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Abstract: The 6D Pose estimation is a crux in many applications, such as visual perception, au-
tonomous navigation, and spacecraft motion. For robotic grasping, the cluttered and self-occlusion
scenarios bring new challenges to the this field. Currently, society uses CNNs to solve this problem.
The CNN models will suffer high uncertainty caused by the environmental factors and the object
itself. These models usually maintain a Gaussian distribution, which is not suitable for the underlying
manifold structure of the pose. Many works decouple rotation from the translation and quantify
rotational uncertainty. Only a few works pay attention to the uncertainty of the 6D pose. This
work proposes a distribution that can capture the uncertainty of the 6D pose parameterized by the
dual quaternions, meanwhile, the proposed distribution takes the periodic nature of the underlying
structure into account. The presented results include the normalization constant computation and
parameter estimation techniques of the distribution. This work shows the benefits of the proposed
distribution, which provides a more realistic explanation for the uncertainty in the 6D pose and
eliminates the drawback inherited from the planar rigid motion.

Keywords: probability theory; dual quaternion; pose uncertainty; lie group; Bingham distribution

1. Introduction

The Pose Estimation of rigid objects has a wide range of applications in today’s life,
such as robot grasping [1], aerospace applications, autonomous driving [2], and so on.

Throughout history, pose estimation has played a vital role, from Ceres’s position
predicting to navigation on the sea ([3], Introduction 1.1). One day, Captain cook sailing in
the sea has lost his bearings. The ship moves on a wavy and wind sea. With the reasonable
assumption, He estimates the optimal localization of the ship from the noisy measurements
(Figure 1, top).

New challenges come to this field. The success of service robotics relies on well-
perceiving an unfamiliar kitchen scenarios, such as bottles, dishes, and containers. Robot
grasps under cluttered or limited lighting environments are becoming common in a rapidly
growing warehouse automation industry [4]. Consequently, robots need to know the
full 6D pose of objects to manipulate objects, which is difficult due to the uncertainty
caused by environmental factors and sensing technologies. The intuition is to deploy
expensive high-precision sensors to avoid such uncertainty. However, all sensors have
limited precision, and measurements derived from actual sensors have associated uncer-
tainty ([3], Introduction 1.2).

The CNN [5] broke through in the ImageNet [6] challenge, motivating more and more
works to embrace deep learning. However, most prior works in this area failed to take
the weak information [7] and the 6D pose uncertainty into account, and they only provide
a single best guess for each object pose [8–10]. The accurate metric of the model cannot
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handle unprepared situations, such as dim lighting. The uncertainty will rise with the
increase in accuracy over time.

The pose estimation of symmetric objects is currently the most challenging task [11].
Existing multiple correct poses for the same visual appearance [12]. This issue also results
in lousy training performance since a network receives inconsistent loss signals. Xiang
et al. [9] design an MSE loss function based on quaternions and regress the 3D rotation
using the neural network. It reports better performance for symmetric objects such as bowls.
However, they do not take the underlying structure of the manifolds into consideration.

Deng et al. [13] detect the object’s position by a bounding box using a neural network.
They assume the Gaussian position and approximate the observation likelihood to obtain
the conditioning orientation density by a Rao–Blackwellized particle filter. The result is
considerably robust in rotational uncertainty. However, this approach is computationally
expensive, and it is not clear which kind of distribution holds on the orientations. Further-
more, uncertain rotation axes need to be considered when underlying uncertainty is not
axis aligned [14].

Nonetheless, the neural network correctly assumes the underlying structure of the
data is robust. Prokudin [15] exhibits a good example dealing with periodic circular data.
The same loss will emerge when the predicted angle is equal to 1° or 359° with the ground
truth angle of 0°. He presents a loss based on the directional setting and assumes the angle
obeys the von Mises distribution. As a result, the model works suitably for the data with
the periodic nature.

The Gaussian assumption is commonly embedded, leading the neural network to fail
to learn the underlying manifold structure of the 6D pose. Holding the robust assumption
of uncertainty is the foremost for 6D pose estimation.

Inevitably, coupling or decoupling is the first consideration when parametrizing the
6D pose. It is also related to further modeling uncertainty. Daniilidis [16] employs dual
quaternion to parameterize the 6D pose for hand–eye calibration and establishes a linear
homogeneous system, simultaneously solving rotation and translation. Goddard and
Addi [17] capture the correlation between rotation and translation for rigid motion tracking
by dual quaternions.

Horn [18] proposes the method that decouples the orientation from translation. In-
spired by Horn, Srivatsan [19] makes a linear assumption on the state of the SE(3) elements
by adopting dual quaternions. Li [20] explains the correlation between rotation and transla-
tion terms based on hyperspherical parallel transport and gives a Bingham distribution on
the orientation decoupled from the translation. Manhardt [12] illustrates the rotation uncer-
tainty caused by occlusion in the 6D pose estimation by employing Bingham distribution.
However, it is still unknown how the Bingham distribution extends to SE(3) space without
variations.

The work’s most Bingham distribution of interest is motivated by Glover. He presents
the BPA [21] algorithm to recover the full poses from patches of local features of the 3D
point cloud. This work extends from the SE(2)[22].

Main Contribution

In this work, we aim to model the uncertain 6D pose by extending the probability
density function on the SE(2) to the SE(3). This is achieved through parameterizing
the 6D pose by dual quaternions. The work simplifies a future generalization to the 6D
pose estimation of objects (Figure 1, bottom). The proposed distribution appears as a
marginal distribution for the rotational part of the proposed model. We further discuss the
relationship between orientation and position. To the best of the author’s knowledge, there
is no work exactly claimed for this.

This paper is organized as follows. We will compare several existing 6D parame-
terization techniques and select the most promising one in Section 2. In Section 3, we
propose a new probability distribution on the 6D pose. The normalization constant and
parameter estimation techniques will be discussed. Later, in Section 4, we use the proposed
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framework to represent the transformation of the 6D pose, and the algorithm that recovers
the transformation from the samples of our proposed distribution will be presented. Lastly,
the discussion and conclusions of this work are in Section 5.

Figure 1. The analogy to localize a ship moves on the sea. The position appears as the Gaussian
distribution with noise measurements caused by the wind and waves. However, it is no longer
suitable for the 6D pose uncertainty influenced by illumination and symmetric objects themselves.
The result of the proposed distribution shows an antipodal symmetry for the 6D pose.

2. Preliminaries

There are several existing methods to parameterize SE(3) elements, including or-
thonormal rotation matrices, Euler angles, Rodrigues vectors, quaternions, etc. For or-
thonormal rotation matrices, the compounding of two elements is much more complex ([23],
p. 45). Although Euler angles are invariant under transforms and easy to comprehend,
there exist singularities [24]. Rodrigues vectors are complex to implement as a composition
algorithm [25]. For parameterization of the 3D rotation, the quaternion is the best from the
analog computation view [26]. Still, it is also limited to representing rotation in a full 6D
pose, and the translation must be dealt with separately

The dual quaternions this work introduced takes both rotation and translation into
consideration. It provides a closed-form solution for the composition of 6D poses, which is
the analogy to the transform matrix in homogeneous coordinates [27]. Kenwright [28] finds
that the transforms by the dual quaternion multiplication 10 percent faster compared to
matrix multiplication on average. Nonetheless, Kavan et al. [29] present a practical example,
and they utilize dual quaternions to solve the shortage of the linear blend skinning.

Conventions. In this work, lower-case letters represent scalars, and matrices are rep-
resented by capital letters, vectors, and quaternions in bold. Quaternions are distinguished
from dual quaternions by a caret, e.g., q̃ denotes a quaternion and q̂ denotes a dual quater-
nion. Two quaternions p̃ and q̃ multiplication is denoted as p̃� q̃, while the multiplication
of the two dual quaternions is denoted as p̂⊗ q̂. The dot product and cross product of
vectors v and w are denoted as 〈v, w〉 and v×w, respectively. Finally, we use H represent
the skew-field of quaternions. With this in mind, consider the quaternions q̃ ∈ H. The
pose is synonymous with the 6D pose or transformation; the rotation is synonymous with
orientation; the translation is synonymous with the position.
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2.1. Quaternions

Similar to complex numbers, the sum of a real number and three complex numbers
represent quaternions. The quaternion q̃ ∈ R4 can be treated as a 4-tuple (q0, q1, q2, q3). It
can also be identified with the typical basis elements i, j, k via the coefficients:

H = {q̃ | q̃ = q0 + q1i + q2 j + q3k, q0, q1, q2, q3 ∈ R}. (1)

The multiplication of the two quaternions p̃ = (p0, p), q̃ = (q0, q) is given by:

p̃� q̃ = p0q0 − 〈p, q〉+ q0 p + p0q + p× q, (2)

where p0, q0 names the scalar part and p, q ∈ R3 is the vector part; note that the product is
not commutative.

Furthermore, linear operators [30] Q+
p and Q−q → R4×4 and associated with (2) can be

also defined by matrix-vector form as:

p̃� q̃ = Q+
p · q̃ = Q−q · p̃, (3)

with

Q+
p =

[
p0 −pT

p p× + p0 I3

]
, Q−q =

[
q0 −qT

q −q× + q0 I3

]
.

where [ ]× is the skew-symmetric matrix generated from the corresponding vector.
The canonical norm on H of quaternions is defined by ||q̃|| =

√
q̃� q̃∗ =

√
q̃∗ � q̃ =√

q02 + q1
2 + q22 + q32.

The conjugate of the quaternion is obtained by changing the sign of each element in
the imaginary part: q̃∗ = (q0,−q) = (q0,−q1,−q2,−q3).

Last but not the least, the quaternion addition is simply the 4-tuple addition of quater-
nion representations: p̃ + q̃ = (p0, p) + (q0, q) = (p0 + q0, p + q).

2.2. Representation of 3D Rotation

Unit quaternions q̃ are quaternions with ||q̃|| = 1 and commonly represent the rota-
tions in 3D Euclid space. The inverse of a unit quaternion is obtained by its conjugate form
q̃−1 = q̃∗.

The quaternion can represent the rotation around a 3D axis with a unit-length vector v
and the rotation angle θ ∈ [−π, π]:

q̃ = cos(
θ

2
) + vsin(

θ

2
). (4)

A point p = (p1, p2, p3) ∈ R3 is denoted as the purely imaginary quaternion without
real part p̃ = p1i + p2 j + p3k. From (4), the rotated point p̃rot is obtained as [25]:

p̃rot = q̃� p̃� q̃∗.

In addition, q̃ and −q̃ represent the same rotation due to the antipodal property on the
hypersphere S3, so the set U of unit quaternion is a double coverage of the SO(3) of the 3D
rotations.

2.3. Dual Quaternions

The dual theory is helpful when understanding the concept of dual quaternions. A
dual number combines the non-dual part a1, and the dual part b1 is represented as a1 + εb1,
where a1, b1 ∈ R. The ε is the dual unit; note that ε 6= 0, ε2 = 0. The multiplication of two
dual numbers is given as (a1 + εb1)(a2 + εb2) = a1a2 + ε(a1b2 + a2b1).
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Dual quaternions (x̂ ∈ HD) are quaternions equivalent to dual numbers, i.e., replacing
real numbers a1, b1 with quaternions p̃ and q̃. Thus, a dual quaternion is given as follows:

HD = {x̂ | x̂ = p̃ + εq̃, p̃, q̃ ∈ H}. (5)

The multiply operation of two dual quaternions is similar to dual numbers. As two
dual quaternions x̂1 = p̃1 + εq̃1 and x̂2 = p̃2 + εq̃2 (x̂1, x̂2 ∈ HD), the product of the two is:

x̂1 ⊗ x̂2 = p̃1 � p̃2 + ε(p̃1 � q̃2 + p̃2 � q̃1). (6)

Note that the product is non-commutative.
The dual quaternions apply the same strategy utilized by quaternions, linear operators:

(·)+ and (·)− ∈ R8×8 can be defined for dual quaternions by:

x̂1 ⊗ x̂2 = Q+
x1
· x̂2 = Q−x2

· x̂1,

with

Q+
x1

=

[
Q+

p1
O

Q+
q1

Q+
p1

]
, Q−x2

=

[
Q−p2

O
Q−q2

Q−p2

]
.

Dual quaternions have three conjugates [30]: (1) x̂1∗ = p̃− εq̃, (2) x̂2∗ = p̃∗ + εq̃∗, and
(3) x̂3∗ = p̃∗ − εq̃∗. A dual quaternion x̂ is a unit if x̂⊗ x̂2∗ = 1.

The norm of a dual quaternion in (5) is denoted as ||x̂|| =
√

x̂⊗ x̂2∗ =
√

x̂2∗ ⊗ x̂,
which expands to:

||x̂|| =
√

x̂⊗ x̂2∗ = ||p||+ ε
〈p, q〉
||p|| .

The unit dual quaternions have the norm that equals one. A dual quaternion satisfies the
unit dual quaternion if and only if the non-dual part ||p|| equals one and the dot product
of two parts 〈p, q〉 equals zero. This property helps to understand the relationship between
the two parts of the dual quaternion. Especially, a unit quaternion is a unit dual quaternion
when the dual part is zero.

2.4. Representation of 6D Pose

The 6D pose composes a 3D rotation part represented by a unit quaternion q̃r = [q0, q1, q2, q3]
in the form of (4) and a 3D translation part t ∈ R3. A unit dual quaternion representing the
6D pose is defined by the following equation:

x̂d = q̃r + εq̃d, (7)

where q̃d for translation t is defined by:

q̃d =
t̃� q̃r

2
, (8)

where t̃ is represented by a purely imaginary translation quaternion with zero real parts.
We introduce the Hamilton operators H+, H− to replace the linear operators defined

above. The term Hamilton operator, which is borrowed from Akyar [31], is not commonly
used, at least in the robotics literature, but it seems appropriate here:

H−r =

[
q0 −qT

q −q× + q0 I3

]
=


q0 −q1 −q2 −q3
qq q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0
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so that
q̃d =

1
2

H+
t q̃r =

1
2

H−r t̃. (9)

where H+
t is a R4×4 skew-symmetric matrix generated from translation vector t.

A point p = (x, y, z)T ∈ R3, we can be embedded in skew-field HD by using a dual
quaternion x̂d in (7). The transformation can be mathematically described as:

x̂d ⊗ p̂d ⊗ x̂3∗
d (10)

Consistent with the unit quaternion in rotations, the dual quaternions x̂d and−x̂d represent
the same pose.

3. Methods
3.1. Base Element

Consider the fact that the unit dual quaternions d̂q and−d̂q in the form of (5) represent
the same pose. Furthermore, the underlying structure of the periodic nature of the 6D
pose is no longer linear. Hence, a distribution that can characterize the non-linear structure
antipodal symmetric property is required. Consequently, we can tackle multiple, conflicting
hypotheses that naturally arise in ambiguous situations.

A Bingham distribution [32] is exactly a distribution on a unit hypersphere Sd−1. The
property of hte most interest is the antipodal symmetric, where dF(−x) = dF(x) (i.e.,
opposite points on Sd−1 have equal probability). It commonly represents uncertainty on
3D rotations, denoted as SO(3) mathematically, by the unit quaternion form [33], but not
on the 6D pose.

Definition 1. Let a random vector on the hypersphere Sd−1 = {x ∈ Rd : ||x|| = 1} ⊂ Rd be the
unit hypersphere in Rd. The probability density function(p.d.f)

f : Sd−1 → R

of a Bingham distribution is given by:

f (x) =
1
N
· exp(xTVΛV Tx)

where V ∈ Rd×d is an orthogonal matrix (VV T = V TV = Id×d) , describing the orientation, Λ =
diag(λ1, . . . , λd−1, 0) ∈ Rd×d with λ1 ≤ · · · ≤ λd−1 ≤ 0 as the concentration matrix, and N as
a corresponding normalization constant.

For the representation of small uncertainty, Bingham is almost near the Gaussian
distribution, and for the large uncertainty, the Gaussian is worse (or even quite poor) than
the Bingham distribution [34].

For those who are familiar with multivariate Gaussian, the parameter matrices V
and Λ can be derived via the eigendecomposition of a symmetric matrix C in subsequent
Section 3.2 (which is denoted as the inverse covariance matrix Σ−1 in multivariate Gaussian
distribution).

3.2. A New Distribution Model

For a quite intuitive interpretation, we decompose a unit dual quaternion x̂ into (xr, xd)
in vector form. Thus, a joint probability density over the non-dual part, and the dual part
can be denoted as the following Lemma 1.
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Lemma 1. A random vector x = (xr, xd) ∈ S3 ×R4 is distributed to the proposed distribution,
and the p.d.f is:

f (xr, xd) = N(C)−1 · exp

((
xr
xd

)T

C
(

xr
xd

))
,

where xr ∈ S3 and xd ∈ R4, symmetric and positive definite C ∈ R8×8, and a normalization
constant N(C).

It is always possible to break a joint density into the product of two factors. We can
work out the details for the joint case by employing the Schur complement. First, let C in
Lemma 1 be denoted as:

C =

(
C11 C12
C21 C22

)
with Cij ∈ R4×4; note that C21 = CT

12, according to the settings [22], C11 needs to be
symmetric, C12 may be arbitrary, and C22 has to be symmetric negative definite to ensure
the antipodal symmetry, which we will further discuss in Section 3.3.

Lemma 2. The proposed probability density function can be rewritten as:

f (xr, xd) = N(C)−1 · exp(xT
r A1xr

+ (xd − A2xr)
TC22(xd − A2xr))

where A1 = C11 − C12C−1
22 C21, A2 = −C−1

22 C21.
A proof is given in Appendix A.

From Lemma 2, the rotation part of the dual quaternion evidently appears as a Bing-
ham distribution, which can be derived by marginalizing out the corresponding conditional
distribution of the dual part.

Since the dual part, xd, combines the rotation and translation by a Hamilton product,
a canonical way to describe dependencies between the position and the orientation of a
dual quaternion is still unknown [22].

From (9), the dual part given the non-dual part f (xd|xr) can be treated as a multivariate

Gaussian distribution N (A2xr,−C−1
22
2 ). Thus, the joint density function from Lemma 2 can

be rewritten as:

f (xr, xd) = f (xr) f (xd|xr)

= NB(A1)
−1 · exp

(
xT

r A1xr

)
·

NG−1 · exp
(
(xd − A2xr)

TC22(xd − A2xr)
)

.

where A1 = C11 − C12C−1
22 C21, A2 = −C−1

22 C21.

3.3. Normliazation Constant

The Bingham distribution is flexible for 3D rotation represented by the unit quaternion
on the hypersphere S3. Although it represents uncertainty, it is still not well propagated in
the computer vision and robotics communities because the computation of the normaliza-
tion constant is complex. The normalization constant, F, in the Bingham distribution is not
closed form, which means the normalization constant, F, only has the numerical solution.
However, several techniques can overcome this difficulty, such as caching techniques [35]
and saddlepoint approximations. It is still an area of active research [14].
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Fortunately, the computational burden is alleviated by the method adapted from [22].
The normalization constant is written as follows according to the discussion:

N(C) =NB(A1) · NG =
2π

√
det
(
− 1

2 C−1
22

)
F(A1)

,

where A1 = C11 − C12C−1
22 C21.

Furthermore, this work calculates NB(A1) by the hypergeometric function [34] of a
matrix argument:

F(Λ) :=
∣∣∣Sd
∣∣∣ · 1F1

(
1
2

;
d + 1

2
; Λ
)

,

For the case d = 3, this reduces to:

F(Λ) = 2π2 · 1F1

(
1
2

;
4
2

; z1, z2, z3

)
.

A statistics library [36] is used for the computation of the normalization constant, F, in
this work.

3.4. Parameter Estimation

We hope to obtain the parameters of the proposed distribution given a d× N sample
matrix X = [x1, . . . , xN ], where each column vector is assumed to be generated i.i.d from
our proposed distribution. This procedure can be divided into two stages. First, the first
four entries of samples will recover the parameter of the Bingham distribution. Second, the
eight entries recover the parameter in the Gaussian distribution.

From Lemma 2, we observed that the base element with d = 4 in Section 3.1 appears a
marginal distribution of our model. Thus, we can apply Definition 1:

f (xr; Λ, V) =
1

F(Λ)
exp

(
xr

TVΛV Txr

)
(11)

where xr ∈ R4 is the first four entries from the proposed distribution.
The parameter V can be obtained as the matrix of eigenvectors of the covariance

A1 with corresponding eigenvalues Λ in the order λ1 ≤ λ2 ≤ λ3, equivalent to the
eigendecomposition of A1 = V · diag(λ1, λ2, λ3) · V T .

The probability density function of a 4D Bingham distribution projected on S3 by a
unit vector is shown in Figure 2, which appears in the marginal distribution of the first four
entries xr in our model.

As we have already discussed in Section 3.2, the dual part xd given the non-dual

xr is assumed to be a Gaussian distribution N (A2xr,−
C−1

22
2 ). The parameters A2 and

−C−1
22
2 can be obtained by maximum likelihood estimation of a multivariate linear regres-

sion ([37], Theorem 8.2.1).
The mode of proposed distribution is related to the order of the column vector in

matrix V . It turns to be the last column, according to diagonal entries when we enforce
λ1 ≤ · · · ≤ λd−1 in Λ. It is also possible to swap columns of V without changing the
distribution [38]. There exist two correct modes in the proposed distribution because of
the antipodal symmetry. For one of the modes m = (mr, md), where mr is the normalized
eigenvector of A1 and md = A2mr, the −m is the another correct one.
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Figure 2. The probability density function of a unit vector under the marginal distribution of the
proposed model, which is projected on hypersphere S3 with diag(z) = [−4.72,−2.15,−0.60]. The
colors encode the value of the probability on the Bingham distribution over the whole sphere.

4. Result

As expected, unit dual quaternions can be used to represent 3D rotation while the
dual part is zero. Thus, (4) can be extended to a dual form as:

d̂r = [cos(
θ

2
) + sin(

θ

2
)(v1i + v2 j + v3k)] + ε · 0 (12)

where v = (v1, v2, v3), ||v|| = 1.
This work utilizes dual quaternions to generate the form of the 3D translation. A

vector t = (t1, t2, t3)
T ∈ R3 embedded in the skew-field HD is represented by the following:

d̂t = 1 +
ε

2
(0 + t1i + t2 j + t3k) (13)

To combine rotations and translations, the product of two unit dual quaternions is used
according to (6). A rotation with a subsequent translation is given as follows:

d̂t ⊗ d̂r = [1 +
ε

2
(t1i + t2 j + t3k)] · [cos(

θ

2
) + vsin(

θ

2
)]

= cos(
θ

2
) + sin(

θ

2
)(v1i + v2 j + v3k) +

ε

2
{

− sin(
θ

2
)(v1t1 + v2t2 + v3t3)

+ [cos(
θ

2
)t1 + sin(

θ

2
)(v3t2 − v2t3)]i

+ [cos(
θ

2
)t2 + sin(

θ

2
)(v1t3 − v3t1)]j

+ [cos(
θ

2
)t3 + sin(

θ

2
)(v2t1 − v1t2)]k}

=: d0 + d1i + d2 j + d3k + ε(d4 + d5i + d6 j + d7k)

(14)

A dual quaterinon in the form of (14) is still a unit dual quaternion, and there is no restriction
on translation that must be unit-length. According to the defined norm property of the unit
dual quaternion, that is, p0q0 + p1q1 + p2q2 + p3q3 = 0, this property provides ingredients
to our algorithm for translation.

According to (5), the first four entries are interpreted as the non-dual part, which
describes the rotation, and its last four entries are interpreted as a dual part of dx̂. That is:

dx̂ = (d0, d1, d2, d3, d4, d5, d6, d7)
T . (15)

Represented by the vector form, the unit dual quaternion can be written as dx̂ =
q̃r + εq̃d, decomposing into the non-dual part q̃r = (d0, d1, d2, d3) and the dual part q̃d =
(d4, d5, d6, d7).

Furthermore, the Hamilton operator (·)+ ∈ R4×4 is associated with (8), and the
translation part can be derived from (14) as follows:

q̃t = 2 · q̃∗+r · q̃d, (16)
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where q̃∗r = (q0,−q) = (d0,−d1,−d2,−d3) is the conjugate of q̃r.
Algorithm 1 shows a robust method to generate the rotation angle, axis, and trans-

lation in 3D space by sampling from the proposed distribution. Furthermore, this work
applies Algorithm 1 to several sets of the samples generated from the proposed distribution,
and the results are shown in Figure 3.

Algorithm 1: Recover the corresponding translation and rotation from sampled
vector on the proposed distribution.

Input: A sampled random vector wx̂ = (w0, . . . , w7)
T ∈ R8

/* Compute the rotation angle */

φ← 2 · atan2(
√

w1
2 + w22 + w32, w0)

/* Compute the rotational arbitrary vector */

v1 ← w1/sin(φ/2)
v2 ← w2/sin(φ/2)
v3 ← w3/sin(φ/2)
/* Compute the translation */

t1 ← 2 · (w0w5 − w1w4 + w2w7 − w3w6)
t2 ← 2 · (w0w6 − w1w7 − w2w4 + w3w5)
t3 ← 2 · (w0w7 + w1w6 − w2w5 − w3w4)
Output: Rotation angle φ, rotational arbitrary vector v = (v1, v2, v3) and

translation vector t = (t1, t2, t3)

The 6D pose is obtained by the random vector sampled from the proposed distribu-
tion. Each sample from our distribution appears in the antipodal symmetry in rotations.
Compared with the planar rigid motion case [22], our distribution breaks the antipodal
symmetry in the translation that t and −t are denoted as positions that always have the
same probability values.

-5

4

0

2

z

2

y

0

x

0

5

-2 -2
-4-4

-5

5

0

z

5

0 10

y

5-5

x

0-10 -5
-15

-5

0

20

z

5

10

10

y

0

-10 5

x

0-20 -5

-2

0

2

z

2

0

y

2

x

0-2
-2-4

-4

-4

-2

44

0

2

z

2

2

y

0

x

4

0 -2
-4-2

-6

15

-5

0

z

10 10

5

y

5 5

x

00
-5-5

-10

20

0

10

z

10

y

10

0

x

0 -10
-20

-2

4

0

2

z

2

2

y x

4

00
-2-2

Figure 3. In the first row, the rotation after the translation applies to sets sampled from the proposed
distribution, the blue dots mean the position in 3D space, the rotation axis is represented by an
arrow. In the bottom row, set the translation after the rotation. The mode in both rows appears as the
antipodal symmetry in the representation of rotation; there is no such property in the position that
recovers from the proposed distribution (Zoom in the figure to see the detail).

5. Conclusions

This work proposes a distribution over the 6D pose in order to capture the uncertainty
which is typically ignored by the pose estimation task. Our model takes the periodic
nature of the underline structure into consideration, such as antipodal symmetry, which is
suitable for high-noise regimes. The proposed distribution eliminates the drawbacks from
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initializing the SE(2), in which the position is ambiguous due to antipodal symmetry, and
our distribution setting is closer to reality.

However, we assume that the Gaussian on the correlation part leads to a better, but
still imperfect, answer. Many beautiful properties in the parameter matrix of the proposed
distribution have not been explored. Still, a unified distribution exists to couple the rotation
and translation.

In the future, we will verify the proposed distribution in practical applications, such
point cloud registration, as well as the most important one, the 6D pose estimation task.
Last but not least, the combination of the neural network with the proposed probability to
regress the object pose is worth endeavoring.
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Appendix A. Proof of Lemma 2

The parameter matrix C in the distribution can be rewritten as the UDL form by Schur
Complement:

(
xr
xd

)T(C11 C12
C21 C22

)(
xr
xd

)
=

(
Cr
xd

)T(
1 C12C−1

22
0 1

)(
C11 − C12C−1

22 C21 0
0 C22

)(
1 0

C−1
22 C21

)(
xr
xd

)
= xT

r

(
C11 − C12C−1

22 C21

)
xr +

(
xd + C22

−1C21xr

)T
C22

(
xd + C22

−1C21xr

)
where, once again, A1 = C11 − C12C−1

22 C21, A2 = −C−1
22 C21.
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11. Hodaň, T.; Baráth, D.; Matas, J. EPOS: Estimating 6D Pose of Objects With Symmetries. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 14–19 June 2020; pp. 11700–11709. [CrossRef]

12. Manhardt, F.; Arroyo, D.M.; Rupprecht, C.; Busam, B.; Birdal, T.; Navab, N.; Tombari, F. Explaining the Ambiguity of Object
Detection and 6D Pose From Visual Data. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 6840–6849. [CrossRef]

13. Deng, X.; Mousavian, A.; Xiang, Y.; Xia, F.; Bretl, T.; Fox, D. PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose
Tracking. In Proceedings of the Robotics: Science and Systems, Freiburg im Breisgau, Germany, 22–26 June 2019; [CrossRef]

14. Gilitschenski, I.; Sahoo, R.; Schwarting, W.; Amini, A.; Karaman, S.; Rus, D. Deep Orientation Uncertainty Learning based on a
Bingham Loss. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 25
September 2019.

15. Prokudin, S.; Gehler, P.; Nowozin, S. Deep Directional Statistics: Pose Estimation with Uncertainty Quantification. In Proceedings
of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 534–551. [CrossRef]

16. Daniilidis, K. Hand-Eye Calibration Using Dual Quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [CrossRef]
17. Goddard, J.S.; Abidi, M.A. Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering. In Three-

Dimensional Image Capture and Applications; Ellson, R.N., Nurre, J.H., Eds.; International Society for Optics and Photonics; SPIE:
Bellingham, WA, USA, 1998; pp. 189–200. [CrossRef]

18. Horn, B.; Hilden, H.; Negahdaripour, S. Closed-Form Solution of Absolute Orientation using Orthonormal Matrices. J. Opt. Soc.
Am. A 1988, 5, 1127–1135. [CrossRef]

19. Srivatsan, R.A.; Xu, M.; Zevallos, N.; Choset, H. Probabilistic pose estimation using a Bingham distribution-based linear filter.
Int. J. Robot. Res. 2018, 37, 1610–1631. [CrossRef]

20. Li, K.; Pfaff, F.; Hanebeck, U.D. Geometry-Driven Stochastic Modeling of SE(3) States Based on Dual Quaternion Representation.
In Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 6–9 May
2019; pp. 254–260. [CrossRef]

21. Glover, J.; Popovic, S. Bingham Procrustean Alignment for Object Detection in Clutter. In Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2158–2165. [CrossRef]

22. Gilitschenski, I.; Kurz, G.; Julier, S.J.; Hanebeck, U.D. A New Probability Distribution for Simultaneous Representation of
Uncertain Position and Orientation. In Proceedings of the 17th International Conference on Information Fusion (FUSION),
Salamanca, Spain, 7–10 July 2014; pp. 1–7.

23. Corke, P. Robotics, Vision and Control; Springer Tracts in Advanced Robotics; Springer International Publishing: Cham, Switzerland,
2017; Volume 118, p. 45. [CrossRef]

24. Jackson, B.E.; Tracy, K.; Manchester, Z. Planning with Attitude. IEEE Robot. Autom. Lett. 2021, 6, 5658–5664. [CrossRef]
25. Feiten, W.; Atwal, P.; Eidenberger, R.; Grundmann, T. 6D Pose Uncertainty in Robotic Perception; Advances in Robotics Research;

Springer: Cham, Switzerland, 2009; pp. 89–98. [CrossRef]
26. Stuelpnagel, J. On the Parametrization of the Three-Dimensional Rotation Group. SIAM Rev. 1964, 6, 422–430. [CrossRef]
27. Feiten, W.; Lang, M.; Hirche, S. Rigid Motion Estimation Using Mixtures of Projected Gaussians. In Proceedings of the 16th

International Conference on Information Fusion (FUSION), Istanbul, Turkey, 9–12 July 2013; pp. 1465–1472.
28. Kenwright, B. A Beginners Guide to Dual-Quaternions: What They Are, How They Work, and How to Use Them for 3D Character

Hierarchies. In Proceedings of the 20th International Conference on Computer Graphics, Visualization and Computer Vision,
WSCG 2012 Communication Proceedings, Pilsen, Czech Republic, 25–28 June 2012; pp. 1–13

29. Kavan, L.; Collins, S.; Žára, J.; O’Sullivan, C. Skinning with Dual Quaternions. In I3D ’07: Proceedings of the 2007 Symposium on
Interactive 3D Graphics and Games; ACM Press: New York, NY, USA, 2007; p. 39.

30. Fan, T.; Weng, H.; Murphey, T. Decentralized and Recursive Identification for Cooperative Manipulation of Unknown Rigid Body
with Local Measurements. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne,
Australia, 12–15 December 2017; pp. 2842–2849. [CrossRef]

31. Akyar, B. Dual Quaternions in Spatial Kinematics in an Algebraic Sense. Turk. J. Math. 2008, 32, 373–391.
32. Bingham, C. An Antipodally Symmetric Distribution on the Sphere. Ann. Stat. 1974, 2, 1201–1225. [CrossRef]
33. Antone, M.E. Robust Camera Pose Recovery Using Stochastic Geometry. Ph.D. Thesis, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2001.

http://dx.doi.org/10.1108/AA-09-2017-119
http://dx.doi.org/10.1109/IROS45743.2020.9340860
http://dx.doi.org/10.15607/RSS.2018.XIV.019
http://dx.doi.org/10.1109/CVPR.2019.00346
http://dx.doi.org/10.1109/CVPR42600.2020.01172
http://dx.doi.org/10.1109/ICCV.2019.00694
http://dx.doi.org/10.15607/RSS.2019.XV.049
http://dx.doi.org/10.1007/978-3-030-01240-3_33
http://dx.doi.org/10.1177/02783649922066213
http://dx.doi.org/10.1117/12.302453
http://dx.doi.org/10.1364/JOSAA.5.001127
http://dx.doi.org/10.1177/0278364918778353
http://dx.doi.org/10.1109/ICPHYS.2019.8780254
http://dx.doi.org/10.1109/IROS.2013.6696658
http://dx.doi.org/10.1007/978-3-319-54413-7
http://dx.doi.org/10.1109/LRA.2021.3052431
http://dx.doi.org/10.1007/978-3-642-01213-6_9
http://dx.doi.org/10.1137/1006093
http://dx.doi.org/10.1109/CDC.2017.8264073
http://dx.doi.org/10.1214/aos/1176342874


Micromachines 2022, 13, 126 13 of 13

34. Kurz, G.; Gilitschenski, I.; Julier, S.; Hanebeck, U.D. Recursive Estimation of Orientation Based on the Bingham Distribu-
tion. In Proceedings of the 16th International Conference on Information Fusion (FUSION), Istanbul, Turkey, 9–12 July 2013;
pp. 1487–1494.

35. Glover, J.; Bradski, G.; Rusu, R.B.; Park, M. Monte Carlo Pose Estimation with Quaternion Kernels and the Bingham Distribution.
Robot. Sci. Syst. 2012, 7, 97.

36. Kurz, G.; Gilitschenski, I.; Pfaff, F.; Drude, L.; Hanebeck, U.D.; Haeb-Umbach, R.; Siegwart, R.Y. Directional Statistics and Filtering
Using libDirectional. J. Stat. Softw. Artic. 2019, 89, 1–31. [CrossRef]

37. Anderson, T.W. An Introduction to Multivariate Statistical Analysis; Wiley-Interscience: Hoboken, NJ, USA, 2003.
38. Kurz, G.; Gilitschenski, I.; Julier, S.; Hanebeck, U. Recursive Bingham Filter for Directional Estimation Involving 180 Degree

Symmetry. J. Adv. Inf. Fusion 2014, 9, 90–105.

http://dx.doi.org/10.18637/jss.v089.i04

	Introduction
	Preliminaries
	Quaternions
	Representation of 3D Rotation
	Dual Quaternions
	Representation of 6D Pose

	Methods
	Base Element
	A New Distribution Model
	Normliazation Constant
	Parameter Estimation

	Result
	Conclusions
	Appendix A
	References

