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Abstract: To solve the problem of low precision of pearl shape parameters’ measurement caused by
the mutual contact of batches of pearls and the error of shape sorting, a method of contacting pearls’
segmentation based on the pit detection was proposed. Multiple pearl images were obtained by
backlit imaging, the quality of the pearl images was improved through appropriate preprocessing, and
the contacted pearl area was extracted by calculating the area ratio of the connected domains. Then,
the contour feature of the contact area was obtained by edge tracking to establish the mathematical
model of the angles between the edge contour points. By judging the angle with a threshold of
60◦ as the candidate concave point, a concave point matching algorithm was introduced to get the
true concave point, and the Euclidean distance was adopted as a metric function to achieve the
segmentation of the tangent pearls. The pearl shape parameters’ model was established through the
pearl contour image information, and the shape classification standard was constructed according
to the national standard. Experimental results showed that the proposed method produced a better
segmentation performance than the popular watershed algorithm and morphological algorithm. The
segmentation accuracy was above 95%, the average loss rate was within 4%, and the sorting accuracy
based on the shape information was 94%.

Keywords: machine vision; intelligent agriculture; image segmentation; pit detection

1. Introduction

Pearl shape is one of the important reference indicators of pearl quality. At present,
the pearl shape parameters are mainly calculated by manually measuring the long and
short axes of the pearls using a vernier caliper [1,2]. Although manual sorting has the
advantages of high flexibility and comprehensive evaluation, the labor intensity is high, the
efficiency is low, and the subjective factors make the sorting accuracy unstable [3]. In recent
years, with the rapid development of machine vision technology, it has been feasible to
use machine vision to replace manual measuring to eliminate the interference of subjective
factors (such as fatigue and human emotions) and improve the measurement accuracy and
efficiency for the pearl shape parameters [4]. In fact, accurate and rapid detection of pearl
shapes has become an urgent need for pearl manufacturers. The machine vision technology
has sufficient market prospects [5].

Existing literature shows that there are few research results in the pearl shape de-
tection, particularly for batch pearls’ detection. Many detection methods are applied to
a single pearl to measure the thickness of the pearl layer [6,7], pearl donor [8], internal
structure [9,10], luster [11,12], color [13,14], etc. Although single pearl detection can analyze
the surface and internal quality of the pearls from multiple angles [15], most of them are
limited to laboratory environments. In addition, the market demands more for processing
a batch of pearls at the same time; but batch pearl detection suffers from measurement
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accuracy due to mutual contact between pearls. Therefore, it is necessary to analyze and
summarize the contact problems of batches of pearls.

For the issue of contacting target segmentation in different fields, researchers have
proposed various segmentation algorithms, including the watershed algorithm [16,17], mor-
phological algorithm [18,19], contour curve method [20–22], concave point method [23,24],
and so on. These algorithms can achieve contact target segmentation for specific situations
but, at the same time, they all have certain limitations. The watershed algorithm is a classic
algorithm for segmenting overlapping images. It is fast, accurate, and effective, but it will
be disturbed by noise to produce over-segmentation or under-segmentation, causing a large
number of false edges, especially when multiple pearls are in contact. The morphological
algorithm can easily destroy the original shape of the pearl, which is not conducive to the
measurement of the pearl shape parameters in this paper. The contour curvature method
and the curve fitting method have a large amount of calculation and low recognition rate
and generally are only suitable for 2–3 pearls. The concave point method mainly uses the
concave–convex characteristics of the target when it is in contact and divides the contact
target according to the angle of the concave point; but the detection of the concave point
is prone to errors. In comparison, the concave point method has more advantages, but its
effect needs to be improved to increase the segmentation.

In summary, in view of the segmentation problem of contacting a large number of
pearls in the shape detection, this paper proposes a new segmentation method based on the
pit detection and target contact segmentation. Firstly, the backlit imaging was used to obtain
a large number of pearl images and the area of pearl contact was extracted according to
the area ratio of the connected domain mark. Secondly, a mathematical model of the angle
between the contour points of the edge of the contact area was established to extract the
concave point information, and the interference points were eliminated through the concave
point matching. Then, the Euclidean distance was used as the distance measurement to
complete the segmentation of tangent pearls. Lastly, the pearl contour and the position of
the center of mass were calculated, and the pearl shape parameters’ model based on the
image information was established to quantify the pearl shape. After the characterization
was completed, the algorithm accuracy comparison and verification were performed.

We arranged this paper by the following. Section 1: For the pearl shape detection
system, this paper selected the hardware required for robots and visual recognition and
built an experimental platform. Section 2: The tangent pearls’ image was segmented
based on concave point detection and concave point matching. Pearl shape parameters
were measured by extracting the features of the contour edge. Section 3: Through the
experimental platform built to conduct the experimental analysis of different numbers
of pearl images contacted at different angles, we determined the pearl shape parameters
and used the robot to complete the pearl classification according to the recognition results.
Section 4: Conclusions.

2. Materials and Method
2.1. Experimental Platform

A pearl shape detection system based on machine vision was developed, as shown
in Figure 1, including a robot system, a vision detection system, a platform, a sorting box,
and a computer. The visual inspection system consisted of a camera, lens, light source,
computer, and the objective table. The camera was the Daheng Mercury camera MER-502-
79U3M POL camera. The collected picture contained 20 pixels of 1 mm. The optical axis
of the camera was perpendicular to the objective table. The lens was a computer series
M2514-MP2 lens. The distance from the objective table was 250 mm. The pearls were
randomly laid on the objective table. The light source adopted an LED array surface light
source with an illuminance of 40,000 Lux. The camera, the pearl to be detected, and the
light source acquired the pearl image with backlit imaging. The system software adopted
Python3.7 and opencv3.4.2, and the computer performance was by CPU i7-11700k, 16-G
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memory, and a GTX 2080ti graphics card. A Dobot magician robot was adopted, and the
end effector was a SMC-ZP3-T04BN-A5 vacuum suction cup.

Figure 1. Pearl shape detection system platform.

The specific operation process for the pearl detection is shown in Figure 2.

Figure 2. Operation flowchart.

2.2. Pearl Image Processing Method

Firstly, this work proposed a tangent pearls’ segmentation method based on an im-
proved concave point detection for the boundary connectivity problem caused by batch
pearls. Secondly, the tangent pearls’ area was extracted based on the connected domain
mark. According to the principle of point matching, the true concave point pairs were
screened out. Then, the tangent pearls were divided based on the Euclidean distance.

2.2.1. Boundary Connectivity Problem

There are texture and luster on the pearl surfaces [25]. In order to reduce the in-
terference of these factors on the pearl shape detection, the backlit imaging was used to
collect multiple pearl images, as shown in Figure 3a. In order to extract the pearls’ contour
features, Gaussian filtering was performed after equalizing the histogram of Figure 3a,
which preserved more edge information of the images while smoothing the image [26].
According to the gray distribution characteristics of the pearl images [27], the maximum
between-class variance method [28] was used to segment the preprocessed pearl images
and solved the problems of cavities and rough contour edges in the segmented pearl area.
Linear structural elements were processed by the morphological algorithm [29]; the result
is shown in Figure 3b.

It can be seen from Figure 3b that there were separate pearl outline areas in the divided
pearl images, which were in contact with each other. To solve the segmentation problem of
pearls in contact with each other, pit detection based on the three-point including angle
and the pit matching method with adaptive characteristics were adopted.
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Figure 3. Pearl image preprocessing. (a) Original image of pearl; (b) pearl binary diagram.

2.2.2. Extraction of Tangent Pearls’ Region

The connected domain labeling of the pearl images after binarization is shown in
Figure 4. The pixel area of each connected domain was counted as S1, S2, · · · , Sn, as shown
in Table 1. The area sequence was sorted and the smallest area was Smin, as expressed by
Equation (1).

Smin = min{S1, S2, · · · , Sn} (1)

where n is the number of connected domains.

Figure 4. Connected domain labeling.

Table 1. Connected domain area and area ratio.

Serial Number 1 2 3 4 5 6 7 8 9 10

Connected area
(pixel) 14,193 14,382 14,064 13,249 13,434 13,068 13,211 13,751 41,467 25,796

Kn 1.09 1.10 1.08 1.01 1.03 1.00 1.01 1.05 3.17 1.97

Calculating the connected area of each connected domain is shown in Figure 4 and
Table 1. The area of the smallest connected domain corresponded to a single, independent
pearl. In order to obtain the pearl area in contact with each other, the ratio of the pixel area
of each connected domain to the area of the smallest connected domain Smin was used to
determine whether it was a contact area.

Kn =
{S1, S2, S3 · · · Sn}

Smin
(2)
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where Kn is the area ratio.
Since a large number of pearls were randomly laid out and there was no stacking state,

it was necessary to select an area ratio as the threshold for judging whether the pearls were
in contact. It can be seen from Table 1 that if S1–S8 were all less than 1.50, there were no
tangent pearls in these eight areas; if S9 and S10 were both greater than 1.50, then there
were pearls contacting each other in these two areas. Therefore, the area ratio 1.50 was
selected as the threshold value. When Kn > 1.50, the pearls were contacted; otherwise, they
were independent. The edge tracking was used to extract the edge contour features of the
pearls in contact with each other [30], as shown in contour nos. 9 and 10 in Figure 4.

2.2.3. Image Segmentation

The concave point information is the point with the maximum value of curvature on
the contour of the target edge in the image. The shape of a single, independent pearl is
similar to the circle, and the surface curvature changes smoothly; therefore, it does not have
the feature of concave points. Many pearls in contact with each other have large curvature
mutations at the contact points and have obvious concave point characteristics. On the
basis of extracting the edge contours of the pearls in contact with each other, this paper
segmented the pearls in contact with each other based on an improved pit detection.

The edge contour of the tangent pearls was firstly detected to obtain their edge contour
sequence, as shown in Figure 5, from a partially enlarged view of the contour of the tangent
pearls’ edges. A certain point was selected in the edge contour sequence as the current
detection point, pk. The step size was set and then the coordinates of the point pk+1 were
obtained. The step size was 2 pixels, and the coordinates of the three consecutive points
were pk−1 (xk−1, yk−1), pk (xk, yk), and pk+1 (xk+1, yk+1).

Figure 5. A partial enlargement of the contour of the tangent pearls’ edges.

The straight line pk−1pk intersected the straight line pkpk+1, and the obtained angle θ
was the angle between the contour points of the pearl edge, as expressed by:

Sk−1 = |pk+1 pk| =
√
(xk+1 − xk)

2 + (yk+1 − yk)
2 (3)

Sk = |pk+1 pk−1| =
√
(xk+1 − xk−1)

2 + (yk+1 − yk−1)
2 (4)

Sk+1 = |pk pk−1| =
√
(xk − xk−1)

2 + (yk − yk−1)
2 (5)
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According to the law of cosines, the angle θ is described as

θ =
arccos(S2

k+1 + S2
k−1 − S2

k)

2Sk+1Sk−1
(6)

Due to the texture of the pearl surface, the outline angle fluctuated and the actual
concave point was relatively small. As shown in the angle distribution diagram shown in
Figure 6 calculated by Equation (6), the general distribution of angles was within the range
of 150◦–80◦, and the individual angles were within the range of 30◦–60◦, which can be used
for initial pits’ determination.

Figure 6. Angle distribution diagram.

The angle distribution in Figure 6 shows that there were interference points in the
concave points determined by the included angle of the contour, and the preliminarily
determined concave points were defined as the candidate concave points. In order to
accurately determine the pits in the pearl contact areas, this paper developed a specific
matching algorithm on the candidate pits; the steps were as follows:

(1) According to the distance between the candidate pits, the K-means clustering [31]
was used to classify the candidate pits into classes A and B, as shown in Figure 7.

(2) We found a pair of candidate pits with the shortest distance between classes A and B.
(3) We connected the pair of candidate points and calculated the vertical line of the

connecting contour.
(4) We set a minimum circle range with the length of the connecting line as the diameter

and calculated the coordinates of the points of the mid-vertical line within this range.
(5) We found the gray value in the original image according to the acquired coordinates.
(6) If the gray value of the points was the gray of the pearl, then the pair of candidate

pits were the real pits; if there were both the gray of the pearl and the gray of the
background, it meant that the candidate pit contained only one true pit.

(7) If only one true pit was included, we increased the number of the candidate pits and
returned to step (1).

Among them, the K-means clustering is a process of classifying and organizing data
members that are similar in some respects.

The result of the concave point matching is shown in Figure 7; the pair of concave
points (a1, b1) and (a2, b2) of the pearl contact point were accurately determined.
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Figure 7. Preliminary pit detection.

Using the Euclidean distance as the distance metric function [32] Dist[(a1, b1), (a2, b2)] =√
(a2 − a1)

2 + (b2 − b1)
2, the tangent pearls were segmented; the result is shown in Figure 8.

Figure 8. Tangent pearls’ segmentation.

2.2.4. Comparison of Different Image Segmentation Algorithms

In order to test the accuracy and stability of the proposed segmentation method, com-
parative experiments with different contact numbers and different segmentation methods
were carried out, and the reliability evaluation parameters were used to analyze the results.

The segmentation accuracy rate Y and the loss rate of area Z were used to evaluate the
segmentation accuracy of the tangent pearls.

(1) Segmentation accuracy
Assuming that the actual number of pearls in the pearl image is L, and the number of

correctly segmented pearls is C, the expression for the correct rate of segmentation of the
contact image is shown in Equation (7).

Y =
C
L

(7)

(2) The loss rate of area
Assuming that the area of pearl A is S1 and the area of pearl B is S2, then the sum of

the areas in the non-contact state is (Sa = S1 + S2), and the total area in the contact state
is Sb.

The area ratio of pearl A in the non-contact state and the contact state is K1 and K2,
and the expression is shown in Equation (8).
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K1 =
S1

Sa
, K2 =

S2

Sb
(8)

Thus, the expression of the loss rate of area Z is:

Z = (1− K1

K2
)× 100% (9)

The smaller the loss rate of area Z is, the higher the precision is of dividing the tangent
pearls, and vice versa.

As shown in Figure 9, taking multiple pearls as an example, Figure 9a is a non-contact
state and Figure 9b is a contact state.

Figure 9. Pearls in two states. (a) Pearls in non-contact state; (b) contact state pearls.

Based on the developed experimental platform in this paper, the watershed algo-
rithm, the morphological algorithm, and the proposed method WERE compared with the
experimental images. The differences of these three algorithms are discussed in Table 2.

Table 2. The main differences between the three algorithms.

Algorithm Watershed Algorithm Morphological Algorithm Algorithm of this Paper

Principles
and ideas

The basic idea of the algorithm is to
regard the image as a geodesic

topological landform. The gray value
of each pixel in the image represents

the altitude of the point, and each
local minimum and its affected area
are called the catchment basin. The
boundary of the catchment basin

forms the watershed.

The basic idea of the algorithm is to
measure and extract the

corresponding shape in the image
by using structural elements with a

certain shape to achieve the
purposes of image analysis

and recognition.

The algorithm uses the concave
points to describe the concave
situation of the boundary, uses

the boundary contour of the
overlapping area to find the

concave points, and finds the
separation points from the

concave points on the boundary
to divide the overlapping area.

Advantage
The obtained boundaries are

continuous with high accuracy and
fast speed.

Good positioning effect, high
segmentation accuracy, and good
anti-noise performance. The basic

morphological operations are
erosion and dilation.

The calculation is simple; the
features of the extracted points

are uniform and reasonable; it is
insensitive to image rotation,

brightness changes, noise effects,
and viewpoint changes.

Disadvantage

It has a good response to weak edges,
noise in the image, and subtle

grayscale changes on the surface of
the object, which will cause

over-segmentation.

After image processing, there are
still a large number of short lines

and isolated points that do not
match the target. Due to the

incomplete preprocessing work,
a series of point-based opening

(closing) operations are also
required; so, the operation speed

drops significantly.

It is sensitive to scale and has no
geometric scale invariance. The
extracted corners are pixel-level.
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The comparative results of the three algorithms are shown in Figure 10, and the
comparison of segmentation results is shown in Table 3.

Figure 10. Different methods for different numbers of tangent pearls’ segmentation results. (a) Water-
shed algorithm; (b) morphological algorithm; (c) proposed algorithm.

It can be seen from Table 3 that, compared with other methods, the proposed method
was able to suppress under-segmentation and over-segmentation, and the segmentation
effect was the best.

Figure 11 shows the experimental segmentation performance of the three methods,
where WA is the loss rate of area of the watershed algorithm, MA is the loss rate of area of
the morphological algorithm, and TA is the loss rate of area of the proposed method, MC is
the correct segmentation rate of the watershed algorithm segmentation, WC is the correct
segmentation rate of the morphological algorithm, and TC is the correct segmentation rate
of the proposed method. It can be seen from Figure 11 that the proposed method performed
better than the other two methods in the comparison because its segmentation accuracy
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was less affected by the degree of contact and the average loss rate of area remained within
4%. As the number of tangent pearls increased, the segmentation accuracy of all three
methods was reduced and the loss rate of the area was increased. When the number of
the tangent pearls was two, all three methods achieved complete segmentation of the
tangent pearls. When there were three tangent pearls, the correct segmentation rates of
the proposed method, the morphological algorithm, and the watershed algorithm were
98.7%, 98.5%, and 96.6%, respectively, but the area loss rate of the morphological algorithm
was higher than the others. When there were four tangent pearls, the correct segmentation
rates of the proposed method, the morphological algorithm, and the watershed algorithm
were, respectively, 97.1%, 95.4%, and 93.8%. When there were more pearls in contact, the
segmentation accuracy of 95.5% for the proposed method was still the best and the loss
rate of 3.9% was the least.

Table 3. Three algorithm segmentation results.

Algorithm Watershed Algorithm
(Figure 10a)

Morphological Algorithm
(Figure 10b) Algorithm of This Paper (Figure 10c)

Segmentation

It can segment obviously tangent
pearls. When multiple pearls are

seriously tangent, the binary
image cannot extract the

background area features at the
location where the pearls are

tangent and then cannot extract
the segmentation endpoints,

resulting in under-segmentation.

It is possible to achieve better
segmentation of tangent

pearls; but, since corrosion
and expansion are not

reversible operations, it can be
clearly seen that the pearls’

shapes have changed
significantly.

The selection of candidate concave
points in the tangent pearl image is

“adaptive”. When it is determined that
all the current candidate concave points

are near the real concave points, the
follow-up candidate points will

continue to be searched until a new
candidate point appears, which avoids
the difficulty of using it. Determined
algorithm parameters can remove the

interference of pseudo-pits.

Figure 11. Comparison test statistical results of different segmentation methods.

3. Experimental Results
3.1. Experimental Testing

In this paper, 200 pearls of different shapes were used to evaluate the shape parameters’
detection of the proposed method, including 39 round pearls, 52 round pearls, 58 near
round pearls, and 51 oval pearls. According to the “National Standard of the People’s
Republic of China GB/T18781-2008”, the size of a perfect circle, a circle, and nearly circular
freshwater pearls is expressed by the minimum diameter. The sizes of other shapes of pearls
are expressed by the maximum size multiplied by the minimum size. The pearl shape
parameter is expressed by the diameter expressed as a percentage (%) in Equation (10).

X =
dmax − dmin

d
× 100 =

max(di)−min(di)

mean(di)
× 100 (10)
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where dmax is the maximum diameter of the pearl, dmin is the minimum diameter of the
pearl, d is the average of the maximum diameter and the minimum diameter, di is any
diameter, i is the number of pixels on the pearl outline; the smaller the diameter percentage
is, the closer the pearl shape is to a circle, not vice versa. Taking a pearl with a diameter of
8 mm as an example and referring to the GB/T18781-2008 standard, the grading standards
are shown in Table 4.

Table 4. Pearl shape level.

Pearl Shape Perfect Circle A1 Circle A2 Near Circle A3 Ellipse B

Diameter range (mm) 8 ≤ di ≤ 8.24 8 ≤ di ≤ 8.67 8 ≤ di ≤ 9.02 7.2 ≤ di ≤ 8.8

Percentage difference
in diameter (%) ≤3.0 ≤8.0 ≤12.0 ≤20.0

3.2. Experimental Results

There were 200 experimental pearls in the experiments. Firstly, the longest diameter
and shortest diameter of each pearl were manually measured, the percentage differences
between each pearl were calculated, and then all pearls were classified in advance as true
values. Secondly, the diameter difference percentage of each pearl was obtained by the
proposed method to classify the pearls. Lastly, the detection result of the proposed method
was compared with the manual detection result and the performance evaluation index F1
was used for the multi-classification problem. The confusion matrix for binary classification
problem is shown in Table 5.

Table 5. Confusion matrix for binary classification problem.

Real Result
Forecast Result

Positive Example Counter Example

Positive example TP (real example) FN (false counter example)
Counter example FP (false positive) TN (true counter example)

The evaluation index F1 is calculated as follows.

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

f 1− score =
1

1
2 (

1
P + 1

R )
=

2PR
P + R

(13)

where P is the precision rate, R is the recall rate, and the f 1-score is the F1 value.
For a multi-classification problem, there are multiple confusion matrices. The macro-F1

method is used to calculate the F1 value.

macro− P =
1
m∑i Pi (14)

macro− R =
1
m∑i Ri (15)

macro− F1 =
2·macro− P·macro− R
macro− P + macro− R

(16)

The experimental results are shown in Tables 6 and 7, and Figure 12.
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Table 6. Evaluation index.

Accuracy (P) Recall Rate ® F1 Value

0.95 0.94 0.95

Table 7. Pearl grade classification results.

Pearl Grade Machine Inspection
(Pieces)

Manual Detection
(Pieces)

Consistency Rate
(%)

Perfect circle A1 39 39 100.0
Circle A2 54 52 96.3

Near circle A3 55 58 94.8
Ellipse B 52 51 98.1

Figure 12. Robot sorting results.

The experimental results showed that the proposed method produced a high detection
accuracy. Among the four roundness pearls, the coincidence rate first decreased and then
rose, and the lowest coincidence rate was reflected in the nearly circular shape. The trend
of the coincidence rate was suspected to be caused by the differences in the pearl diameter
because the diameter differences between the perfect circle and the ellipse were more
obvious. The circle and the near circle were between the perfect circle and the ellipse, and
the pearl diameter difference was small; therefore, there will be a certain error between the
measurement results of the system software and the vernier caliper measurement results. In
order to verify this conjecture, this work used some simulation pictures to contact different
shapes of pearls at different angles, which simulated all possible contact situations of the
pearls to detect the sensitivity of different pearl contact gestures.

Figure 13 shows the recognition results of different shapes of the pearls under different
contact posture conditions. Using the proposed method to segment and detect simulated
pearl images, when the pearls of different shapes were in contact at different angles, the
detection coincidence rate of the perfect circle (a) and ellipse (d) was still high, respectively,
i.e., 100% and 99.6%, and the detection coincidence rate of the circle (b) and near circle (c)
was 97.8% and 97.1%. The coincidence rate between the artificial pearl shape detection
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and artificial comparison was consistent with the real pearl experiment results. It should
be noted that since the behavior of the simulated pearls in this verification process was
an ideal pearl, the coincidence rate of the simulation verification was higher than that of
the real pearls.

Figure 13. Recognition results of different shapes of pearls under different contact posture conditions.
(a) Perfect circle; (b) Circle; (c) Near circle; (d) Ellipse.

4. Conclusions

To solve the problem of the multiple pearls in contact with each other in the pearl shape
measurement, this paper proposed a new segmentation method based on pit detection.
Compared with the watershed algorithm and the morphological algorithm, the proposed
method was superior in the case of different numbers of tangent pearls; the segmentation
accuracy of the proposed method was above 95% and the average loss rate of area was
within 4%. Using simulated tangent pearls to investigate the sensitivity of different shapes
of pearls with the proposed method under different contact angles, the coincidence rate of
the round pearls was the highest, at 100%, and the coincidence rate of the nearly round
pearls was the lowest, at 97.8%.
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