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Abstract: To realize portable gas sensor applications, it is necessary to develop hydrogen sulfide
(H2S) microsensors capable of operating at lower voltages with high response, good selectivity and
stability, and fast response and recovery times. A gas sensor with a high operating voltage (>5 V)
is not suitable for portable applications because it demands additional circuitry, such as a charge
pump circuit (supply voltage of common circuits is approximately 1.8–5 V). Among H2S microsensor
components, that is, the substrate, sensing area, electrode, and micro-heater, the proper design of the
micro-heater is particularly important, owing to the role of thermal energy in ensuring the efficient
detection of H2S. This study proposes and develops tin (IV)-oxide (SnO2)-based H2S microsensors
with different geometrically designed embedded micro-heaters. The proposed micro-heaters affect
the operating temperature of the H2S sensors, and the micro-heater with a rectangular mesh pattern
exhibits superior heating performance at a relatively low operating voltage (3–4 V) compared to
those with line (5–7 V) and rectangular patterns (3–5 V). Moreover, utilizing a micro-heater with a
rectangular mesh pattern, the fabricated SnO2-based H2S microsensor was driven at a low operating
voltage and offered good detection capability at a low H2S concentration (0–10 ppm), with a quick
response (<51 s) and recovery time (<101 s).

Keywords: gas sensor; tin oxide; micro-heater; MEMS; hydrogen sulfide

1. Introduction

Hydrogen sulfide (H2S), which is a toxic, harmful, corrosive, and colorless gas, is
produced by oil deposits, as well as biogas and natural gas fields. Thus, developing an H2S
sensor with excellent performances, such as good response, selectivity, stability, and a fast
response and recovery time, is crucial for the health and safety of industrial workers and
the general population. With the advent of the internet of things era, high-performance H2S
sensors driven at a low voltage and low power have been examined with semiconducting
metal oxide (SMO) as the sensing material [1–3]. In particular, SMOs such as tin dioxide
(SnO2), zinc oxide (ZnO), tungsten trioxide (WO3), nickel oxide (NiO), and copper oxide
(CuO) have been identified as the most promising H2S sensing materials. Among these,
SnO2 is most widely utilized as an H2S-sensing material in SMO-based gas sensors because
of its excellent gas-detection properties (a good compromise between price, stability, and
reliability of material, together with a relatively low operating temperature, and a fast
response and recovery time) and numerous fabrication advantages; that is, low-cost, simple
fabrication, and good compatibility with the micro-electromechanical (MEMS) process [4–7].
SnO2 has been applied to H2S gas sensors in various forms, such as thin films, thick films,
pellets, and hot-wire type. SnO2 is an n-type semiconductor and an H2S-sensor, based on
its utilization of resistance–change mechanisms wherein there is an induced variation of the
depletion region, owing to the adsorption of ionized oxygen species (O2

−, O−, and O2−)
on the SnO2 surface, as shown in Figure 1. The oxygen-related gas-sensing mechanism
involves the absorption of oxygen molecules on the SnO2 surface to generate chemisorbed
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oxygen species (O2
−, O− and O2−) by capturing electrons from the conductance band,

which makes the SnO2 surface highly resistive.
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Figure 1. H2S-sensing mechanism of SnO2.

When the SnO2 surface is exposed to a reductive gas (H2S), the reductive gas (H2S)
upon reacting with the oxygen species (O2

−, O−, and O2−) reduces the concentration of
the oxygen species on this surface, thereby increasing the electron concentration [8–18].
Oxygen species with different forms (O2

−, O− and O2−), which are adsorbed on the SnO2
surface, are reliant on sensing temperature; therefore, controlling the temperature of H2S
sensor is vital. In general, the adsorption of O2

− is dominant in the range of 150–200 ◦C (1),
and the adsorption of O− dominates above 200 ◦C (2). A further increase in temperature
above 400 ◦C tends to result in the domination of the adsorption of O2− (3) [19]. The process
flow is detailed as follows:

O2 (gas)→ O2 (physisorption)→ O2
− (chemisorption)→ 2O− (chemisorption)

2H2S + 3O2
− → 2SO2 + 2H2O + 3e− (1)

H2S + 3O− → SO2 + H2O + 3e (2)

H2S + 3O2− → SO2 + H2O + 6e− (3)

As mentioned above, the SnO2 interacts well with H2S in a wide range of tempera-
tures; however, it is not suitable for the selective detection of H2S. This is because various
reducing gases, such as hydrogen, carbon monoxide, ammonia, and others, interact with
SnO2 in similar ways. Despite the many advantages of SnO2, the pristine SnO2 gas sensor
usually suffers from poor selectivity. Consequently, diverse effective approaches have
been conducted to improve the selectivity of SnO2-based gas sensors [19,20], such as noble
metal doping, composite hetero-structure design, and controlling the reaction temperature.
Among these methods, controlling the optimal reaction temperature is the simplest and
most effective method. In general, pristine SnO2 has an excellent response and a good
selectivity at 150–200 ◦C for H2S. Thus, developing an SnO2-based H2S microsensor which
operates well at 150–200 ◦C is important [21–23]. Microsensors for detecting H2S comprise
a micro-heater, inter-digitated electrode (IDE), and sensing material. The micro-heater
(which elevates temperature) embedded in the gas sensor has an important role to play, as
aforementioned, in improving the performance of an H2S microsensor. It supplies sufficient
thermal energy for the reaction between the target gas (H2S), oxygen species (O2

−, O−

and O2−), and sensing material, thereby boosting the H2S microsensor performance. To
apply the fabricated H2S microsensor with a built-in micro-heater to portable applications,
a well-designed sensor interface circuit that can supply an appropriate voltage to the sensor
is essential. Common sensor interface circuits utilized in commercial portable application
supply voltage in the range of 1.8–5 V [24–26]. However, additional circuitry, such as a
charge pump circuit, is required to supply a high voltage when an H2S microsensor with a
high operating voltage is used. This results in additional power consumption and a larger
footprint. Therefore, it is important to develop a low-voltage-driven H2S microsensor. In
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this study, low-voltage-driven SnO2-based H2S microsensors with an optimized micro-
heater were designed, fabricated, and characterized based on experimental requirements.
To investigate the relationship between the H2S-detection performance and the heating
performance influenced by the geometric design of the micro-heater, micro-heaters with
different patterns were fabricated in the proposed H2S microsensor platform and character-
ized. Finally, a low-voltage-driven (3–4 V) SnO2-based H2S microsensor with an optimized
micro-heater was developed, and it was used to detect H2S at a low concentration.

2. Design and Fabrication of Micro-Heater Embedded in SnO2-Based H2S Microsensor

The performance of a micro-heater utilizing Joule heating is affected by various factors,
such as electrical, mechanical, and material properties, as well as its geometric design.
Materials used for a micro-heater are primarily metallic because of their high electrical
conductivity, satisfactory specific heat capacity, and good compatibility with the MEMS
process. Recently, with the majority of gas sensors being minimized for real-time monitoring
and portable applications, the area wherein the micro-heater is fabricated has been limited
and minimized as well. Therefore, an optimal geometric design of a micro-heater is certain
to improve the heating performance; developing such a design, with an excellent heating
performance in a small area, is critical. In this study, SnO2-based H2S microsensors with
three types of micro-heaters were proposed and designed as shown in Figure 2.
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Figure 2. Schematic of the proposed SnO2-based H2S microsensor with three types of micro-heaters.

The micro-heater types #1–#3 had patterns of meander, rectangular, and rectangular
mesh, respectively. The proposed SnO2-based H2S microsensor comprised micro-heaters
(types #1–#3), a temperature sensor, an IDE, and a sensing material (SnO2). The sensor
and sensing area measured 3 mm × 3 mm and 100 µm × 100 µm, respectively. The
width and thickness of a micro-heater, temperature sensor, and IDE were 20 µm and
200 nm, respectively. To minimize the loss of thermal energy produced by micro-heaters,
a quartz wafer was used as the sensor substrate. Platinum (Pt), which exhibits a linear
relationship between temperature and resistance, was used to fabricate the micro-heater
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and temperature sensor. Gold (Au) and SnO2 with thickness of 50.3 nm each were utilized
as the IDE and sensing material, respectively.

Figure 3 shows the fabrication process of the proposed SnO2-based H2S microsensor.
First, the quartz wafer (sensor substrate) was cleaned with an acetone and methanol solution
for 10 min. Then, the proposed micro-heaters of three types and the temperature sensor
were fabricated through photolithography (for the patterning of the desired geometric
designs) and e-beam evaporation (Pt deposition) processes. Silicon nitride (Si3N4) was
deposited via a plasma-enhanced chemical-vapor-deposition process. Subsequently, the
deposited Si3N4 was used for electrical insulation and passivation. The IDE was fabricated
through photolithography and e-beam evaporation processes for Au deposition. Finally,
SnO2, used as the H2S-sensing material, was deposited via a sputtering process, and Si3N4
was etched to fabricate the electrical pads of the micro-heaters and the temperature sensor.
Figure 4a,b show the fabricated SnO2-based H2S microsensor.
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Figure 4. (a) Photographic and (b) microscopic images of the fabricated SnO2-based H2S microsensor
with three types of micro-heaters.

3. Characterization of Micro-Heater Embedded in SnO2-Based H2S Microsensor

The fabricated sensing material (SnO2) for detecting H2S was examined via X-ray
diffraction (XRD), and the XRD curves are shown in Figure 5. The results of the diffraction
peaks in the 2-theta range from 10◦ to 90◦ verified that the crystal structure of the sensing
material (SnO2) with a varying thickness is the standard tetragonal–rutile crystal phase of
SnO2. The observed peaks of the deposited SnO2 matched well with the standard JCPDS
data of SnO2.
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The performance of the fabricated temperature sensor and micro-heaters with different
geometric designs was verified before the SnO2-based H2S microsensor was characterized,
along with the H2S concentration. The fabricated temperature sensor’s resistance was
measured by modulating the gas chamber temperature. The measured resistance values
of the temperature sensor at 30, 100, 200, and 300 ◦C were approximately 70, 83, 101,
and 115 ohm, respectively. These measured resistance values of the temperature sensor
were linearly increased by increasing the gas chamber temperature, as shown in Figure 6a.
This implied that the heating performance of the micro-heaters embedded in the H2S
microsensor could be estimated in real time. Next, various input voltage values were
applied to the micro-heaters and their heating performance was characterized by measuring
the resistance of the temperature sensor (closely fabricated to the micro-heaters). The
fabricated micro-heaters of types #1–#3 exhibited different heating performances, implying
that the generated thermal energy differed based on the geometric design of a micro-
heater for the same input voltage applied to the micro-heaters, as shown in Figure 6b.
As the heating performance of a micro-heater was affected by Joule heating, which is
closely related to the current traveling through the micro-heater, increasing the current
traveling through the micro-heater was very important. The measured initial resistance
value of micro-heaters of types #1–#3 were 107.44, 30.27, and 22.35 ohm, respectively.
The micro-heater of type #3 exhibited the lowest initial resistance value, thereby enabling
a greater flow of current at an equal input voltage of the micro-heater. Therefore, the
micro-heater with the rectangular mesh pattern (Type #3) produced more heat energy than
the others employing different patterns (Type #1–#2) (for the equal input voltage value
being applied). Thus, the micro-heater with the rectangular mesh pattern can produce
thermal energy effectively. Simultaneously, the heating performance, along with the micro-
heater’s pattern, was also confirmed by estimating the H2S-detection performance of the
SnO2-based H2S microsensor.
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Figure 6. Graphs of (a) measured resistance of temperature sensor as a function of temperature
change and (b) measured resistance of temperature as a function of micro-heater input voltage.

To characterize the fabricated SnO2-based H2S microsensor with micro-heaters (types
#1–#3), it was placed in the prepared gas chamber and H2S gas was injected at a concentra-
tion of 0 to 10 ppm. The operating temperature of the H2S microsensor can be estimated
via the measured resistance of the temperature sensor, along with the input voltage ap-
plied to micro-heaters. Table 1 presents the expected operating temperature and power
consumption along with the input voltage applied to micro-heaters.
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Table 1. Expected temperature and power consumption of micro-heaters with various geometric
designs as a function of the applied input voltage of micro-heaters.

Type of Micro-Heater Input Voltage Applied to
Micro-Heater (V)

Expected Temperature of
Micro-Heater (◦C)

Expected Power Consumption of
Micro-Heater (mW)

Type #1 (meander pattern) 5 V, 6 V, 7 V 108.84 ◦C, 132.97 ◦C, 157.8 ◦C 179 mW, 239.88 mW, 304.5 mW

Type #2 (rectangular pattern) 3 V, 4 V, 5 V 116.59 ◦C, 165.32 ◦C, 214.68 ◦C 233.76 mW, 375.8 mW, 507.05 mW

Type #3 (rectangular mesh pattern) 3 V, 3.5 V, 4 V 139.41 ◦C, 168.29 ◦C, 196.47 ◦C 278.23 mW, 340.65 mW, 428.4 mW

The expected operating temperature was derived by using the relationship between
the temperature and measured resistance of temperature sensor, whereas expected power
consumption was derived using the power consumption formula (P = V2/R). The tempera-
ture at which an excellent performance (high response and good selectivity) of SnO2 for
H2S is ensured is 150–200 ◦C, as mentioned above. Therefore, the input voltage was applied
to the fabricated micro-heaters (#1–#3) to elevate the optimal temperature (150–200 ◦C) and
initiate a reaction between H2S and SnO2. The resistance of SnO2 used as an H2S-sensing
material changed when it was exposed to H2S, as mentioned above. The output current
of the fabricated H2S microsensor was measured by injecting H2S gas in the range of 0 to
10 ppm, as shown in Figure 7.
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Figure 7. (a) Experimental setup for characterization of SnO2-based H2S microsensor with micro-
heaters of different geometric designs, and measured output currents of SnO2-based H2S microsensor
with micro-heaters of (b) type #1, (c) type #2, and (d) type #3 as a function of H2S concentration.
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The variation in the output current was closely related to the chemical properties of
the fabricated SnO2 surface oxygen. Oxygen was absorbed on the SnO2 surface in different
forms depending on the operating temperature, and it was converted into molecular (ph-
ysisorption) or dissociative (chemisorption) forms by the increasing operating temperature.
The oxygen species with different forms (O2

−, O− and O2−) generated on the SnO2 surface
induced an electron-depletion layer, resulting in the decrease in carrier concentration and
increase in resistance on the SnO2 surface. Output currents of SnO2-based H2S microsensors
increased when H2S was injected into the chamber because the oxygen species adsorbed
on the SnO2-sensing material surface were consumed by the chemical reaction and the
electrons donated back to the SnO2 surface, resulting in a decreased electrical resistance.
The response of an SnO2-based H2S microsensor is typically defined as

S(Response) = Rair/Rgas = Igas/Iair, (4)

where Rair and Rgas are the resistances and Iair and Igas are the conductance values of the
sensor regarding air and reducing gas (H2S), respectively. The response dramatically
improved when the operating temperature was increased by increasing the input voltage of
the micro-heater. This is because increasing the operating temperature causes the oxidation
of several H2S molecules by producing a multitude of electrons. Therefore, the output
current varies greatly, thus indicating a significant improvement in the response for H2S
detection. However, the response is not constantly improved by the increasing operating
temperature. In Figure 7b–d, the measured response of the fabricated H2S microsensor
slightly increased or saturated because the oxygen species were desorbed from the SnO2
surface [27]. In addition, at a higher operating temperature, the carrier concentration
increased, owing to the intrinsic thermal excitation while the Debye length decreases. These
are primarily responsible for the decrease in gas response at higher temperatures [28]. The
micro-heater of type #3 exhibited a superior H2S-detecting performance at a lower operating
voltage compared to micro-heaters of type #1 and #2 because of its lower resistance value,
which aided in increasing the current traveling through micro-heater type #3. Thus, the
micro-heater of type #3 operated at a relatively lower input voltage, had a superior heating
performance, and actively provided sufficient energy for the reaction between H2S and the
oxygen species (O2

−, O−, and O2−) on the SnO2 surface.
Figure 8a–c show the measured response and recovery time of the H2S microsensor

for micro-heaters of types #1–#3. The response time is defined as the time required for
decreasing the H2S sensor resistance or increasing the H2S sensor conductance by 90%
of the total decrease (Rair-Rgas) or total increase (Igas-Iair). In contrast, the recovery time is
defined as the time required to recover the H2S sensor resistance or increase the H2S sensor
conductance by 90% of the total decrease (Rair-Rgas) or total increase (Igas-Iair) when the H2S
injection is stopped and air is injected into the chamber.

Response and recovery times considerably decreased with the increase in operating
temperature, which is controlled by the input voltage of the micro-heater. At a lower input
voltage, the micro-heater of type #3 had a shorter response and recovery time compared
to that of type #1 and #2, as it produced a more adequate thermal energy for an active
and rapid reaction between H2S and oxygen species (O2

−, O− and O2−) on the SnO2
surface, owing to its superior heating ability. To initiate a reaction between molecules,
they must be close to each other, and each molecule must have an energy greater than
the energy required for the reaction (i.e., activation energy, Ea). The activation energy for
the reaction between H2S and the surface-adsorbed oxygen species (O2

−, O− and O2−)
decreased with the increasing operating temperature. This decreased activation energy
rapidly induced the reaction between H2S and oxygen species (O2

−, O− and O2−) with an
increasing operating temperature. It was confirmed that the fabricated SnO2-based H2S
microsensors with micro-heaters of type #1–#3 actively react with H2S at the operating
temperature of approximately 170–180 ◦C; however, the SnO2-based H2S microsensor’s
response for H2S was saturated or degraded when the operating temperature was further
increased above 180 ◦C, as shown in Figure 9. In the high response region, the SnO2-based
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H2S microsensor with a micro-heater of type #3 exhibited a low driven voltage (3.5 V)
and a low power consumption (340.65 mW), while offering a high performance (response:
6.52, response time: 51 s, recovery time: 101 s) for portable gas sensor applications, as
shown in Figure 9. However, other H2S microsensors with micro-heaters of type #1–#2
must be supplied with a higher operating voltage and require a greater power consumption
to exhibit a similar H2S-detection ability. This limits their applicability in portable gas
sensor applications.
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Figure 8. Measured response and recovery time of the SnO2-based H2S microsensor with micro-
heaters of (a) type #1, (b) type #2, and (c) type #3 as a function of input voltage of micro-heater.
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Figure 9. Measured response and expected operating temperature of the SnO2-based H2S microsensor
with micro-heaters of type #1–#3 as a function of power consumption.

To develop an H2S gas sensor that requires a lower-driven voltage and power con-
sumption than the developed H2S microsensor, a membrane structure must be fabricated.
This must be considered depending on applicable fields, as a gas sensor with a membrane
structure can incur high costs, encounter difficulties in fabrication, and possess weak
mechanical properties.

For practical applications, gas sensors should exhibit a strong response, as well as
good selectivity, toward the targeted gas (H2S in this study). To estimate the selectivity of
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the proposed SnO2-based H2S microsensor with micro-heater type #3 (input voltage is 3.5 V,
power consumption is 340.65 mW), the fabricated H2S microsensor was exposed to different
types of gases, including ammonia (NH3), hydrogen (H2), and carbon monoxide (CO) gases.
As shown in Figure 10, the fabricated H2S microsensor displayed great selectivity toward
H2S. In case of an increasing operating temperature at the higher input voltage (>3.5–4 V),
the fabricated H2S microsensor with the micro-heater of type #3 actively reacted with
different types of gases, as mentioned in Section 1. Thus, the selectivity of fabricated
H2S microsensors is poor, and unnecessary power consumption is required. Based on the
experimental results, we confirmed that it is important to provide sufficient thermal energy
to reach an optimum operating temperature (170–180 ◦C) for the reaction between H2S
and oxygen species (O2

−, O− and O2−) on the SnO2 surface using the micro-heater that
exhibits a superior heating performance.
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Figure 10. Measured responses of the SnO2-based H2S microsensor with micro-heater of type #3 to
different tested gases.

In summary, the H2S-detection ability of the proposed SnO2-based H2S microsensor
can be significantly improved by supplying thermal energy, utilizing fabricated micro-
heaters embedded in the H2S sensor. Further, the applied input voltage and power con-
sumption can be minimized by optimizing the micro-heater design.

4. Conclusions

This study proposed and fabricated an SnO2-based H2S microsensor with micro-
heaters of different geometric designs. An H2S sensor using semiconducting metal oxide
as the sensing material generally comprises a substrate, sensing material, IDE, and a
micro-heater. The micro-heater, embedded in the gas sensor, has an important role to
play because the reaction between H2S and oxygen species (O2

−, O− and O2−) on the
SnO2 surface is affected by the operation temperature of the sensor. The development of
a micro-heater producing more thermal energy by minimizing the operating voltage and
power consumption is necessary to realize more viable real-time monitoring and portable
sensor applications. To meet this requirement, micro-heaters with different geometric
designs (meander, rectangular, and rectangular mesh patterns) have been proposed, and
their heating performances were characterized by estimating the H2S-detection ability
of the sensor. This was accomplished by applying a sufficient input voltage and then
measuring the resistance of the temperature sensor. Based on the experimental results, we
confirmed that the micro-heater with a rectangular mesh pattern produced thermal energy
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more effectively. Therefore, the SnO2-based H2S microsensor with the micro-heater with a
rectangular mesh pattern displayed a superior H2S-detection ability. Its responses (Igas/Iair)
were 4.37 (2 ppm), 5.64 (4 ppm), 6.56 (6 ppm), 7.31 (8 ppm), and 8.72 (10 ppm) at an applied
input voltage of 3.5 V to the micro-heater. Furthermore, it had a shorter response time
(<51 s) and recovery time (<101 s) compared to H2S microsensors with micro-heaters with
meander and rectangular patterns. H2S is a toxic and harmful gas, even at concentrations
as low as hundreds of parts per million, and is mainly produced by oil deposits, biogas,
and natural gas fields. Thus, developing an H2S sensor with good selectivity and a fast
response time is crucial for the health and safety of industrial workers and the general
population. Therefore, the developed and optimized H2S sensor proposed in this study is
suitable for practical real-time monitoring and portable sensor applications.
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