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Abstract: In this study, at two different fifth generation (5G) low-frequency bands (3.7–4.2 GHz
and 5.975–7.125 GHz) and based on nonuniform transmission lines (NTLs) theory, a compact three-
quarter-wave resonators interdigital bandpass filter (IBPF) is analyzed, designed, and fabricated.
The compact proposed filter is considered as a good candidate for reconfigurable 5G low-frequency
bands and ultrawide band (UWB) antenna, which will reduce the size of the final RF communication
system. Firstly, a uniform transmission line (UTL) IBPF at these two bands is designed and tested;
then the NTL concept is applied for compactness. For both UTL and NTL IBPFs, different parametric
studies are performed for optimization. At the first frequency band, size reductions of 16.88% and
16.83% are achieved in the first (symmetrical to the third resonator) and second λ/4 resonator of UTL
IBPF, respectively, with up to 36.6% reduction in the total area. However, 16.46% and 16.33% size
reductions are obtained in the first (symmetrical to the third resonator) and second λ/4 resonator,
respectively, at the second frequency band with a 40.53% reduction in the whole circuit area. The
performance of the proposed NTL IBPF is compared with the UTL IBPF. The measured reflection
coefficient of the proposed NTL IBPF, S11, appears to be less than −10.53 dB and −11.27 dB through
3.7–4.25 GHz and 5.94–7.67 GHz, respectively. However, the transmission coefficient, S12 is around
−0.86 dB and–1.7 dB at the center frequencies, fc = 3.98 GHz and 6.81 GHz, respectively. In this
study, simulations are carried out using high-frequency structure simulator (HFSS) software based
on the finite element method (FEM). The validity of the proposed theoretical schematic of this filter is
proved by design simulations and measured results of its prototype.

Keywords: 5G; interdigital bandpass filter (IBPF); nonuniform transmission lines (NTLs) theory;
uniform transmission line (UTL); HFSS

1. Introduction

Bandpass filters (BPFs) are mainly used in many RF/microwave applications to con-
trol the required frequency band [1]. The most popular compact structure BPFs are the
interdigital and hairpin BPFs (HPBF and IBPF) [2,3]. Many techniques are applied to HPBF
for compactness and performance enhancement such as using defected ground structures
(DGS) [4], defected microstrip structures (DMS) [5], artificial left-handed and right-handed
transmission lines (LHRHTLs) [6], multilayers techniques [7], high dielectric substrates [8],
and nonuniform transmission lines (NTLs) [9,10]. However, HPBF suffers from high-order
harmonics, which is not suitable for reconfigurable 5G narrowband and UWB antenna
applications such as cognitive radio networks (CRNs). IBPFs are preferred over HPBFs
in modern wireless communication systems due to their excellent performance, wide
passband, spurious second harmonic suppressions, and compact size of λ/4 resonators.
The problem of second harmonics in HPBFs is resolved in this work using IBPF. IBPF is
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designed and used in many applications at different frequency bands [8,11–16]. Further
harmonics suppression in the IBPF response is achieved using different techniques such
as etching DGS to the ground [17], etching spurlines on the resonators [18], and the use
of under-coupled quarter-wavelength resonators [19]. Several size-reduction technologies
are used to reduce the circuit area of the IBPF. Low-temperature co-fired ceramic (LTCC)
technology is employed in [20] to design a compact ISM band IBPF. The authors in [21]
designed a compact 2.8 GHz IBPF based on a composite right–left-handed (CRLH) cell res-
onator using an improved interdigital capacitor combined with a meander electromagnetic
band gap (EBG). Step impedance resonators (SIRs) were used to reduce the size of Ku- band
IBPF, which was fabricated using a silicon-based substrate on micro-electro-mechanical
systems (MEMS) in [22]. Compact UWB IBPF was designed in [23] using multilayer liquid
crystal polymer technology (LCPT). Moreover, in [24,25], compact inject-printed IBPFs
were designed using LCPT. As compared to the conventional end-coupled BPF, a 60%
size reduction was obtained in [26] using a modified IBPF with alternate λ/4 and λ/2
resonators to obtain a narrow X-band (9.85–10.3 GHz). In [27], a compact X-band IBPF
was designed using an ultra-thin LCP substrate. Choosing a high dielectric substrate helps
in size reduction as in [8,11,17,18]. A compact K-band 20.4 GHz IBF was designed using
two layers of silicon substrate based on MEMS technology in [16]. The authors in [28]
designed a compact 0.8 GHz IBPF using a spiral and folded SIR. However, in [29], a high
selectivity IBPF with 10 controllable transmission zeros (TZs) was proposed using square
complementary split-ring resonators with open-circuited stubs. Recently, millimeter-wave
(mmW) IBPFs based on integrated passive devices (IPDs) were designed in [30,31]. In [30],
through-quartz vias (TQVs) were added to the proposed IBPF in [31] for coupling ad-
justment and size reduction. However, for IBPF’s compactness, wideband, and better
harmonics suppressions, through-silicon via (TSV)-based 3-D integrated circuit (3-D IC)
technology was used in [30].

To avoid the fabrication difficulties and high cost in designing the required compact
IBPF, NTLs theory [9,10,32–34] is applied for the first time in this paper to reduce its size at
two 5G low-frequency bands proposed by the federal communication commission (FCC):
licensed (C-Band: 3.7–4.2 GHz) and unlicensed (5.975–7.125 GHz) [35]. Although the NTLs
concept was previously applied to HPBF in [9,10], resulting in a 17.79% size reduction in its
λ/2 resonators, the reduction in the total circuit area is not significant as compared to the
results reported in this work. Due to the importance of UWB technology [36–43] and 5G
low-frequency bands [10,44–47] in the modern wireless communication system in terms of
high data rate, compatibility with consumer demand, and low latency, switching between
these bands is more practical in terms of size and time. For this purpose, as shown in
Figure 1, the designed filter will be utilized as a part of our future project that aims to design
a compact reconfigurable UWB/5G low-frequency band antenna suitable for cognitive
radio network (CRN) applications. Some recent works using this concept can be found
in [48–52]. The chosen substrate material is Rogers RO4003C (
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r = 3.55, tanδ = 0.0027,
and h = 0.813 mm) and the copper thickness is 0.035 mm. The remainder of the paper is
organized as follows: Section 2 explains the NTLs theory and how it is applied to the filter’s
resonators. Section 3 explains the methodology of the work, while Section 4 demonstrates
the results and discussions.
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2. Nonuniform Transmission Lines (NTL) Theory

Compact-size passive microwave components that are more effective and less expen-
sive are crucial for the compatibility with current industrial needs in the modern wireless
communication system. Recently, NTLs theory [9,10,32–34] has been widely used in many
microwave components to reduce their size by reducing the length of their conventional
uniform transmission lines (UTLs) at different percentage levels. Using this theory, com-
pactness is achieved when UTL with length d0, constant characteristics impedance Z0, and
propagation constant β is replaced by the equivalent NTL with smaller length d (d < d0),
varying characteristics impedance Z(z), and propagation constant β(z). The performance of
these lines will be equivalent if their ABCD parameters are equal. Both UTL and NTL are
demonstrated in Figure 2.
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The ABCD parameters of UTL are[
A0 B0
C0 D0

]
=

[
cos(θ0) jZ0 sin(θ0)
j

Z0
sin(θ0) cos(θ0)

]
(1)

where θ0 is the electrical length (β0 d0) of the UTL.
To obtain the ABCD parameters of NTL, it is subdivided into K UTLs as illustrated

in Figure 2b and then their ABCD parameters multiplied to obtain the total ABCD matrix
as follows [

A B
C D

]
= ∏K

i=1

[
AK BK
CK DK

]
(2)

where Ai = Di = cos (∆θ), Bi = j Z(z) ((i − 0.5)∆z) sin(∆θ), Ci = jsin (∆θ)
Z ((i−0.5)∆z) , i = 1, 2 . . .

K, ∆z = d/K, and ∆θ = 2π
λ ∆z = 2π f

c
√

εe f f ∆z. Here, c is the speed of light and εe f f is the
effective dielectric constant.

The NTL’s Z(z) can be expanded in a truncated Fourier series as follows

ln(Z(z)/Z0) = ∑N
n=0 Cn cos(

2πnz
d

) (3)

The number of coefficients N is chosen to be 10 for more convergence [53]. The
Fourier series coefficients, Cns, are optimized using a built-in MATLAB function known
as “fmincon” to minimize the error function given by (4) through the frequency bands
(3.7–4.2 GHz) and (5.975–7.125 GHz) to have the performance equivalency between UTL
and NTL

Error =

√
1
M ∑M

m=1
1
4

(∣∣∣A− A0

∣∣∣2 + Z−2
0

∣∣∣B− B0

∣∣∣2 + Z2
0 |C− C0|2+|D− D0

∣∣∣2) (4)

where M is the number of the frequencies fm (m = 1, 2, . . . M) within the desired band
with frequency increment ∆f and A0, B0, C0, and D0 are the ABCD matrix parameters
of UTL defined in (1), respectively. Two constraints should be considered to restrict the
error function in (4) such as physical matching: Z(0) = Z(d) = 1 (NTL and UTL should
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have the same widths at the two ends) and easy fabrication with allowable minimum and
maximum widths: Zmin ≤ Z(z) ≤ Zmax, where Zmin and Zmax are the minimum and the
maximum normalized characteristic impedances of the UTL, respectively. According to
the study carried out in [9,10] on designing the NTL HPBF, the width of the NTL resonator
should be between the UTL filter’s resonator width (Wres) and the lowest allowed width for
fabrication, Wmin= 0.3 mm. In this work, using NTLs theory and based on these constraints,
each UTL resonator of IBPF was replaced with its equivalent NTL resonator.

3. Design of The Proposed Compact NTL 3.95 and 6.55 GHz IBPFs

To compare the compactness achieved in the NTL IBPF at both bands, a UTL IBPF
was firstly designed, then NTLs theory was applied for compactness. UTL IBPF consists
of an array of n open-circuited λ/4 resonators, which are also short-circuited at the other
end in alternative orientation as shown in Figure 3a, where li’s, Wi ‘s, θt, Y1 =Yn, Si,i+1 (i = 1
to n) are the resonators’ lengths, resonators’ widths, electrical length for tapping position,
input (=output) characteristics admittances and the space between adjacent resonators,
respectively. The equivalent circuit of IBPF is shown in Figure 3b, where Lis, Cis, Ci,i+2, and
Ct are the resonator’s inductance, the resonator’s capacitance, the coupling capacitance
between resonators, and the compensate capacitance for tapping, respectively. According
to [1], the design equations for symmetrical coupled lines IBPF are

θ = π
2

(
1− FBW

2

)
, Y = Y1

tan(θ) , Ji,i+1 = Y√
gi gi+1

, for i = 1 to n− 1, Yi,i+1 =

Ji,i+1 sin θ, for i = 1 to n− 1, Yt = Y1 −
Y2

1,2
Y1

and θt =
sin−1(

√
Y sin2 θ
Y0g0g1

)

1− FBW
2

(5)
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In this paper, n is chosen to be 3, and since the filter is symmetrical, the three resonators
have the same Y1. The g’s values of Chebyshev response lowpass prototype with 0.1 dB
passband ripple are g0 = g4 = 1, g1 = g3 = 1.0316, g2 = 1.1474. To compensate for the
frequency shift of the tapping effect at the input and output, a capacitance Ct is loaded at
the input and output resonator, and it is equal to

Ct =
cosθt sin3 θt

w0 Yt

(
1

Y2
0
+ cos2 θt sin2 θt

Yt

) (6)

Due to this capacitance, a small length is added to the input and output resonators
and can be calculated using

∆LC =
λg

2π
tan−1(

2πFcCt

Y1
) (7)

where λg is the guided wavelength at the center frequency, FC, of the required band. The
coupling factor (ki,i+1) is used to determine the space between two adjacent resonators (S)
and can be found using

ki,i+1 =
Z0ei,i+1 − Z0oi,i+1

Z0ei,i+1 + Z0oi,i+1
(8)

where Z0e1,2 = 1
Y1−Y1.2

, Z0O1,2 = 1
Y1+Y1.2

, Z0ei,i+1 = 1
2Y1− 1

Z0ei−1,i
−Yi.i+1−Yi−1.i

, for i = 2 to

n − 2 Z0ei,i+1 = 1
2Yi, i+1+

1
Z0ei,i+1

, for i = 2 to n − 2, Z0en−1,n = 1
Y1−Yn−1.n

, Z0on−1,n =

1
Y1+Yn−1.n

.

It should be mentioned here, in full-wave electromagnetic simulations such as HFSS,
the relation between k1,2 = k2,3 and S can be extracted using [1]

k12 = k23 =
w0

∆w± 90◦
(9)

where w0 and ∆w± 90 are the angular center frequency and absolute bandwidth between
±90◦ points, respectively.

Based on the design Equations at (5)–(9), at fc = 3.95 GHz and 6.55 GHz with frac-
tional bandwidth (FBW) = 12.66%, and 17.56%, the third order UTL IBPF at (3.7–4.2 GHz)
and (5.975–7.125 GHz), respectively, is firstly designed, then NTLs theory is applied for
compactness. For both filters, the relation between the coupling factor, k12 = k23 and S, is
shown in Figure 4. Different parametric studies are performed using HFSS on UTL IBPF
at (3.7–4.2 GHz) and (5.975–7.125 GHz) as shown in Figures 5 and 6, respectively. The
theoretical and optimized parameters are demonstrated in Table 1, where Lres1, Lres2, Lt,
and Wp are the length of the first and second resonators, tapping length, and width of the
ports, respectively. As noticed from Figure 5a, the band shifts toward low (Fl) or high (Fh)
frequencies as Lres increases or decreases, respectively, and the impedance matching level
corresponding to the optimized value of Lres2 = 10.1 mm (where S11 = S22 < −11.84 dB at
3.57–4.24 GHz) is better than that corresponding to the theoretical value Lres2 = 11.38 mm
(where S11= S22 < −9.19 dB at 3.16–3.92 GHz). The return loss is better than 10 dB when
Wres > 1.84 mm as shown in Figure 5b. Although the impedance matching at Wres = 2.06 mm
(where S11 = S22 < −11.92 dB at 3.54–4.2 = 0.658 GHz ) is 0.67% better, the BW is wider
at Wres = 1.95 mm. Figure 5c illustrates that to obtain the BW enhancement, the coupling
between resonators should be increased by decreasing S as at S = 0.8 mm (where S11= S22
< −11.84 dB at 3.57–4.24 GHz), in which the BW is wider than at the theoretical S = 0.95
mm (where S11 = S22 < −11.84 dB at 3.63–3.92 GHz) despite its better impedance matching.
Although the BW at Lt = 2.3 mm (where S11 = S22 < −9.1 dB at 3.52–4.39 GHz) is 23% wider,
Lt = 2.75 mm is selected due to its 23.14% better impedance matching as shown in Figure 5d.
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When the radius of via hole, rvia = 0.425 mm, the return loss is better than 10 dB within the
required band as indicated in Figure 5e.
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Figure 6a shows that S11 at the theoretical Lres2 is <−10 dB, but the BW shifts toward Fl
or Fh when it is greater or less than 6.81 mm, respectively. In Figure 6b at Wres = 2.25 mm,
the higher frequency of the band (7.125 GHz) is not achieved. Although the impedance
matching at Wres = 2.35 mm is better than that at Wres = 2.3 mm, 7.125 GHz is covered
at Wres = 2.3 mm. Enhanced BW is obtained at S = 0.4 mm (where S11 = S22 < −10.7 dB
at 5.28–7.17 GHz) as depicted in Figure 6c, which is better than that at the theoretical
S = 0.55 mm (where S11 = S22 < −11 dB at 6.59–6.44 GHz) in terms of BW. Figure 6c illus-
trates that at Lt =1.9 mm, there is a mismatch (where S11 = S22 < −7.62 dB at 5.19–7.41 GHz)
and the best impedance matching is obtained at Lt = 2.4 mm. Moreover, it can be noticed
that when Lt > 2.4 mm, the obtained BW is less than the required one. An acceptable
impedance matching is obtained at Wp = 1.78 mm as shown in Figure 6d. Finally, from
Figure 6e, rvia is selected to be 0.75 mm for its better BW.
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The NTLs concept is then applied to UTL IBPFs in which each λ/4 UTL resonator
is replaced with its equivalent NTL resonator. Size reductions of 16.88% and 16.83% are
achieved in the first (symmetrical to the third resonator) and second λ/4 resonators of
3.95 GHz IBPF, respectively. However, 16.46% and 16.33% size reductions are achieved in
the first (symmetrical to the third resonator) and second λ/4 resonators of 6.55 GHz UTL
IBPFs, respectively. The optimized Cns values at both frequency bands are shown in Table 2.
Further parametric studies are performed on the designed 3.95 GHz and 6.55 GHz NTL
IBPFs as shown in Figures 7 and 8, respectively. Wp1 and Wp2 in Figure 8 are the widths of
the input and output ports, respectively.

Table 1. Theoretical and optimized parameters of 3.95 GHz and 6.55 GHz UTL IBPFs.

Parameters
3.95 GHz UTLIBF 6.55 GHz UTLIBF

Calculated Optimized Calculated Optimized

k12= k23 0.091 - 0.127 -
Lres1 (mm) 11.58 10.3 7.0382 6.23
Lres2 (mm) 11.38 10.1 6.81 6
Wres (mm) 1.843 1.95 2.245 2.3

S (mm) 0.95 0.8 0.55 0.4
Lt (mm) 2.332 2.75 1.9 2.4

rVia (mm) - 0.425 - 0.75
Lp1 (mm) - 3.5 - 3
Lp2 (mm) - 5.5 3.5
Wp (mm) 1.819 1.819 1.819 1.78

Table 2. Optimized Fourier coefficients for λ/4 NTL IBPF’s resonators.

at (3.7–4.2 GHz)

Constraints: 1 ≤
¯
Z(z) ≤ 2.393

C0 C1 C2 C3 C4 C5

1st 0.2896 0.3420 −0.0105 −0.1674 −0.1339 −0.0670
2nd 0.0602 0.0825 0.0496 0.0130 −0.0038 −0.0188

C6 C7 C8 C9 C10

1st −0.0299 −0.0282 −0.0636 −0.0848 −0.0462
2nd −0.0335 −0.0514 −0.0493 −0.0342 −0.0143

at (5.975–7.125 GHz)

Constraints: 1 ≤
¯
Z(z) ≤ 2.711

C0 C1 C2 C3 C4 C5

1st 0.0043 0.0007 −0.0002 0.0004 0.0004 −0.0003
2nd 0.0222 0.0180 −0.0028 0.0026 0.0018 −0.0188

C6 C7 C8 C9 C10

1st −0.0004 −0.0001 −0.0003 −0.0009 −0.0011
2nd −0.0054 −0.0016 −0.0056 −0.0140 −0.0095
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Figure 8. Parametric studies of the proposed NTL IBPF at (5.975–7.125 GHz) (a) S, (b) Lt, (c) Wp1,
(d) Wp2, and (e) rvia.

The 2D configuration and prototype of the proposed 3.95 GHz and 6.55 GHz UTL
and NTL IBPFs are shown in Figures 9 and 10, respectively. It should be mentioned here
that the difference between the resulting resonators of NTL IBPF is due to their different
optimized Cns as illustrated in Table 2. The circuit areas for the proposed 3.95 GHz
and 6.55 GHz UTL and NTL IBPF are 18.8 × 12.2 mm2 (0.41 λg × 0.27 λg) and 14.7 ×
9.58 mm2 (0.32 λg × 0.21 λg), 16.7 × 9.83 mm2 (0.61 λg × 0.36 λg), and 13.9 × 7.02 mm2

(0.51 λg × 0.26 λg), in which 36.6% and 40.53% size reductions are obtained, respectively.
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Figure 9. (a,b) 2D configuration and (c,d) photograph of the proposed (3.7–4.2 GHz) UTL and NTL
IBPFs, respectively.
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Figure 10. (a,b) 2D configuration and (c,d) photograph of the proposed (5.975–7.125 GHz) UTL and
NTL IBPFs, respectively.

4. Result and Discussion

The comparison between the simulated and measured results of the UTL and NTL
filters is illustrated in Figure 11 and Table 3. The proposed 3.95 GHz and 6.55 GHz
NTL IBPFs provide enhanced BWs of 0.05 GHz and 0.58 GHz and second harmonics
suppression (HS) up to 11.25 GHz and 20 GHz, respectively. The discrepancy between the
simulated and measured results is due to fabrication tolerance, imperfect soldering of SMA
connectors, imperfect filling of via holes, and the difference between the simulation and real
measurement environments. It should be mentioned here that due to the nonuniformity
of the NTL resonators and the small space between them (S), they will be overlapped
using chemical etching. This overlapping is removed manually and resulted in S being
different than the optimized one, which can be noticed in the discrepancy between the
simulated and measured results of the NTL filters. The acceptable response of the NTL
IBPF is obtained thanks to the efficient use of the MATLAB built-in function “fmincon.m”,
which optimizes the Z(z )’s Cns of the NTL resonators by reducing the error function in (4).
In addition to the 36.6% and the 40.53% total area reductions achieved using NTL theory,
they provide good performance, especially in suppressing harmonics as compared to the
NTL HPBFs proposed in [9,10]. Due to the different lengths between the UTL and NTL
resonators at both bands, there is only a slight phase shift in the filter’s response, as shown
in Figure 11c,f; this implies the effectiveness of applying the NTL theory in reducing the
size of the NTL IBPF, which makes it a good candidate for CRN applications.

A comparison with other works in the literature at different frequency bands is shown
in Table 4. As compared to the compactness techniques used in other references, and in
order to avoid any fabrication difficulties or high-cost substrate materials, NTL theory is
simply applied for the first time to compact the IBPF’s size providing better compactness
than [30], a better S11 response and compactness than [18] and a better S12 response and
wider FBW than [27,31]. Moreover, it provides wider FBW, and a better S12 response and
compactness than [8,18,25,26]. The IBPF in [28] outperforms the proposed one due to the
wet etching fabrication process with a film for negative development. This method can be
used in our future work along with the NTL SIR.
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Table 3. Comparison between the simulated and measured results for the designed UTL and NTL
IBFs.

Parameters Sim. Meas. Sim. Meas.

at (3.7–4.2 GHz) at (5.975–7.125 GHz)

S11 = S22
(NTL)

<−10.63 dB.at 3.7–5.15 GHz,
H.S up to 11.8 GHz

<−11.2 dB.at 3.7–4.25 GHz,
H.S up to 11.25 GHz

<−10.45 dB.at
5.93–7.39 GHz H.S up to

18 GHz

<−11.27 dB at
5.94–7.67 GHz, H.S up to

20 GHz

S11 = S22
(UTL)

<−11.84 dB at
3.57–4.24 GHz, H.S up to

11.8 GHz

<−10.63 dB at 3.66–4.4 GHz,
H.S up to 11.12 GHz

<−11.05dB at 5.3–7.164 GHz,
H.S up to 18 GHz

<−13.91 dB at
5.34–7.163 GHz, H.S up to

20 GHz

S12 = S21 (NTL) −1.34 dB at FC = 4.43 GHz −0.86 dB at FC = 3.98 GHz −0.8 dB at FC = 6.68 GHz −1.7 dB at FC = 6.81 GHz

S12 = S21 (UTL) −0.64 dB at FC = 3.91 GHz −1.26 dB at FC = 4.03 GHz −1.09 dB at FC = 6.25 GHz −1.78 dB at FC = 6.25 GHz
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Table 4. A comparison to other works in the literature at different frequency bands.

Ref.,
Layers
Order

h (mm)/εr Technique
3dB FBW,

Frequency Band
(GHz)

S11
(dB)

S12
(dB)

H.S Up
to GHz

Area
mm2, λg2

This work
3rd

0.813/3.55 NTLs
13.82%, 3.7–4.25 −10.52 −0.86 11.25 16.7 × 9.83, 0.32 × 0.21

25.40%, 5.94–7.67 −11.27 −1.7 18 13.9 × 7.02, 0.51 × 0.26
[31], 1, 3rd IPDs TQVs 9.42%, 27.2–29.89 −15.17 −1.66 74 1.715 × 7.6, 0.15 × 0.15
[30], 1, 7th IPDs TSV 58.89%, 61.97–113.7 −20 −1.3 87 0.5 × 0.34, 0.48 × 0.33

[28], 1, 3rd 0.54/2.54 spiral and
folded SIR 180%, 0.2–1.42 −17.1 −0.043 NA 13.8 × 5.98, 0.05 × 0.02

[16],2, 6th 0.40/11.9 MEMS
technology 7.8%, 19.6–21.2 −15 −1.98 NA 7 × 3, 1.34 × 0.57

[25], 4, 2nd 0.0034/2.9 Inject printing
on LCPT 17%, 10.52–12.48 −12 −2.2 NA 5.28 × 3.32, 0.32 × 0.2

[8], 1, 4th 0.381/9.8 High εr
substrate 15%, 7.4–8.6 −20 −1.5 NA 5 × 5, 0.34 × 0.34

[26], 1, 5th 0.508/3.66 λ/4 and λ/2
resonators 4.5%, 9.85–10.3 −14.68 −4.56 NA 28.30 × 10.63, 1.51 × 0.60

[18],1, 5th 1.27/10.2 Spurlines 64%, 0.99–1.96 −10.93 −0.83 8 15.5 × 22, 0.24 × 0.35
[27], 1, 2nd 0.05/3 Ultra-thin LCP 8.19%, 9–9.77 −22 −2.3 NA 5.4 × 3.2, 0.16 × 0.26

NA: not available.

5. Conclusions

At two 5G low-frequency bands (3.7–4.2 GHz and 5.975–7.125 GHz), a compact nonuni-
form transmission line (NTL) interdigital bandpass filter (IBPF) appropriate for modern
wireless communication systems is analyzed, designed, and tested in this paper. At the first
and second frequency bands, 36.6% and 40.53% total circuit area reductions, an acceptable
level of impedance matching and up to 11.25 GHz and 20 GHz second harmonics suppres-
sions, are achieved, respectively. The proposed filter is a part of our future reconfigurable
5G narrow bands and UWB antenna project. Future work may concentrate on the size
reduction of other types of BPFs such as combline filters or other microwave components
at 5G high-frequency bands using NTLs theory.
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