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Abstract: Laser powder bed fusion (LPBF) is a promising additive-manufacturing process for metallic
materials. It has the advantage of flexibility in product design, such that various mechanical parts
can be fabricated. However, because metal parts are built-up in a layer-by-layer manner, the material
fabricated by LPBF has an anisotropic microstructure, which is important for the design of materials.
In this study, the corrosion resistance of 18Ni300 maraging steel (MS) fabricated by LPBF was
explored considering the building direction. Furthermore, the effects of heat treatment and aging
on the microstructure and corrosion resistance were investigated. Sub-grain cells formed by rapid
cooling in LPBF improve the corrosion resistance of MS. As a result, the as-built MS has the highest
corrosion resistance. However, the sub-grain cells are eliminated by heat treatment or aging, which
causes the deterioration of corrosion resistance. In the case of 18Ni300 MS, the cylindrical sub-grain
cells are formed and aligned along the heat dissipation direction, which is similar to the building
direction; thus, a significant anisotropy in corrosion resistance is found in the as-built MS. However,
such anisotropy in corrosion resistance is diminished by heat treatment and aging, which eliminates
the sub-grain cells.

Keywords: laser powder bed fusion; maraging steel; post heat treatment; corrosion behavior; anisotropy

1. Introduction

Additive manufacturing (AM) is a fabrication process based on metal powder metal-
lurgy. It is completely different from the conventional process, and it involves printing the
desired parts layer-by-layer. These methods provide new possibilities for the production of
final shaped components with a single process, reducing the unit time and production cost.
During the AM process, materials undergo rapid melting and solidification (approximately
106–7 K/s); therefore, unusual microstructures form that affect anisotropy of the mechanical
and chemical properties [1–5]. Various energy sources (e.g., e-beam or laser) have been
used to AM process for high resolution of product. Especially, the laser energy source
is used for various processes and production of the various materials [6–10]. Metal AM
processes, such as directed energy deposition (DED) technologies are mainly used to pro-
duce large-scale metallic AM structures with high deposition rates and to repair damaged
components [11–14], while the powder bed fusion (PBF) process is applied to small and
high-complexity parts [15–19].

Maraging steel (MS) is a low-carbon, high-alloy special steel with unique properties,
such as high strength, high fracture toughness, excellent weldability, and excellent hard-
enability, dimensional stability, and simplicity of heat treatment. Its properties can be
obtained by martensitic phase transformation during post-heat treatment. In addition, MS
has a very low carbon content, which greatly reduces the risk of quench cracking, and it
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has excellent corrosion resistance owing to its high Ni content with no carbides. Because of
these advantages, MS is emerging as an alloy that can replace high-carbon steel used in
high-performance engineering fields, such as aerospace, military parts, transformation, tool
and die industries, electromechanical properties, and motor racing parts (e.g., hot-work
dies, bearing gear parts, drill chucks, and rocket motors case) [20–22]. Therefore, various
grade MSs are generally in demand to apply for various industries. In particular, the
low-carbon characteristic gives MS excellent weldability because carbide formation or
carbon segregation is not a problem; the risk of quench cracking is sharply decreased, while
the high nickel (Ni) and molybdenum (Mo) contents and lack of carbides provide superior
corrosion resistance. Therefore, it is very advantageous to apply the AM process. Due to
the good weldability of MS, the fabrication of MS by AM is a practicable task. It consid-
ers the high potential to replace tool and hardened steel alloys fabricated by traditional
manufacturing methods used in a variety of applications [23–26].

Several studies have been conducted on the AM of MS, demonstrating various ad-
vantages. For example, Mutua et al. [27] studied the surface quality, relative density,
microstructure, and hardness of MS according to the AM process variables and revealed
the optimal process parameters, which provide good surface quality with a relative density
of 99.8% and surface roughness (Ra) of 35 µm. Casati et al. [28] investigated microstructure
and tensile strength changes by performing various aging heat treatments on 18Ni300 MS
manufactured by the selective laser melting (SLM) process. They reported that the reversal
of martensite into the austenite phase was observed after aging heat treatment, and various
aging treatment temperatures significantly improved the tensile strength while decreas-
ing the elongation. Paul et al. [29] evaluated the changes in the mechanical properties
of 18Ni300 MS manufactured by the PBF process owing to microstructure evolution and
compared the results with those of MS manufactured by the casting process. Through
post-heat treatment, they improved the yield strength to approximately 1.8 GPa and ulti-
mate tensile strength to approximately 2.0 GPa. Lee et al. [30–32] examined microstructural
changes and mechanical properties after performing various heat treatments on 18Ni300
MS manufactured by the PBF process. Such mechanical characteristics as hardness, tensile
strength, and wear resistance showed anisotropy depending on the building direction in
the as-built specimen; however, post heat treatment decreased the anisotropy. This research
revealed the effects of microstructural changes, such as different melt pool geometries,
decomposition of sub-grain cells, and fine precipitation, on mechanical properties during
post heat treatment.

Research on the relationship between the mechanical properties and microstructure
change of the additively manufactured MS according to the post heat treatment process has
been conducted; however, previous studies have rarely focused on the corrosion properties
of additively manufactured MS. In particular, the corrosion resistance of MS should be
verified for the actual application of additively manufactured MS because of its high nickel,
cobalt, and molybdenum contents, which improve corrosion resistance compared with the
high-strength steel currently in use. In addition, because heat-treated MS also involves
changes in the microstructure that cause changes in the mechanical properties, corrosion
resistance needs to be evaluated.

In this study, the effects of various post-heat treatments on the corrosion resistance of
MS manufactured by the laser powder bed fusion (LPBF) process in a seawater atmosphere
were investigated in relation to the post-heat treatment condition with improved mechani-
cal properties obtained in a previous study. The behavior of microstructural changes and
corrosion resistance resulting from post-heat treatment were analyzed, and the corrosion re-
sistance according to the building direction was studied by considering sides perpendicular
to and horizontal to the building direction.
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2. Materials and Methods
2.1. Preparation of Samples

Spherical gas-atomized 18Ni300 MS powder (OPM maraging, OPM Laboratory Co.,
Ltd., Kyoto, Japan) with an average particle size of −40 µm was used to produce the
specimen used in this study. The chemical composition of the 18Ni300 MS powder used is
shown in Table 1.

Table 1. Chemical compositions of 18Ni300 MS powder.

Element Fe Ni Co Mo Ti Mn Al

wt.% Bal. 17.0–19.0 8.5 4.0 0.7 ≤0.1 ≤0.1

The specimen was produced using an LPBF-type metal 3D printer (OPM250L, Sodick
Co., Ltd., Kyoto, Japan), and the LPBF process variables selected to produce the specimens
are described in detail in Table 2. It was prepared in a nitrogen environment with the
oxygen of 1% or less to prevent the specimen from being oxidized during the process. A
90◦-rotational scanning strategy was used, i.e., the laser scanning lines were tilted by 90◦

between each layer. Further details of the material, including the microstructure, hardness,
tensile properties, and wear behavior relative to the building direction, have been reported
previously [30–32].

Table 2. Parameters used in the LPBF process.

Parameter Setting

Laser power (W) 420
Scanning speed (mm/s) 1000

Hatch spacing (mm) 0.1
Lamination thickness (mm) 0.04

Two types of block with a size of 20 × 20 × 100 mm3 were printed to examine
the anisotropy depending on the building direction while manufacturing the 18Ni300 MS
specimen using the LPBF process. Each specimen was cut from the block to have a thickness
of 3 mm. The corrosion surface was selected as a plane parallel to or perpendicular to
the building direction, as shown in Figure 1a. The plane parallel to the building direction
was named XZ (green area), and the plane perpendicular to the building direction was
named XY (blue area). Three heat treatment conditions were selected to evaluate the
corrosion resistance according to the post heat treatment. Each heat treatment condition
was selected by referring to the results of a preliminary study on the improvement of
the mechanical strength by post heat treatment and the relationship depending on the
building direction in the as-built state [30–32]. Figure 1b and Table 3 show the various heat
treatment conditions and specimen notations according to the heat treatment, respectively.
All post heat treatments were performed using a box-type furnace in an air atmosphere. To
prevent the oxidation of the specimen surface, each specimen was wrapped in a protective
heat-treatment foil. After the solution treatment and aging heat treatment, water quenching
(W.Q) and air cooling (A.C) were performed, respectively.
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Figure 1. (a) Schematic diagram of sample geometries, scanning strategy, building direction, corrosion
test planes, and (b) various heat treatment processes.

Table 3. Sample notation according to the post-heat treatment condition.

Sample Name Solution Treatment
Temperature (◦C) Time (h) Aging Treatment

Temperature (◦C) Time (h)

XZ - - - -
XY - - - -

XZ850 850 2 500 6
XY850 850 2 500 6
XZ750 750 2 450 6
XY750 750 2 450 6
XZ450 - - 450 6
XY450 - - 450 6

2.2. Material Characterizations

An optical microscopy (OM, ECLIPSE LV150N, Nikon, Tokyo, Japan) and field-
emission scanning electron microscopy (FE-SEM, JSM-7200F, Jeol Inc., Tokyo, Japan) were
used to observe the microstructure of the 18Ni300 MS specimen prepared by the LPBF
process. Modified Fry’s regent, 1 g of CuCl2, 25 mL of HNO3, 50 mL of HCl, and 150 mL of
distilled water were used as the etchant.

X-ray diffractometer diffraction (XRD, EMPYREAN, PANalytical BV, Almelo, Nether-
lands) was used to analyze the crystal structure of sample. Cu Kα (λ = 1.5406 Å) monochro-
matic beam generated with 40 kV and 40 mA was scanned from 20◦ to 80◦ with a scanning
speed of 1.5 ◦/min.

Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were
conducted in 3.5 wt.% NaCl solution at room temperature using a flat cell with Ag/AgCl
(saturated KCl, reference electrode) and platinum mesh (counter electrode) and potentiostat
(VersaSTAT3, AMETEK, Berwyn, PA, USA). As for potentiodynamic polarization, the
initial and final potential for scan (2 mV/s) were −300 and 1500 mV versus open circuit
potential (OCP), which is stabilized by immersing sample in 3.5 wt.% NaCl solution
for 20 min. As for EIS, AC signal with an amplitude of 10 mV vs. OCP was applied
with the frequency range from 10 kHz to 0.1 Hz. The specimen, which was subjected
to a potentiodynamic polarization test to observe the corrosion surface using FE-SEM,
was ultrasonically washed with 0.1 M H2SO4 for approximately 10–20 s to remove the
corrosion products. To minimize the experimental error in electrochemical corrosion
analysis (i.e., potentiodynamic polarization and EIS), we used seven samples fabricated
by each condition. Excluding potentiodynamic polarization curves with maximum and
minimum corrosion current density, five corrosion current densities were averaged. In
case of EIS, after model fitting of seven results, an averaged charge transfer resistance
was estimated excluding the maximum and minimum value. Then, a potentiodynamic
polarization and EIS curves, which have the most similar values (i.e., corrosion current
density and charge transfer resistance) to average, were shown as representative results.



Micromachines 2022, 13, 1977 5 of 13

3. Results and Discussion

Figure 2 shows OM images of the microstructural changes according to various
post-heat treatments of 18Ni300 maraging steel (MS) manufactured by the LPBF process.
Figure 2a shows the microstructure of the as-built state specimen, and the melt-pool and
melt-pool boundary formation during the LPBF process can be observed (white dotted
line). Furthermore, pores were observed near the melt-pool boundary. This is a defect
that can occur in the printing process because of the interspace present in the different
sizes of metal powders in the melting process of 18Ni300 steel powders by the laser [33,34].
Figure 2b shows the microstructure of the specimen, which was solution treated at 850 ◦C
for 2 h and then aged at 500 ◦C for 6 h. Unlike the as-built state specimen, the melt-pool
and melt-pool boundaries cannot be completely observed. The melt-pool and melt-pool
boundaries were rarely observed in specimen solution treated for 2 h at 750 ◦C and then
aged for 6 h at 450 ◦C (see Figure 2c). However, the melt-pool and melt-pool boundaries
can clearly be observed in specimens aged for 6 h at 450 ◦C without solution treatment (see
Figure 2d). This result indicates that the melt-pool of 18Ni300 MS manufactured by the
LPBF process disappeared during the solution treatment process. In the OM image, a black
phase can be observed regardless of the as-built state and post-heat-treatment conditions
(red triangle).
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Figure 2. OM images of laser-powder-bed-fused MS: (a) as-built, (b) 850 ◦C heat treated, (c) 750 ◦C
heat treated, and (d) 450 ◦C heat treated.

To observe in detail the phenomenon where the melt-pool disappears and the black
phase depends on the heat treatment conditions, the microstructure was observed at high
magnification using FE-SEM, and the results are shown in Figure 3.
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Figure 3. SEM images of XZ-plane of laser-powder-bed-fused MS: (a) as-built, (b) 850 ◦C heat-treated,
(c) 750 ◦C heat-treated, and (d) 450 ◦C heat-treated.

In Figure 3a, in the as-built states, the XZ and XY specimens, melt-pool and melt-pool
boundaries, and sub-grain cells with a size of approximately 1 µm or less can be observed.
Sub-grain cells are distinct microstructures created by fast cooling in the printing process;
in particular, the formation of sub-grain cells with a size of 2 µm or less has been reported to
increase the mechanical strength [35–37]. Such sub-grain cells may disappear by diffusion
during the post-heat treatment process. Figure 3b,d,e show that the shape of the sub-grain
cell changes or disappears owing to diffusion depending on the heat treatment conditions.
Under 850 ◦C heat treatment condition, the sub-grain cell disappeared completely and
had an entirely different microstructure from the as-built specimen. However, sub-grain
cells were still observed in 750 ◦C and 450 ◦C heat treatments. The sub-grain cell was
decomposed by diffusion during the heat treatment of XZ750 and XY750; however, the
sub-grain cell was not completely decomposed, and the network collapsed (see Figure 3c).
In contrast, in the XZ450 and XY450 specimens, a sub-grain cell shape similar to that of
the as-built state was observed (see Figure 3d). This reveals that the sub-grain cell was
not completely decomposed by the diffusion process under 450 ◦C directly aged heat
treatment conditions; however, the sub-grain cell network weakened. In other words, the
network almost disappeared or was completely decomposed in the post-heat treatment
conditions followed by the solution treatment of MS manufactured by the LPBF process.
The black phase observed in the FE-SEM image is a titanium-rich precipitate generated by
the post-heat treatment process. As a result of the EDS mapping in a previous study, in
which a microstructure analysis of the same specimen used in this study was conducted, it
was found that the precipitate did not contain any other metallic elements or carbon, except
for a high concentration of Ti [32]. Kang et al. [38] reported the presence of Ti-rich regions
along the melt-pool boundary of MS manufactured by the SLM process. The precipitate
changed its morphology into a spherical shape owing to the post-heat treatment. In FE-SEM
observations, lath-type fine precipitates were observed around these spherical precipitates,
and XRD analysis was performed to analyze them.
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Figure 4 shows the XRD analysis results of the as-built and post-heat-treated XZ
specimens. The main diffraction peak is the α′-martensite phase in all specimens, which
is formed by a rapid cooling rate of more than 106 K/s during the LPBF manufacturing
process and is almost fully martensitic phase in the as-built state. The lath-type precipitate
observed corresponds to Ni-based intermetallic compounds, such as Ni3Al, Ni3Ti, Ni3Mo,
and Ni3Fe, found in the range of 20◦–40◦. It is somewhat clearly observed in the XZ and
XZ450 specimens and seen at approximately 28◦ in XZ750 specimen. No peaks of the Ti-rich
phase were observed owing to its small fraction. Meanwhile, the retained γ-austenite phase
was observed only in the XZ, XZ750, and XZ450 specimens but not in the XZ850 specimen.
It is concluded that the retained γ-austenite phase completely disappeared during the
solution heat treatment at 850 ◦C.
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Figure 5a,b show the potentiodynamic polarization curves of the sample in 3.5 wt.%
NaCl solution. The corrosion current density and potential estimated by Tafel fitting are
summarized in Figure 5c. For the as-built MS in the XZ-plane, the corrosion current density
was 3.34 µA/cm2. The aging at 450 ◦C (XZ450) and heat treatment at 750 ◦C (XZ750)
caused a partial dissolution of sub-grain cells in the as-built MS, which increased the
corrosion current density to 10.63 and 11.21 µA/cm2, respectively. The wall of the sub-
grain cell is formed by locally segregated Ni and Mo [39–43], which improve the corrosion
resistance of steel by forming a passive layer; thus, the partial elimination of sub-grain cells
decreases the corrosion resistance. Because of the complete elimination of sub-grain cells
by heat treatment at 850 ◦C (XZ850), the corrosion current density increases significantly to
21.55 µA/cm2, which is 18.21 µA/cm2 higher than that of XZ. The change in the corrosion
resistance of the as-built XY-plane upon heat treatment is similar to that in the XZ-plane.
The corrosion current density of the XY-plane of the as-built MS is 6.43 µA/cm2. The
corrosion current densities increased to 13.13 and 13.15 µA/cm2 after heat treatment at
750 ◦C (XY750) and aging at 450 ◦C (XY450), respectively, which partially eliminates the
sub-grain cells of the as-built MS. In addition, the heat treatment at 850 ◦C completely
eliminated the sub-grain cells, which significantly increased the corrosion current density
to 23.45 µA/cm2 (17.02 µA/cm2 fold higher than XY). The corrosion current densities of
XZ450 and XY450 are slightly lower than those of XZ750 and XY750, respectively. This
indicates that the heat treatment at 750 ◦C is more effective for dissolving partial segregation
of alloying elements than aging at 450 ◦C.

In addition to the potentiodynamic polarization tests, the surface corrosion reactions
of the laser-powder-bed-fused MSs were analyzed by EIS (Figure 6). An equivalent circuit
for data analysis is shown in Figure 6e.
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In the equivalent circuit, Rs, Rp, and Rb are the resistance of the electrolyte, porous
surface oxide layer, and charge transfer reaction at the metal–oxide interface for corrosion,
respectively. CPEp and CPEb are the capacitance of the double layer on the oxide surface and
the barrier oxide layer, respectively. Furthermore, np and nb correspond to the exponents of
CPEp and CPEb, respectively. Each value in the equivalent circuit as a result of the model
fitting is summarized in Table 4.

Table 4. Fitted data for parameter of equivalent circuit.

Sample
Name

Rs,
Ω cm2

CPEp,
mF/cm2 np

Rp,
Ω cm2

CPEb,
mF/cm2 nb

Rb,
Ωcm2

XZ 14.12 0.64 0.88 8.04 0.18 0.91 1743.00
XY 14.37 0.44 0.84 7.29 0.29 0.95 808.90

XZ850 15.83 0.55 0.78 13.28 0.42 0.90 234.90
XY850 13.99 2.15 0.65 11.94 0.53 0.99 195.30
XZ750 15.10 0.31 0.79 12.57 0.24 0.99 322.30
XY750 12.99 0.51 0.84 6.85 0.45 0.94 342.50
XZ450 14.10 0.43 0.79 5.97 0.56 0.96 364.80
XY450 13.97 0.34 0.65 16.81 1.53 0.99 325.30

Generally, Rp + Rb corresponds to corrosion resistance. However, no significant differ-
ence in the resistance for the surface oxide layer (Rp) of MS according to the heat treatment
and plane was identified, whereas clear differences in the charge transfer resistance were
observed. In addition, Rp is much lower than Rb. Therefore, the corrosion resistance can be
determined by the Rb. The XZ-plane of the as-built MS showed the highest Rb, which was
significantly decreased by heat treatment or aging. And, samples heat treated at 850 ◦C,
which completely eliminated the sub-cell structure, had the lowest Rb among the tested
XZ-planes (XZ, XZ750, XZ850, and XZ450). Similar to the XZ-plane, Rb in the XY-plane also
decreases by heat treatment or aging. These results also indicate that the corrosion resis-
tance of the as-built MS is decreased by the dissolution of partially segregated sub-grain
cells at high temperatures [44]. Moreover, these results agree well with the results of the
potentiodynamic polarization test. Therefore, even though heat treatment improves the
mechanical properties of laser-powder-bed-fused MSs, it should be noted that the corrosion
resistance is determined by post-treatment.

Meanwhile, comparing the corrosion current density and charge transfer resistance of
the XZ- and XY-planes reveals that the anisotropy in the corrosion resistance was similar to
the mechanical properties [32]. The XZ-plane had a lower corrosion current density and
higher charge transfer resistance than the XY-plane, even after heat treatment or aging.
For as-built MS, the corrosion current density of XZ was lower than that of XY by 51%,
and the charge transfer resistance of XZ was higher than that of XY by 46%. However, the
anisotropy in corrosion resistance showed a lower corrosion current density and higher
charge transfer resistance of the XZ-plane than the XY-plane, which was reduced by heat
treatment and aging. In particular, after the heat treatment at 850 ◦C, the difference in
corrosion current density and charge transfer resistance decreased to only 87% and 76%,
respectively. Such anisotropy in corrosion resistance of laser-powder-bed-fused MS can be
explained by the shape and arrangement of the sub-grain cells.

Figure 7 shows a high-magnification microstructure image of the as-built MS of the
XZ and XY. The sub-grain cell is formed by rapid cooling along the heat transfer direction;
thus, the local segregation of the sub-grain cell is aligned with the melt pool boundary.
Therefore, cylindrical sub-grain cells with a high-aspect-ratio aligned from the melt-pool
boundary to the melt-pool surface can be observed on the XZ-plane (see Figure 7a). In
contrast, the cylindrical sub-grain cell is formed toward the melt pool surface; thus, the
cylindrical shape of the sub-grain cell cannot be observed on the XY-plane (see Figure 7a).
In addition, alloying elements of Ni and Mo, which improve the corrosion resistance of
steel, are segregated to form a sub-grain cell wall. Therefore, the wall of the sub-grain
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cell has higher corrosion resistance than that inside the cell. In the case of the XZ-plane,
the wall of the sub-grain cell is exposed to the outside such that the wall can act as a
barrier to inhibit the propagation of corrosion toward the inside of the sub-grain cell (see
Figure 7b). In contrast, the inside of the cylindrical sub-grain cell is exposed to the outside
of the XY-plane; thus, the wall cannot inhibit the propagation of corrosion through the
inside of the sub-grain cell. Therefore, the XZ-plane of the as-built maraging streel exhibits
higher corrosion than the XY-plane. However, the compositional segregation between the
sub-grain cell inside and the wall is homogenized by heat treatment or aging, promoting
the diffusion of alloying elements, and the sub-grain cell can be eliminated. Therefore, the
anisotropy of as-built MS in corrosion resistance can be reduced by heat treatment or aging,
such that laser-powder-bed-fused MS with a completely homogenized microstructure has
isotropy in corrosion resistance.
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The changes in the microstructure of laser-powder-bed-fused MS affect not only the
corrosion resistance, but also the corrosion behavior. Figure 8 shows the surface of the
sample after the potentiodynamic polarization test. The surfaces of the as-built (XZ and
ZY) and aged (XZ450 and XY450) samples were similar, showing uniform corrosion. In
addition, no differences in the corroded surface due to the testing plane and direction of
the cylindrical sub-grain cell were identified. However, significant pits on the surface of
the samples subjected to heat treatment (XZ750, XZ850, XY750, and XY850) were observed,
indicating that localized pitting can occur with uniform corrosion. In the case of heat
treatment at 750 ◦C or 850 ◦C, a Ti-rich phase was precipitated in the grains [32]. The Ti-rich
phase can act as a cathode in the galvanic couple with the MS matrix such that the Ti-rich
phase causes a potential difference around the precipitates. Such a significant unbalance
in the surface potential caused by precipitation can be attributed to the occurrence of
pitting corrosion. Therefore, even though the heat treatment of laser-powder-bed-fused
MS improves the mechanical properties (i.e., yield strength, tensile strength, and wear
resistance), it should be noted that the post-heat treatment eliminates sub-grain cells and
causes precipitation of the Ti-rich phase, which not only causes the corrosion resistance to
deteriorate but also increases the risk of pitting corrosion.
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4. Conclusions

In this work, the corrosion resistance of 18Ni300 MS fabricated via LPBF was studied.
The corrosion resistance related to the building direction and the influence of post heat
treatment conditions were analyzed. The main findings can be summarized as follows:

1. LPBF of 18Ni300 MS creates a distinct microstructure with aligned cylindrical sub-
grain cells owing to its rapid solidification. The wall of the sub-grain cell is formed by
the segregation of alloying elements, such as Ni and Mo, which improve the corrosion
resistance of steel. Because of this sub-grain cell, the as-built 18Ni300 MS has high
corrosion resistance.

2. However, heat treatment and aging, which eliminate the sub-grain cell, cause the
corrosion resistance to deteriorate. In particular, the heat treatment at 850 ◦C, which
completely eliminates the sub-grain cell and forms Ti-rich precipitates, significantly
reduces the corrosion resistance of the as-built 18Ni300 MS.

3. Owing to the alignment of the cylindrical sub-grain cell, a significant anisotropy in
the corrosion resistance of 18Ni300 MS occurs according to the building direction.
However, such anisotropy in corrosion resistance is also diminished by heat treatment
and aging because the cylindrical sub-grain cell is eliminated.

4. Heat treatment and aging to improve the mechanical properties of 18Ni300 MS fabri-
cated by LPBF should be designed considering that the process can cause corrosion
resistance to deteriorate.
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