite crystals changed from highly porous aggregates to plate-shaped forms. The
octacalcium phosphate crystals showed a porous spherical shape different from brushite
growth forms. It is possible to control the CP crystallization effectively using this diffusion
technique. Moreover, the brushite and octacalcium phosphate crystals were precipitated in
the starch gel through the single and double diffusion techniques, resulting in the formation
of plate-shaped and needle-like crystals [21]. The synthesized CP crystals show similar
morphology to brushite kidney stones, which is useful for understanding the mechanism
of kidney stone formation. In addition, the brushite crystals were synthesized through
the single diffusion technique in gelatin hydrogel [22]. The brushite crystals were grown
and showed the different morphologies in the gelatin hydrogel system according to the
additives used such as glutamic acid and urea. The interactions among carboxylic groups
of glutamic acid, amine groups of gelatin, and urea reduced the inclusion of calcium ions
in brushite crystals, suggesting that glutamic acid-rich foods have the potential to inhibit
and control brushite kidney stones. Interestingly, calcium iodate/gelatin composite par-
ticles [23] and zinc phosphate nanosheets [24] with antibacterial properties can also be
synthesized using this gel diffusion technique and showed the alignment of nanostructures
in one dimension. This gel diffusion technique is expected to develop novel functional
materials for biomedical applications.

In this review, the oriented structures in biological tissues were reviewed and the
techniques for producing highly-oriented biomaterials by imitating the oriented organic/
inorganic nanocomposite mechanism of the biological tissues were summarized. In particu-
lar, we introduce the fabrication technology of the highly-oriented structure of biomaterials
on the surface of a rubbed polyimide film that has physicochemical anisotropy in order
to further form the highly-oriented organic/inorganic nanocomposite structures based
on interface interaction. Moreover, we mention the possibility that the highly-oriented
nanobiomaterials fabricated by the rubbing-assisted approach could be widely applied in
the biomedical field.

2. Oriented Structures in Biological Tissues
2.1. Characteristic Structures in Cornea and Bone

The transparent cornea is one of the layered tissues in our eye and is located closest to
the outside, covering the iris, pupil, and anterior chamber. In detail, as shown in Figure 2a,
the layers of cornea are made up of five different membranous tissues which, from the outer
layer to the inner layer, are the epithelium, Bowman’s layer, stroma, Descemet’s membrane
and endothelium [25]. The stroma with a thickness of 500 µm exists between the epithelial
and endothelial, which supports the strength of the cornea [26]. The stroma occupies more
than 90% of the thickness of the cornea and plays a very important role in keeping the
cornea transparent. The corneal stroma consists of more than 300 stacked lamellae rotated
alternately by 90◦. Each lamella is about 1~2 µm in thickness and contains tightly packed
collagen fibrils that align in one direction [27,28]. This stacked lamella structure has two
excellent functions. One is mechanical strength. Tensile strength is high because of the
stacked lamellae in which collagen fibrils are arranged and stacked orthogonally. The
other function is transparency. The transparency of the cornea is highly dependent on
the uniform diameter and the spacing of the collagen fibrils, which are closely packed
in a regular array so that the light passes only in a specific direction [29]. Moreover, the
human stroma is formed in the mother’s body. Collagen fibrils in the corneal stroma can be
replaced due to metabolism, but once the corneal stroma is damaged, it cannot be generated
anew. Thus, all layers of the corneal epithelium, parenchyma, and endothelium must be
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transplanted when the cornea is damaged. If the lamellar structure of collagen fibrils can
be formed in vitro, it will be useful for reconstruction of the stroma.
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Figure 2. Oriented tissue Col structures of (a) human cornea and (b) bone.

The bone also has an oriented structure of collagen fibrils that resembles the stroma of
the cornea. The hierarchical structure of bone is shown in Figure 2b. Macroscopically, from
the outside to the inside, bone consists of periosteum, compact bone, cancellous bone and
bone marrow tissues [30]. On the outermost side, the periosteum consists of dense irregular
connective tissue. On the inside of the periosteum, it is a very hard compact bone that
supports our body. The cancellous bone, also called trabecular or spongy bone, is lighter
and less dense than compact bone, which is a porous network organized by trabeculae. The
bone marrow is a source of mesenchymal stem cells which can differentiate into various
cells such as bone, cartilage, muscle, and fat. Bone gradient of mechanical strength goes
from hard compact bone to soft bone marrow. In the compact bone, the bone unit called
osteon can be seen [31]. In addition, a small tube called the Haversian canal is connected
up and down in the middle of the bone unit, and is a pathway for supplying nutrients to
the bone cells existing inside the bone. The osteon has an annual ring-like structure with
several stratified lamellae around the Haversian canal [32]. There are regularly arranged
collagen fibrils in each of the lamellae which also align in one direction. Collagen fibrils
are arranged vertically between adjacent lamellae to the alternating laminated structure,
so that the bone unit is flexible and has strong tensile and bending strength. In the osteon,
there are hydroxyapatite (HAp) nanocrystals (with a size of 20−40 nm) parallel to the
collagen fibril alignment direction [33]. The nucleation and growth of HAp crystals are
regulated by collagen fibrils. The polarity of collagen is considered to be an important
factor affecting bone mineralization [34,35]. It has been reported that the highly-oriented
collagen fibrils have a dipole change corresponding to the change from N-terminus to
C-terminus of the constituent collagen molecules, suggesting that the piezoelectricity of
bone is likely due to the presence of collagen [36–38]. Recently, the precipitation of HAp has
been shown to occurr on the collagen fibrils of bone tissues, suggesting that piezoelectric
generation of electric charge may be a primary mechanism of bone remodeling [39]. A
resonance-enhanced piezoresponse force microscopy (PFM) was utilized to evaluate the
weak piezoelectric response of individual collagen fibrils [34]. The result indicated that the
shear piezoelectric coefficient (d15) varied periodically along the collagen fibrils, with larger
values in the hole zone (0.51 pm/V) compared to the overlap zone (0.29 pm/V). The higher
piezoelectricity in the gap region can locally modulate the surface potential of collagen
fibrils and further prompt the mineralization starting from the hole zone [40].

2.2. Proteins for Inorganic Mineral Precipitation and Orientation, and the Interactive Mechanism

Diatoms are mainly composed of small amounts of proteins (e.g., silaffins), polyamines,
and amorphous hydrated silica [41]. Silaffins and polyamines are bound by electrostatic
interactions between negatively charged groups of phosphate, sulfate, and carbohydrate
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(silaffins) and positively charged groups of amines (polyamines). Orthosilicic acid (Si(OH)4)
is used to form silicon dioxide and is generally present in the environment at concentrations
ranging from tens to hundreds of micromol per liter. Orthosilicic acid is transported to
the cells by silicon transporter proteins. The orthosilicic acid interacts with special matrix
peptides and proteins (e.g., silaffins, silacidins) and turns to amorphous hydrated silicon
dioxide in the cells. Although there are many species of diatom frustules, their structures
have some common characteristics. As shown in Figure 3, the main structure of a diatom
frustule is composed of epitheca, a girdle band and hypotheca. Frustules have many micro-
or nano-scale substructures [6,8,41], including multilevel pores, marginal processes, spines,
and raphe. The multilevel pores are the main substructures. Circular or hexagonal chambers
called areolae exist in the epitheca and hypotheca, which is composed of hundreds of large
pores regularly arrayed. There are many pores with different diameters in the range of
40~200 nm in the areolae. In addition, the girdle band also has myriads of pores with a
diameter of 100 nm.
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2.3. Inorganic Minerals for Orientational Protein Adsorption, and the Interactive Mechanism

Many factors could affect protein adsorption. As a crude generalization, protein
adsorption is mainly determined by the properties of the proteins, the properties of the
substrates, the protein–substrate interactions, and the media [42]. In detail, many influ-
encing factors should be considered. For example, the isoelectric point of the proteins, the
surface potential of substrates, electrostatic interactions between proteins and substrates,
pH of media, etc. In addition, the size-selective adsorption of proteins on porous material
substrates is also an important factor [43].

Implant therapy creates an implant-tissue interface that is always exposed to the air
resulting in the possibility of inflammation. Titanium as an important implant material has
a greater ability than other metals to facilitate osseointegration [44–46]. The titanium oxide
film formed on the titanium surface is one of the reasons for its high level of corrosion
resistance. In addition, the degree of the deposition of calcium phosphates in body fluid is
greater on titanium than on other metals [47–49]. When titanium is implanted into bone
tissues, the adsorption of osteogenic proteins such as osteocalcin and osteopontin on to the
titanium surface occurs. Titanium oxide has a similar isoelectric point to osteogenic proteins
at approximately pH = 5. Accordingly, both titanium oxide and osteogenic proteins are neg-
atively charged at around pH = 7. Thus, the deposition mechanism of calcium phosphates
is readily caused by the positively charged calcium ions (Ca2+) and further adsorption of
proteins is prompted on the deposited calcium phosphates. Moreover, the hydration effect
of terminal OH radicals with positive charges is also considered to affect protein adsorption.
Brunette et al. discuss how proteins attached to the arranged grooved surface prompt an
osteogenic cell to differentiate into an osteoblast [50]. Therefore, it is necessary to develop
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an oriented biocompatible material which can control the orientation of adsorbed proteins
and cells so as to further encourage the regeneration of biological tissue.

3. Oriented Collagen Molecular Assembly for Hydroxyapatite Composites
3.1. Assembly Structures

Collagen is abundantly present in biological tissues such as bone [51], cartilage [52],
ligaments [53], tendons [54], stroma [27], skin [55], liver [56], and muscle [57], and accounts
for about 30% of all proteins contained in organs. There are many types of collagen in the
human body from type I to type XII. Type I collagen is mainly contained in the skin and
bone and is also found in many parts of the body. Type II collagen mainly exists in cartilage,
and Type III collagen often coexists in the tissues in which Type I collagen is present. Each
type of collagen is present in several different organs.

The type I collagen (Col) exists in many different biological tissues, and is the most
abundant protein [58–61]. The Col molecule is composed of three polypeptide chains
containing two α1 and one α2 polypeptide chains [62,63]. Each polypeptide chain has a
repeating structure of three amino acids “G-X-Y”, including about 3000 amino acids. Here,
G is glycine, which is the smallest of all amino acids. X is proline, and the remaining Y is
occupied by various other amino acids, mainly hydroxyproline. Amino acids contained
in the Col molecule can be roughly divided into polar and non-polar depending on the
nature of the side chain (R). Polar amino acids are hydroxyproline, aspartic acid, threonine,
serine, glutamic acid, cysteine, tyrosine, hydroxylysine, lysine, histidine, and arginine.
Non-polar amino acids are proline, glycine, alanine, valine, methionine, isoleucine, leucine,
and phenylalanine. The denaturation temperature of the Col molecule depends on the
composition of amino acids and is in the range of several ◦C to 40 ◦C [64–66]. When the
temperature is raised over the denaturation temperature, the triple helix structure of Col
unravels into individual polypeptide chains leading to the formation of gelatin. The change
in molecular structure from Col to gelatin is called denaturation. In addition, once the
triple helix structure is completely unwound, it cannot return to the original triple helix
structure even if the temperature is lowered. The denaturation temperature of Col varies
depending on the species (that is, on the composition of amino acids). For example, the Col
denaturation temperature of mammals is approximately 40 ◦C. In the case of fish, the Col
denaturation temperature of tilapia is 30~36 ◦C [67–69].

As the smallest Col molecular assembly in biological tissues, Col fibrils play an
important role. As shown in Figure 4, an axial periodicity (D-period) of approximately
67 nm has been reported in Col fibril structures, where hole zone and overlap zone were
presented in D-period due to the self-assembled Col molecules [70,71]. The Col fibrils
have uniform diameters in different biological tissues (corneal stroma (ca. 30 nm) [72,73],
stapedius tendon (ca. 50 nm) [74] and compact bone (ca. 100 nm)) [75,76]. In addition, Col
fiber (ca. 5~10 µm) with a larger diameter can be further assembled from Col fibrils [54].
The Achilles tendon is made of Col fibers and has strong rigidity in a certain direction.
Moreover, the skin consists of a fiber bundle in which Col fibers are entwined [55].
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3.2. Orientation Control of Collagen Assembly

Col assembly such as in Col fibrils is an important protein state that has various
functions including skeletal support [77], cell adhesion [78], and guiding tissue regener-
ation [79]. Col assembly as a biomaterial is indispensable in regenerative medicine. As
mentioned above, Col assembly with uniform diameter widely exists in different biological
tissues and provides different functionality. The orientational Col assembly contributes to
the orientational adsorption of proteins and the orientational differentiation and growth
of cells. Thus, it is necessary to synthesize the oriented Col assembly similar to human
tissues. The orientation control of the Col fibrils has been widely reported by magnetic
field [80], microfluidic channel [81], and electrochemical methods [82]. However, it was
found in these reports that the formed Col fibrils had low orientation (less than 50%) and
non-uniform diameter (in the broad range from 50 to 200 nm), indicating that the orienta-
tion and uniformity of the Col fibrils have not been successfully controlled. Therefore, it is
necessary to develop a technique for efficiently forming highly-oriented Col fibrils with
uniform diameter.

3.3. Hydroxyapatite

Hydroxyapatite (HAp: Ca10(PO4)6(OH)2) is a type of calcium phosphate with the Ca/P
ratio of 1.67, and is the most stable in the body as well as a major inorganic component of
bones and teeth. The crystal structure of HAp belongs to the hexagonal system (space group
P63/m), with lattice constants of a = 0.9422 nm and c = 0.6883 nm. The crystal structure
of HAp is shown in Figure 5. The four columnar Ca are aligned parallel to the c-axis and
the six screw axis Ca surround the c -axis at the four corners of the unit cell. Moreover,
the hydroxyl groups exist in the part surrounded by the screw Ca [83]. It is well known
that HAp has biocompatibility, bone affinity, high absorptivity with biomolecules, and
ion exchange properties. Therefore, HAp as a biomaterial has been widely studied [84,85].
When synthetic HAp is implanted as artificial bone in a bone defect, the artificial bone
is gradually replaced with newly formed bone tissues under the synergistic action of
osteoclasts and osteoblasts to achieve the purpose of bone regeneration [86,87]. However,
this process has a high cost over a long period of time. The different cations can be
substituted for calcium ion sites, and the different anions can be substituted for phosphate
group and hydroxy group sites of HAp. In fact, calcium ions are replaced with iron
ions, magnesium ions, and strontium ions, and phosphate groups and hydroxide ions are
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replaced with fluorine ions and carbonate ions in bones and teeth. For example, fluoride
toothpaste has been used to enhance the acid resistance of teeth and prevent cavities [88].
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Both octacalcium phosphate (OCP: Ca8H2(PO4)6·5H2O) and dicalcium phosphate
dihydrate (Brushite, DCPD: CaHPO4·2H2O) have been presumed as the possible precursors
to the formation of HAp [89]. The phase transformation from OCP and DCPD to HAp
is closely dependent on the supersaturation, the pH of the solutions, and the presence of
foreign ions in the biomimetic synthesis process [90]. The HAp is preferentially formed
under neutral or alkaline conditions. In acidic solutions, OCP and DCPD phases are
often found. The structure of OCP is composed of apatite layers stacked alternately with
hydrated layers [91]. It has been confirmed that the transformation of OCP to HAp occurred
in neutral solutions such as simulated body fluid through a biomimetic approach, and
the presence of Mg2+ in the solution has been found to inhibit the transformation by
interrupting the precipitation process of HAp [92]. On the other hand, the process of
DCPD transformation to HAp in aqueous body fluid such as Hank’s balanced salt solution
was investigated, and indicated that brushite modified by potassium ions showed faster
transformation to HAp than the normal DCPD [93].

3.4. Precipitation of Hydroxyapatite on the Assembly, and Their Interfacial Inorganic–Organic
Composite Interactions

In recent years, research has been actively conducted to create functional materials that
are similar to the structure of bone tissues by imitating the precipitation process of HAp
crystals on Col assemblies in vivo. J.C. Góes et al. precipitated HAp on the Col film surface
by alternately immersing the Col film with various different densities of carboxyl groups in
CaCl2 aqueous solution and K2HPO4 aqueous solution for 100 cycles [94]. Their results
suggested that the higher content of carboxyl groups in the Col film plays an effective role
in the heterogeneous nucleation of apatite. In addition, the illustration of the interfacial
state between HAp and Col was shown in Figure 6. The chemical bond is formed between
the carboxyl group (-COO−) protruding vertically from the Col molecule and the calcium
ion (Ca2+) present on the surface of HAp. In the carboxyl group, two oxygen bonds are
bonded to one carbon in the center, and the sigma bonds are formed between the carbon
atom and the two oxygen atoms. Furthermore, since the carboxyl group has a valence of
−1, one electron e− spreads over the entire O-C-O bond to form the π bond.
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3.5. Current and Possible Applications for Bone Tissue Regeneration and Therapy

The bone formation process in vivo is called bone remodeling. The remodeling consists
of two complementary processes: bone resorption and bone formation [95], as shown in
Figure 7. Adult bone remodeling proceeds in an order such that osteoclasts first adsorb bone,
and then osteoblasts form bone. Osteoclasts are found on surfaces of bone. When osteoclasts
adhere to bone, a local space is formed between the cells and the bone. Osteoclasts release
acid into the local space and thus create an acidic microenvironment, which increases
solubility of bone mineral [96]. As a result, the bone mineral (HAp) dissolves into calcium
and phosphate ions. Meanwhile, osteoclasts release Col-degrading enzymes which can
decompose and absorb the Col fibrils, which become Col fragments. On the other hand,
osteoblasts firstly synthesize Col molecules inside the cell and release them out of the cell
and the Col molecules spontaneously line up to form fibrils. Then, osteoblasts mediate
bone mineralization [97]. Osteoblast matrix vesicles concentrate calcium and phosphate
ions from the cytosol and mitochondria, and transfer to the newly formed Col matrix.
Subsequently, the matrix vesicles continue to accumulate calcium and phosphate ions from
the ion-rich environment until precipitation occurs. The newly formed HAp crystals are
precipitated on the Col fibrils, providing nucleation sites for continued crystal growth. In
bone tissue, remodeling is constantly occurring due to the bone formation of osteoblasts and
the bone resorption of osteoclasts. However, the defects of bone are difficult to self-repair
when many parts of the bone are excised due to bone cancer etc. Therefore, a material that
fills the defect site and promotes regeneration of the surrounding bone tissue is required.
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Large segmental bone fractures cannot be repaired naturally and orthopedic surgery is
necessary. Bone defects are currently cured using bone graft materials with biocompatible
properties. There are many bone graft materials such as bioceramics [98], biopolymers [99]
and organic-inorganic composites [100] which are used for promoting regeneration of
the surrounding bone tissue. However, the above bone graft materials readily lead to
nerve injury, infections, morbidity and chronic pain. Therefore, the technology to fabricate
oriented collagen fibril arrays and collagen/hydroxyapatite composite nanostructures
similar to biological tissues is necessary.

4. Oriented Mesoporous Silica Films
4.1. General Synthesis and Characteristics of Mesoporous Silica Films

Mesoporous silica (MPS) has uniform pore sizes in the range of 2 to 50 nm, large
specific surface areas, high stability, and biocompatibility. The MPS materials have been
widely synthesized and applied in the biomedical fields, such as drug delivery [101–103],
diagnosis [104–106], and bone repair [107,108], indicating that MPS can safely exist in our
body. MPS can be easily functionalized by different chemical functional groups or proteins
to improve its biocompatibility and promote cell adhesion without denaturation [109–111].
The pore sizes, surface areas, and arrangement of pore structures can be controlled by the
different surfactant types and concentrations [112–114]. Both the particle shapes and filmed
states of MPS can be synthetized by utilizing the sol–gel method. In detail, the precursor
solution consisting of the surfactant, silicon alkoxide (tetraethyl orthosilicate (TEOS), etc.),
acid catalyst, and solvent (water, ethanol, etc.) is cast on the arbitrary substrate and then
is spin-coated to synthesize the MPS films [115]. As shown in Figure 8, the surfactant
molecules could be self-assembled into different micelle phases as a result of an increase
in the concentration of surfactant due to splashing and evaporation of solvent by rotation.
Simultaneously, the hydrophilic groups of micelles electrostatically interacted with the
silica oligomers which were prepared by the hydrolysis and condensation reactions of
silicon alkoxide during the sol–gel process, resulting in the formation of a surfactant–silica
composite film. The formation of the silica oligomers is caused by the growth of the
siloxane network due to the sol–gel reaction of the silicon alkoxide. The mole fractions
of acid catalyst and H2O are important factors that govern the formation of the siloxane
network and the speed of the sol–gel reaction. As shown in Figure 9, there is a sol–gel
reaction mechanism using the acid catalyst. In the hydrolysis process, the oxygen of the
alkoxy group is attacked by the electrophilic reaction of H3O+, producing a hydroxy group
and alcohol as by-products (Figure 9a). Then, the deprotonated silanol group forms the
siloxane bond by nucleophilically attacking the Si atom in the dehydration condensation
process (Figure 9b) [116]. Subsequently, the transition of the micelle phases and the siloxane
network growth collaboratively occur in the spin-coating and calcination processes, as
shown in Figure 10. The thickness of the film in the spin-coating process gradually decreases
leading to an increase in the concentration of surfactant. The surfactant monomers would
be self-assembled to be the micelles when the concentration of the surfactant monomers
exceeds a critical micelle concentration. Subsequently, the micelle phases are changed to be
cylindrical micelles and the hexagonal phase of the cylindrical micelles by increasing the
concentration of surfactant. At the same time, the polymerization of silica oligomers occurs
due to the growth of the siloxane network. After that, the surfactant–silica composite phase
is formed with the drying process, and the MPS film is prepared by the calcination process
through the removal of surfactant micelles.
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4.2. Various Techniques for Orientation

There are molecular crystals (hydrated crystals) formed with water molecules and
other polar solvents in many ionic surfactants and some nonionic surfactant systems at low
temperatures [117–119]. The hydrated crystals melt at temperatures above the Krafft point
and form molecular assemblies of surfactants such as micelles and lyotropic liquid crystal
phases. The surfactant molecules self-assemble to be micelles at the temperature above
the Krafft point and the concentration above the critical micelle concentration, and further
become lyotropic liquid crystal phases such as hexagonal and lamellar liquid crystal phases
at higher concentrations. The lyotropic liquid crystal phase is involved in the formation
of the mesostructured MPS, and the interaction between the liquid crystal phase and the
surface of the substrate determines the crystallographic orientation of the mesostructure
with respect to the substrate. The crystallographic orientation of the MPS film in the out-
of-plane direction on the substrate surface is often uniquely determined. However, the
in-plane orientation of the film is not controlled, especially on isotropic substrates such
as glass. As a result, in the case of a cylindrical upper micelle, the cylinder has a winding
structure in the plane; and in the case of a spherical micelle, a plurality of domains having
different orientations in the plane are formed. In-plane orientation control of the MPS film
is roughly achieved by two methods. One is a method using an external field. For example,
in one method, the microcapillaries and an electric field were used to guide the growth
direction of the surfactant–silica composite mesostructure [120]. Here, an electric field
applied in the direction of the microcapillaries induced an electroosmotic flow of the MPS
precursor solution along the microcapillaries, and the rate of silica polymerization was
promoted due to the generation of localized Joule heating. Another method uses a substrate
with structural anisotropy on the surface. For example, it is reported that an MPS film was
formed on silicon substrates with different crystal orientations by hydrothermal synthesis,
and the orientation of MPS mesochannels was controlled in one direction on the (110) plane
with strong anisotropy of atomic arrangement [121]. However, the above methods are not
suitable to synthesize the MPS film with in-plane orientation on isotropic substrates such
as glass. Thus, it is necessary to develop a technology to control the in-plane orientation of
the MPS film.

4.3. Possibility for Biological and Medical Applications

There are few reports on the synthesis of MPS films for biomedical applications apart
from our research group. According to our previous study [122], osteoblast-like cells
were cultured on the MPS film, indicating that the high adhesion density of cells and
formation of bone tissue were promoted. The MPS films with high specific surface area are
suitable for adsorbing proteins and further promoting cell adhesion. However, the in-plane
orientation of the MPS films was not successfully controlled, resulting in randomly aligned
morphologies of the adsorbed cells. Thus, the MPS films with in-plane orientation have the
potential to guide the anisotropic shape of the adsorbed proteins and further control the
direction of cell adhesion and growth. Therefore, the oriented MPS films show excellent
properties for biomedical applications, such as cell culture and surface modification of
biomaterials.

5. Rubbing-Treated Polyimide Film for Biological and Medical Applications
5.1. Synthesis and Characteristics

Polyimide (PI) as a polymer material has been used for medical catheters because of
its high flexibility, mechanical strength, and chemical resistance [123,124]. PI is classified
into several types according to the functional groups (aromatic or aliphatic) and side chains
contained in the main chain of the polymer. A common technique in PI synthesis is a
two-step synthetic process mediated by poly(amic acid) (PAA), as shown in Figure 11. First,
aromatic dianhydride and aromatic diamine are reacted in a polar solvent to synthesize
an easily soluble polyamic acid, which is then heat imidized to obtain PI. The PAA is
made from 4,4’-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) (Figure 11a).
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The PI was synthesized via the dehydration of PAA and imide ring formation by thermal
cross-linking (Figure 11b). It has been reported that the imidization ratio of (PMDA-ODA)
PI is affected by the baking temperature, where the imidization was fully completed at the
baking temperature of 220 ◦C [125].
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5.2. Practical Situations and Problems

The medical PI catheter is directly connected to the internal and external tissues of
the human body by passing through the skin. As shown in Figure 12, the skin is roughly
divided into three layers that are the epidermis, dermis, and hypodermis tissues, from the
outside to the inside [126–128]. Epidermal healing plays an important role in the repair
of the wounded skin tissue because all wounds are eventually covered by epithelium. In
the epidermis, keratinocytes, the main cells that make up 95% of the epidermis, are highly
organized and arrayed. The keratinocytes are divided in the basal layer and subsequently
move to the stratum corneum which is the outermost layer of the epidermis. In the stratum
corneum, keratin filaments—which are structural proteins—align parallel to the plane of
the flattened stratum corneum cells. When the PI catheter passes through the skin tissues,
the interface between the PI catheter and skin tissue cannot be tightly combined because
of foreign body reactions [129], resulting in skin tissue being exposed to air. Thus, there
is a risk of bacterial infection and inflammation. The possible reason for the foreign body
reaction between the PI catheter and skin tissues is that the proteins are randomly adsorbed
on the PI catheter surface. The morphology of the adsorbed proteins on the PI catheter
surface are different from the regularly oriented proteins in vivo. Therefore, a coating
technology for the PI catheter is necessary by using an oriented biocompatible material
such as MPS which has the potential to control the orientation of adsorbed proteins and to
further encourage the repair of the skin tissues.
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5.3. Rubbing Treatment Techniques

Rubbing treatment is a technique by which the PI film surfaces are rubbed in one
direction using cloths such as rayon, cotton, etc., as shown in Figure 13. In the rubbing
process, the radius of the rubbing roller, the rotation speed, the number of rubbing times, the
contact length of circumference with the substrate, the moving speed of the rubbing stage,
etc. are parameters related to the strength of rubbing. The contact length of circumference
is a parameter related to the pushing depth. The control point is decided when the contact
distance between the filament top and the substrate surface is 0. Thus, the contact length of
circumference increases with increasing contact length. The strength of the rubbing was
formulated by [130] as Equations (1) and (2) below [130]. In Equation (1), D is a function of
rubbing density; γ is a function of rubbing pressure, filament density and friction coefficient;
and L is the total length of the rubbing cloth that contacts a certain point of the substrate.
However, since γ is a function caused by the difference in friction coefficient depending on
the material, it is difficult to determine an accurate value. Therefore, the rubbing strength is
defined to be L when the rubbing cloth is fixed, as shown in Equation (2). N is the number
of rubbing times; l is the contact length of circumference; r is the radius of the rubbing roller;
n is the rotation speed of the rubbing roller; and v is the moving speed of the rubbing stage.

D = γ × L (1)

L = N × l (1 + 2πrn/60v) (2)
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5.4. Film Formation Mechanisms on Rubbing-Treated Film

Rubbed PI films as a polymer film with structural anisotropy have been widely used
to control the orientation of liquid crystals [131–133]. However, the orientation mechanism
of rubbing treatment is not fully understood. There are several hypotheses that have
been proposed [134–136]. The general hypothesis is that the grooves along the rubbing
direction are formed by mechanical contact between the PI film and rubbing cloth. The
groove-based liquid crystal orientation theory proposes an orientation mechanism based
on geometric effects caused by elastic strain energy. Specifically, the theory is that the
driving force works to make the elastic strain energy to be minimum, leading to the long
axis of the liquid crystal molecule being oriented parallel to the grooves. On the other
hand, the other hypothesis is that there is a stretching-orientation effect of the polymer
main chain due to friction. The extension direction of the polymer main chain is parallel
to the rubbing direction due to the generation of stress and frictional heat during the
rubbing treatment, and the oriented polymer main chains interact with the conformation
of the liquid crystal. As a result, the orientation direction of the polyimide main chain
in the rubbed film and the inclination direction of the pretilt of the liquid crystal are the
same. In addition, the rubbed PI films have also been applied to control the orientation
of copper phthalocyanine [137] and copolymer [138]. The rubbing treatment technique
has the characteristics of low cost and easy operation, and the oriented nanostructures of
materials could be effectively controlled by utilizing the physicochemical anisotropy of the
surface of the rubbed PI film. However, it has not been applied in the biomedical field for
fabricating oriented nanobiomaterials. Thus, it is necessary to investigate the interactions
between nanobiomaterials and rubbed PI films and to further develop the fabrication of
one-directional nanobiomaterials for wide application in the biomedical field.

5.5. Biological and Medical Applications

The oriented nanostructure in biological tissues is extremely important in determin-
ing the function of the tissue. However, no fabrication technology for highly-oriented
nanostructures similar to biological tissues has previously been established. Therefore, an
effective technology was developed to fabricate highly-oriented nanobiomaterials in our
group. Here, we mainly introduce the reports regarding the fabrication of highly-oriented
nanobiomaterials by utilizing the physicochemical anisotropy of the surface of rubbed
PI film. The orientation of surface functional groups and PI main chains of the PI film
was effectively controlled by rubbing treatment to obtain the rubbed PI film. For example,
highly-oriented homogeneous Col fibril arrays were successfully fabricated on the rubbed
PI film for precipitation of CP crystals [139,140]. The mechanism of highly-oriented Col
fibril arrays on the rubbed PI films was investigated in order to understand the interfacial
interactions. It was found that the orientation of surface functional groups and nano-
grooves of the rubbed PI film was effectively controlled. The highly-oriented Col fibrils
were formed inside the nano-grooves by the formation of hydrogen bonds between the
C=O of the imide groups (rubbed PI film) and the N–H of the amino groups (β-Sheet of Col
molecules), resulting in the Col molecules being oriented parallel to the rubbing direction
and subsequently being self-assembled into fibrils. Thus, the orientation and density of
the fibril arrays on the films were successfully controlled by the interfacial interactions
between the β-Sheet component of Col and the surface nano-grooves of the rubbed PI films.
Moreover, the CP crystals were precipitated and grown along the Col fibrils after immersion
into a simulated body fluid. The highly-oriented CP/Col fibril hybrid nanostructures were
similar to bone tissues and have the potential to be applied as bone graft materials for the
regeneration and repair of defective bone tissue.

On the other hand, highly-oriented cylindrical MPS films were synthesized on rubbed
PI film by adjusting the molar ratio of the orientation-directing agent (Brij56) to the structure-
directing agent (P123) as surfactants in the silica precursor solutions for guiding protein
adsorption states [141]. In detail, the micro-grooves were formed and PI main chains were
oriented on the surface of the rubbed PI films. The semi-cylindrical Brij56 micelles were
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oriented in the direction perpendicular to the rubbing direction by the strong hydrophobic
interaction between the alkyl groups of Brij56 (-C16H33) and aromatic rings of the PI
main chain. Then, the spherical P123 micelles also transformed into cylindrical micelles
that were laminated on the semi-cylindrical brij56 micelles, resulting in the hierarchical
growth of cylindrical P123 micelles. Simultaneously, the hydrophilic groups of micelles
electrostatically interacted with the silica oligomers which were prepared by the hydrolysis
and condensation reactions of silicon alkoxide during the sol–gel process, resulting in the
transition of the micelle phases and the siloxane network growth collaboratively occurring
to form the mesostructured surfactant–silica composite film. After that, the highly-oriented
cylindrical MPS film was prepared by the calcination process through the removal of
surfactant micelles. Moreover, the proteins with the anisotropic adsorption morphologies
were adsorbed on the highly-oriented cylindrical MPS film. Thus, the synthesized highly-
oriented cylindrical MPS film is useful to control the anisotropic adsorption shapes of the
mesoscale biomolecules such as proteins and to further encourage oriented-cell adhesion.
Therefore, it has the potential to be used as a new coating technology for the biomedical
PI catheter.

According to the above results, a rubbing-assisted approach for fabricating highly-
oriented inorganic/organic composite nanobiomaterials was developed, as shown in
Figure 14. The orientation of surface functional groups and PI main chains of the PI
film was effectively controlled by rubbing treatment to obtain the rubbed PI film with an
anisotropic surface. The highly-oriented organic assemblies such as Col fibrils, surfactant
micelles, etc. can be effectively controlled on the rubbed film. Furthermore, the highly-
oriented inorganic/organic composite nanobiomaterials were easy to be further fabricated
by interfacial inorganic/organic composite interaction in the biomimetic process. There-
fore, the rubbing-assisted approach is an effective technology to fabricate one-directional
inorganic/organic nanobiomaterials, indicating the potential for wide application in the
biomedical field.
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6. Conclusions

The oriented structures in biological tissues such as cornea, bone, diatoms, etc., were
reviewed, and the techniques for producing highly-oriented nanobiomaterials by imi-
tating the oriented organic/inorganic nanocomposite mechanism of biological tissues
were summarized. In particular, we introduced a fabrication technology for obtaining
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the highly-oriented structure of biomaterials on the surface of a rubbed PI film that has
physicochemical anisotropy in order to further form the highly-oriented organic/inorganic
nanocomposite structures based on interface interaction. The highly-oriented homoge-
neous Col fibril arrays fabricated on the rubbed PI film for precipitating CP crystals and
the highly-oriented cylindrical MPS films synthesized on the rubbed PI films for guiding
anisotropic adsorption states of proteins were introduced. It was indicated that the highly-
oriented nanobiomaterials fabricated by the above biomimetic process could be applied in
the biomedical field.
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