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Abstract: Surface texture information plays an important role in the cognition and manipulation of
an object. Vision and touch are the two main methods for extracting an object’s surface texture infor-
mation. However, vision is often limited since the viewing angle is uncertain during manipulation.
In this article, we propose a fine surface texture detection method based on a stochastic resonance
algorithm through a novel solid–liquid composite flexible tactile sensor array. A thin flexible layer
and solid–liquid composite conduction structure on the sensor effectively reduce the attenuation of
the contact force and enhance the sensitivity of the sensor. A series of ridge texture samples with
different heights (0.9, 4, 10 µm), different widths (0.3, 0.5, 0.7, 1 mm), but the same spatial period
(2 mm) of ridges were used in the experiment. The experimental results prove that the stochastic
resonance algorithm can significantly improve the signal characteristic of the output signal of the
sensor. The sensor has the capability to detect fine ridge texture information. The mean relative error
of the estimation for the spatial period was 1.085%, and the ridge width and ridge height, respectively,
have a monotonic mapping relationship with the corresponding model output parameters. The
sensing capability to sense a fine texture of tactile senor surpasses the limit of human fingers.

Keywords: tactile sensor array; solid–liquid composite structure; stochastic resonance; texture
detection; sensitivity; signal characteristic

1. Introduction

The tactile sensor can provide useful contact information for robot feedback and control
to better complete manipulation tasks in a complex environment. Existing research on
tactile sensors has achieved monitoring of static contact information, such as temperature,
curvature, and contact force [1–3], but the research on the acquisition of dynamic contact
information is not thorough enough. Surface texture information, that is, the height, width,
spatial period, and other texture shape information of the contacted object, is an important
part of the dynamic contact information. It has been proved that the tactile sensing detection
of the surface texture information of the object is helpful for dexterous manipulation [4,5]
and minimally invasive surgery [6,7]. Vision is also an effective method to obtain surface
texture information [8], but due to the uncertainty of the viewing angle during operation,
the visual perception is often limited. In addition, it is noteworthy that the sensing process
of the tactile sensor is the exploratory movement of the sensor sliding on the surface to
obtain texture information, such as vibration information [9]. In other words, as long as
the sensor has sufficient performance and can touch well the object, the surface texture
information of the object can be obtained even under complex manipulation conditions.

Some existing researches use multi-array tactile sensors and fast Fourier transform
(FFT, hereafter) technology to obtain characteristic signals and estimate the surface texture
information of objects, which had certain limitations. In 2011, C.M. Oddo et al. [10,11]
developed a 2 × 2 MEMS piezoresistive tactile sensor array with high spatial resolution
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and sensitivity and integrated it on the fingertips of humanoid robot fingers with bionic
fingerprints. When actively touching, it could quantitatively evaluate the ridge texture with
a spatial period difference as low as 40 µm (400, 440, 480 µm spatial periods, 1 mm ridge
height). H.B. Muhammad et al. [12] proposed a capacitive tactile sensor array based on
silicon MEMS, which resolved forces in the sub-mN range and successfully distinguished
fine ridge textures with ridge heights of 200 µm and spatial periods as low as 200 µm.
However, the research mentioned above on object surface information detection mainly
focused on the estimation of the spatial period of ridge textures in the micron range and did
not reach the capability to detect fine textures with ridge heights of several microns, such
as human fingers [13,14]. In order to eliminate the influence of the difference between the
mechanical properties of structural materials such as friction and frequency characteristics
and human fingers on the sliding tactile signal, in 2019, Yasutoshi Takekawa et al. [15–17]
developed a wearable skin vibration sensor to detect the skin-propagated vibration caused
by finger rubbing an object surface, and successfully identified the spatial period and ridge
height information of the fine ridge texture by calculating the power spectral density of the
sensor output signal. The minimum ridge height of the fine texture exceeded the limitation
to 25 µm, but in this situation, the characteristic of the signal was already very weak, and
the detectable performance of the signal was limited.

Another commonly used method is using the tactile signal obtained by the designed
tactile sensor for machine learning to classify and identify the surface texture of the object.
In 2012, in order to achieve the ability of human fingertips to detect texture, Jeremy A.
Fishel et al. [18,19] proposed Bio-Tac, a tactile finger with a solid–liquid composite structure,
which could transmit the vibration of the skin through an incompressible liquid. The tactile
finger could detect continuous vibrations as small as a few nanometers at 330 Hz and very
small transient events that occurred when small particles fell on the finger, which was
beyond human fingers’ capabilities. The Bayesian exploration method was used to classify
16 natural textures with an accuracy of 99.6%. In 2017, Udaya B. Rongala et al. [20,21]
imported the output signal of the 2× 2 piezoresistive tactile sensor array into the lzhikevich
neuron model to enable neuromorphic artificial touch and simulate the firing pattern of
mechanoreceptors in the skin. The generated neural spike pattern was used to perform
neural network learning and classification of 10 natural textures, including glass materials
with a grain size of less than 90 nm. In 2019, Sriramana Sankar et al. [5,22] designed a
flexible bionic finger integrated with a 3 × 3 tactile sensor array. When the finger touched
seven different texture samples (flat, ridges, bumps), the corresponding tactile response
also transformed into a neural spike pattern with different characteristics that simulated the
firing pattern of mechanoreceptors, and the support vector machine classifier was used to
learn and classify with an accuracy of 99.21%. The above research revealed the capability of
simulating human tactile behavior and accurately classifying different texture information,
including fine textures, but the detailed texture information is still insufficient, and the
complex structure encapsulation and machine learning algorithms limit their applications.

To sum up, research on texture detection needs more extensive and systematic investi-
gations. FFT processing directly on the tactile signals can quickly and easily obtain texture
feature information, such as the spatial period and ridge height of the ridge texture. How-
ever, due to the limited performance of most simple-structured tactile sensors to discern the
tiny structural variation, FFT processing does not perform well in situations of fine texture
detection. Thus, a tactile sensor with a higher sensitivity is needed. However, the capability
of the existing simple tactile sensor to detect weak force changes is still far behind that of
humans [23]. Another common processing method is the machine learning method. The
tactile signals are used to train the models to accurately classify different textures, but that
needs to go through a complicated learning process, and detailed feature information of
the surface textures cannot be detected. Therefore, a universal, real-time method based on
a tactile sensor with a simple structure for fine texture detection is extremely needed.

In the process of detecting fine textures, the signals generated by the tactile sensor
are weak and may even be submerged in system noise, such as touch action noise, circuit
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noise, etc., resulting in its characteristics being difficult to detect. The stochastic resonance
algorithm (SR, hereafter) is a commonly used weak signal detecting method, which adds
random noise to the weak signal to improve the detectability of the target signal or en-
hance the accuracy of information interpretation [24]. Through a series of psychophysical
experiments, Kadir Beceren et al. [25,26] proved that SR could affect the difference thresh-
old of human tactile sensation, and appropriate noise can enhance the accuracy of tactile
sensing. Yuichi Kurita et al. [27] used the SR to develop surgical forceps with sensorimotor-
enhancing capabilities and verified its texture detection capability, which was of great help
to surgeons in laparoscopic surgery. To this end, we have introduced the SR into our tactile
sensor system to enhance the capability of our tactile sensor for fine textures detection.

In this article, we use a 2 × 2 solid–liquid composite flexible tactile sensor array to
obtain tactile information. A method of fine texture detection based on SR is put forward.
By adding random noise to the output signal of the tactile sensor and inputting the mixed
signal to a bistable SR model, we obtain tactile signals with strong signal characteristics
and figure out the corresponding texture information through numerical analysis. The
presence of the flexible layer will lead to a decrease in the transmission efficiency of the
contact force, and the thicker the flexible layer, the greater the attenuation of the contact
force [28,29]. It is meaningful to use a solid–liquid composite conduction structure to
reduce the attenuation of the contact force through a flexible layer. Most of the existing
tactile texture detection methods are aimed at the detection of micron-level fine texture or
can only classify a limited number of textures. The method proposed in this article has
the potential to detect sub-micron fine ridge texture. In addition, the authors estimate the
texture features of the fine ridge texture, such as the spatial period, ridge height, and ridge
width. At last, the authors present the signal characteristic change of the output tactile
signal and the error of the texture characteristic value.

The rest of this article is organized as follows. The tactile sensor device is presented
in Section 2, followed by the introduction of the tactile signal processing methodology
based on SR in Section 3. Detailed experiments and experimental results are presented in
Section 4. Subsequently, the results are commented on in Section 5. Finally, the conclusion
and prospect are discussed in Section 6.

2. Tactile Senor Device

In this article, we propose a 2 × 2 piezoresistive solid–liquid composite flexible sensor
array to detect fine texture based on previous research in the laboratory [30]. Piezoresistive
sensors are small in size, have a good frequency response, and are especially sensitive to
small pressure differences, which are easier to meet our requirements for tactile sensor
arrays. The structure of the sensor is a thin flexible layer encapsulating the fluid and the
silicon-sensing elements inside. We replaced some parts of the traditional single flexible
layer with incompressible liquids to utilize the characteristics of high hydraulic transmis-
sion efficiency to reduce the attenuation of the contact force. Different from traditional
hydraulic devices, the fluid chamber of this sensor cell is made of soft material, and there
is a coupling effect between its deformation and the encapsulated liquid compression.
Therefore, when the flexible layer is deformed by external pressure and compresses the
liquid inside, the encapsulated liquid will generate pressure to act on the sensing elements,
causing it to produce a corresponding output. After the output signal is conditioned by
the NSA2860 chip, the encapsulated sensing cell has good sensing performances, with a
sensitivity of 3.46 mV/mN, linearity of 0.996, repeatability error of 1.2%, and hysteresis
error of 1.5%. The force sensing range is from 1 mN to 1.5 N.

The structure of the sensing cell is shown in Figure 1a. The sensor array mainly
consists of four parts: flexible printed circuit board (FPCB, hereafter) base, silicon pressure
sensing die, silicone oil liquid layer, and polydimethylsiloxane (PDMS, hereafter) layer. The
overall size is 12 mm × 12 mm × 2.5 mm, including four sensor cells in a 2 × 2 layout, with
the spacing of sensor cells of 5.6 mm. The thickness of the PDMS flexible layer is 0.6 mm.
The selected piezoresistive sensor element was a cubic silicon pressure sensor die (Silicon
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Microstructures, Inc., SM5108C-060, Milpitas, CA, USA). The silicone oil liquid layer was
filled with 50cSt silicone oil (Dow Corning Inc. pmx-200, Midland, MI, USA). The silicone
oil liquid not only acts as a transferring medium of pressure conduction but also effectively
protects the silicon-based sensing element. The schematic diagram of the sensor array is
shown in Figure 1b. To sum up, the whole sensor has a size similar to a human fingertip
and is made of flexible material, which is easy to integrate on the prosthetic fingertip with
various curves on its surface.
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Figure 1. Schematic diagram of sloid–liquid composite tactile sensor array structure: (a) cross-section
diagram of the sensing cell structure; (b) diagram of the whole tactile sensor array; (c) flow diagram
of sensor fabrication process.

The sensor fabrication process is shown in Figure 1c. Firstly, paste the sensing element
on the FPCB base and connect the four pads on the sensing element and the corresponding
pads on the FPCB base with gold wires, respectively; secondly, design the mold and obtain
the shaped PDMS layer through casting and curing, then paste it on the FPCB base to form
the liquid cavity; thirdly, evacuate the air in the liquid cavity and fill it with silicone oil in
the vacuum box; fourthly, take the sensor out and seal the structure with sealant; finally,
integrate the prepared sensor array on the fingertip of the prosthesis.
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3. Methodology
3.1. Texture Detection

The following is the sensing method for texture detection based on the designed tactile
sensor. As shown in Figure 2, the feature information required to describe the ridge texture
of a sample includes the spatial period sp, the ridge height rh, and the ridge width rw.
The tactile sensor array with sensing cell spaced d is integrated on the prosthetic fingertip
and slides horizontally across the surface of the texture sample at a certain speed v from
left to right. The two adjacent sensing cells successively contact the ridge of the sample
and are both affected by normal force F so that the sensing element inside them generate
corresponding voltage signals. Since the ridges are uniformly distributed on the sample
surface, these signals have a period of T; in other words, they have a principal frequency of
fprin. Moreover, the two adjacent sensing cells will successively generate the same signal for
the same ridge. The time interval between the two signals is ∆t. It can be easily figured out
that the spatial period sp and the ridge width rw are related to the characteristic parameter
fprin × ∆t, which is

sp =
d

fprin × ∆t
, rw = n × sp (1)

where n is the ratio of the ridge width to the spatial period in the ridge texture, which can
be obtained from the time domain information of the signal. The ridge height rh is related
to the amplitude information A of the principal frequency of the signal [30].
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Figure 2. Schematic diagram of texture detection of tactile sensor array: (a) cross-section diagram of
the ridge texture sample; (b) fingertip integrated with tactile sensor array starting to slide; (c) ridge of
texture compressing the sensing cell.

This article focuses on the detection capability of the tactile sensor array for fine ridge
textures whose ridge height rh less than 10 µm (this height is close to the detection limit of
a human finger). The signal generated when the tactile sensor array slides over the ridge
texture surface is mainly composed of two-state voltage signals, which correspond to the
positions of the ridges and grooves, respectively. However, because the height difference
between ridges and grooves is small and the detection capability of the tactile sensor array
is limited by its sensitivity, the difference between the two signal states is not obvious,
and the signals may even be submerged by system noise. Therefore, this article mainly
discussed a method to enhance signal characteristics of weak bistable signals to improve
the detection capability of the tactile sensor array.
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3.2. Stochastic Resonance Method

The bistable system stochastic resonance method is chosen to enhance the signal
characteristic of the tactile signals. When the tactile sensor array slides over the surface of
the object, it will sense the surface texture information of the object and transmit signals in
time through a limited number of sensing cells. Especially in the process of fine texture
detection, the generated tactile signals have two states, and its characteristic is weak. The
bistable system stochastic resonance method can effectively enhance some deterministic
characteristics of weak tactile signals, which is suitable for the investigation of fine texture
information detection.

As mentioned in Section 3.1, the experimental samples in this article are fine textures
with ridge heights less than 10 µm, which makes the signal characteristic of the two-state
signals generated by the tactile sensor weak. When the prepared tactile sensor slides across
the ridge texture with a right height rh of 0.9 µm at a certain speed v, the time-domain
signal generated has a weak periodicity, as shown in Figure 3a. After FFT processing, its
frequency-domain signal has a prominent amplitude at its principal frequency, as shown
in Figure 3b. However, it is difficult to obtain detailed texture information such as ridge
width due to the excessive system noise mixed in the time-domain signal. Therefore, we
first established a suitable bistable system stochastic resonance model to enhance the signal
characteristic of weak tactile signals. Then, the output signal is processed by FFT to obtain
relevant information, such as the principal frequency and the amplitude of the principal
frequency, so as to obtain more feature information of the fine ridge texture.
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In this article, a bistable system stochastic resonance model based on the Langevin
equation is established, which is{ .

x = −V ′ (x) + K(s (t) + Γ(t))
< Γ(t) > = 0, < Γ(t), Γ(0) > = 2Dδ(t)

(2)

where V(x) is the nonlinear bistable potential function, and

V (x) = − a
2

x2 +
b
4

x4 a > 0, b > 0 (3)

s(t) is the periodic tactile signal; Γ(t) is the input Gaussian white noise with intensity D and
0 mean value. K is the normalized transformation factor of the input mixed signal. By com-
paring the frequency range of the generated tactile signal and the intensity (

√
D = 0.3 mV)

of input Gaussian white noise with standard system parameters, we determine the system
parameter (a = b = 16, K = 130,000). The determined bistable system is shown in Figure 4.
The system will appear stochastic resonance effect under the common drive of the input
weak periodic tactile signal and Gaussian white noise so that the system state jumps be-
tween the two steady states. The output is a bistable signal with characteristic information
of the original signal.
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4. Experiment
4.1. Experiment Platform

The experimental loading platform for the object surface texture detection experiment
is shown in Figure 5. The prosthetic fingertip integrated with the tactile sensor array was
mounted on a motion platform under position/velocity control. The motion platform is
composed of a three-axis precision linear platform (M-VP-25XL-XYZ, Newport Corporation,
Irvine, CA, USA) having travel of 25 mm along each axis and a long-travel linear motor
stage (M-IMS600LM, Newport Corporation, Irvine, CA, USA) having a maximum speed of
500 mm/s with a minimum incremental motion of 20 nm. Thus, the prosthetic fingertips on
the motion platform can touch the texture samples with different forces and scan across the
surface texture sample with various velocities. The ridge texture sample was mounted on a
fixed stage by a designed clamp. The output voltage generated by the piezoresistive die
in the tactile sensor array is conditioned by the NSA2860 chip and then are collected by a
NI-DAQ device (USB-6212, National Instruments Corporation, Austen, TX, USA). The ridge
texture samples are a series of silicon wafers with different ridge heights and ridge widths,
which are produced by exposure, development, and etching using a photolithography
method, as shown in Figure 5b,c. A total of 12 texture samples are presented, and detailed
parameters of them are shown in Table 1.
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6© three-axis precision linear stage, 7© long-travel linear motor stage, 8© clamp; (b) silicon wafer with

ridge texture; (c) SEM image of the micro-structure of the silicon wafer.

Table 1. Parameters of ridge texture sample.

NUMBER RIDGE HEIGHT
rh (µM)

RIDGE WIDTH
rw (µM)

SPATIAL PERIOD
sp (µM)

S11

10

300

2000

S12 500
S13 700
S14 1000

S21

4

300
S22 500
S23 700
S24 1000

S31

0.9

300
S32 500
S33 700
S34 1000
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4.2. Experiment Detail

The main experimental process is as follows. As shown in Figure 6, the sensing cells
are distributed on the surface of the tactile sensor in a 2 × 2 array, numbered 1#, 2#, 3#, 4#,
respectively, and the distance of two adjacent sensing cells along the x-axis and y-axis are
equal. When the tactile sensor starts from the initial position and slides across the sample
surface along the x-axis direction that is perpendicular to the ridge texture at a certain
speed, we can obtain the time interval ∆t of the signals generated by adjacent sensing cells
for the same ridge. The positive x-axis is selected previously as the sliding direction of the
tactile sensor; thus, the signals generated by the sensing cells 1#, 3# and 2#, 4# form a signal
group with time-domain correlation, respectively and the two signal groups are in a control
relationship with each other. Selected the signal group (1#, 3#) as the experimental result to
validate the method proposed in this article.
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Figure 6. Tactile sensor sliding across the ridge texture sample.

The processing flow of the raw output signal of sensing cell 3# is shown in Figure 7.
The sample used is the S31 sample with a ridge height of 0.9 µm, a ridge width of 300 µm,
and a spatial period of 2000 µm. Due to the inevitable irregular jitter of the linear stage
during the sliding experiment, the signal exhibited a baseline drift phenomenon, as shown
in Figure 7a. The signal passed through a high-pass filter with a cut-off frequency of 1 Hz to
remove low-frequency interference, and we obtained the original signal with a baseline at
0, as shown in Figure 7b. After inputting the original signal and the Gaussian white noise
with a certain noise intensity into the bistable system stochastic resonance model based
on the Langevin equation, the first-order ordinary differential Equations (2) and (3) are
solved by the fourth-order Runge–Kutta algorithm. The proper noise intensity of Gaussian
white noise can make the output signals have a larger signal-to-noise ratio (SNR, hereafter),
but because the amplitude difference of the input signals is small and the optimal SNR
of output is not the goal, we selected the same noise intensity through prior experiments
and generated the noise signal with the Matlab function. The signal processed by SR is
shown in Figure 7c, and its signal characteristic has been significantly enhanced. Since the
signals have obvious characteristics, the time interval ∆t can be easily obtained through
correlation analysis with the processing result of the signal generated by sensing cell 1#.
The frequency-domain signal obtained by FFT processing contains the principal frequency
information fprin and its amplitude information A. The difference between the two states of
the time-domain signal is obvious, but there is still a certain amount of noise that interferes
with the acquisition of texture information. Passed the randomly intercepted signal segment
through a software-designed threshold comparator with a threshold of 1 V to obtain a
state-unified signal, as shown in Figure 7d. The ratio of the high-level state of the signal
segment to the level period is calculated and mapped to the ratio n of the ridge width to
the spatial period in the ridge texture. The texture feature information of the corresponding
sample can be figured out by combining the parameter results obtained above.
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4.3. Experiment Result

Signals processed by SR exhibit a stronger signal characteristic in both time and fre-
quency domains. Figure 8 shows the output voltages (i.e., 1# and 3#) of two piezoresistive
die located at two adjacent tactile sensing cells. These signals have been previously pro-
cessed in advance with a high-pass filter to remove low-frequency interference. As shown
in Figure 8a, it is observed that the output original signal has strong random noise, espe-
cially, there is only slight periodic vibration when the tactile fingertip slides over the fine
texture sample. Meanwhile, the time interval, as described in Section 3.1, is difficult to be
measured from the two original outputs. By comparing Figure 8a,b, we can find that after
the original signal is processed by the bistable system stochastic resonance model, the signal
characteristic of the signal is significantly enhanced. The two states of the SR-processed
signal have an obvious difference and have a large noise tolerance. Moreover, the dynamic
part is mainly composed of periodic signals, which correspond to the stage of the sensor
sliding over the surface ridge texture. Others parts are the static parts that are caused by
the bistable system stochastic resonance model driven by random noise. The signal state
carried out transition switching according to the Kramers transition rate rk, which depends
on the noise distribution and intensity. Therefore, we can easily obtain the time interval
through correlation analysis. Comparing Figure 8c,d, it can be found that the stochastic
resonance method does not affect the principal frequency of the original periodic signal
and makes its amplitude more prominent than other frequencies, which is recognized as
noise. The difference between the amplitude of the principal frequency corresponding to
the two sensing cells is caused by the difference in the structure during manufacturing.
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Combining the information obtained above, we can figure out the spatial period and
ridge height information of the texture according to the method proposed in Section 3.1.
The calculation result of the space period of each sample is shown in Figure 9a. The average
estimation error of the space period is 0.0217 mm, the average relative estimation error
is 1.085%, and the maximum estimation error is 0.0465 mm. The largest estimation error
occurs in the experiment of the texture sample with the smallest ridge height. The finer the
texture, the more seriously the signal generated by the tactile sensor is affected by noise.
The SR method plays an auxiliary role in noise reduction. Figure 9b shows the relationship
between the principal frequency amplitude of the signal output by sensing cell 3# for each
sample and the corresponding ridge height. It is observed that the principal frequency
amplitude is positively correlated with the ridge height. The output signal amplitude of the
same ridge height experiment fluctuates to a certain extent because there are manufacturing
height errors in the silicon wafer sample, and the fluctuation of the static part also affects
the result. However, their influence will decrease with the increase in the data volume of
the dynamic part. At this end, we can establish the mapping relationship between the ridge
height and amplitude to detect the ridge height of the texture.
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Figure 9. Experimental result of texture detection: (a) the result of spatial period estimation; (b) the
result of ridge height recognition.

The ridge height detection experiment of the texture samples is as follows. From the
SR-processed signal output by tactile cell 3#, as shown in Figure 8b, five cycles of signals
are arbitrarily intercepted and processed by a threshold comparator. The output result is
shown in Figure 10a. This result removes the unstable part of the SR-processed signal and
preserves the high-level part, which corresponds to the ridge in the texture sample to the
greatest extent. The ratio of the high level to the total signal length in the processing result
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Figure 9. Experimental result of texture detection: (a) the result of spatial period estimation; (b) the
result of ridge height recognition.

The ridge height detection experiment of the texture samples is as follows. From the
SR-processed signal output by tactile cell 3#, as shown in Figure 8b, five cycles of signals
are arbitrarily intercepted and processed by a threshold comparator. The output result is
shown in Figure 10a. This result removes the unstable part of the SR-processed signal and
preserves the high-level part, which corresponds to the ridge in the texture sample to the
greatest extent. The ratio of the high level to the total signal length in the processing result
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of the output signal for each sample generated by sensing cell 3# is calculated, and the
relationship between the result and n is shown in Figure 10b. Theoretically, the calculated
ratio should be equal to n. However, because the SR method has certain randomness, the
high-level part of the signal cannot accurately represent the ridge width, and the errors
of the calculated ratio are large. However, it can be seen from Figure 10b that when the
intervals between the ridge widths are large, there is an obvious mapping relationship
between the average ratio and n. Thus, the ridge width of the ridge texture sample can be
obtained from the output signal.
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Figure 10. Experimental result of texture sample ridge width detection: (a) signal segment passed
through threshold comparator; (b) result of ridge width recognition.

5. Discussion

In the existing research on fine texture detection using tactile technology, HB Muham-
mad et al. [12] successfully distinguished ridge texture samples with a ridge height of
200 µm and a spatial period as low as 200 µm. Yasutoshi Takekawa et al. [17] succeeded in
obtaining the spatial period and ridge height information of ridge texture samples with
ridge heights as low as 25 µm. In this article, we tested fine ridge texture samples with
different ridge heights (0.9, 4, 10 µm) and different ridge widths (0.3, 0.5, 0.7, 1 mm) but
with the same spatial period (2 mm). The mean relative error of the estimation of the space
period was 1.085%. The ridge width and ridge height had a mapping relationship with their
corresponding parameters, respectively, and the error tolerances are acceptable. Under
more systematic experiments, the feature information of the fine texture with a ridge height
as low as 0.9 µm can be detected, which indicated that our tactile sensor coupled with the
SR method has the potential to achieve the detection of texture with a sub-micron or lower
ridge height.
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More strikingly, we have completed the detection task of fine textures with fewer data
sets based on a sensor array with a simple structure and a simple method. In 2012, Jeremy
A. Fishel et al. [19] achieved the classification of 16 natural textures through simple tactile
fingers supplemented by Bayesian exploration methods, with an accuracy of 99.6%. In
2017, Udaya B. Rongala et al. [21] used neural network methods to identify 10 natural
textures, including glass materials with a grain size of less than 90 nm. The aforementioned
methods all require a large number of data sets and a complex learning and training process
and neglect the detailed information of the texture, but just judge the texture category
of a given sample. The SR method we chose can detect weak periodic signals under the
condition of a shorter data set, and the output results have obvious signal characteristics for
subsequent calculations. This method generally has an effect on low-frequency signals, but
the frequency of periodic signals for texture detection may be as high as 300 Hz. Thus, when
the frequency of the periodic signal to be detected is high, the frequency detection range
can be increased by performing a normalized scale transformation on the bistable system.

In more detail, the noticeable difference in mind caused by external stimulus difference
in human finger touches can be used to evaluate the fine texture detection capability of the
sensor. In 2012, Kadir Beceren et al. [25] validated the enhancement effect of SR on human
dynamic tactile through a series of psychophysical experiments. The smallest noticeable
difference is 1.6 µm under the condition of no noise input but reached 0.93 µm after adding
the appropriate noise, which is similar to the detection capability of our tactile sensor after
SR enhancement.

6. Conclusions and Outlook

In this article, a flexible solid–liquid composite tactile sensor array developed by our
laboratory was used to systematically investigate the performance of tactile sensors in fine
ridge texture detection through a bistable system stochastic resonance model, including
estimation of the spatial period and recognition of ridge height and ridge width. Our
experiment used several fine ridge texture samples to provide a weak periodic stimulus
to validate the detection capability of the tactile sensor array. The results show that this
method can significantly improve the signal characteristic of the output signal. Regarding
the detection of texture information, the results show that the mean relative error of
the estimation for the spatial period is 1.085%, and the ridge width and ridge height,
respectively, have a monotonic mapping relationship with the corresponding model output
parameters. Compared with the human finger experiment, the tactile sensor has a similar
capability to sensing fine textures, which shows that the sensor designed in the laboratory
has a very promising application prospect.

In future work, the following aspect can be improved and expanded on the work
of this article: explore the accurate estimation method of ridge width and ridge height,
consider the self-adaptability of the model parameters of the stochastic resonance bistable
system, and extend the fine texture detection method to non-periodic ridge texture.
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