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Section S1. Solving process of the undamped natural circular frequency  

The undamped natural frequencies and mode shapes are applicable to proportionally damped 

systems, so we can analyze the damped system by solving the undamped system. The undamped 

governing equation of free vibrations for the MEMS variable cross-section cantilever beam is given as 

follows. 
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The method of separation of variables can be used to solve Equations (S1) by separating the spatial 

and temporal functions as ( , ) ( ) ( )z x t x tφ η= . Based on the infinitesimal method, the undamped free 

vibration equation of each microbeam can be obtained after the variables are separated. 
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The left-hand side of Equation (S2) depends on x alone, while the right-hand side depends on t 

alone. Since x and t are independent variables, the standard argument in the method of separation of 

variables states that both sides of Equation (S2) must be equal to the same constant 2
iω . So,  
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The solution of Equation (S3) is as follows. 
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Where ( 1, 2, 3, 4)kic k =  and iH  are unknown constants, iλ  and iω  are the eigenvalue and 

eigenfrequency (natural circular frequency) of the ith undamped vibration mode, respectively. So the 

eigenfrequency is 2
4
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i i
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ω λ= . Based on the idea of the infinitesimal method, the vibration response 

( , )z x t  of the MEMS variable cross-section cantilever beam based piezoelectric vibration energy 

harvester can be expressed as a piecewise function of the vibration response of the N+1 segment 

rectangular beam. The vibration response of the ith-segment microbeam can be defined as 
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Where 0= , ( 1, 2, 3, ... )ix il i N=  and 1=N b mx l l+ + . Therefore, the modal shape function and the rth 

order modal shape function of the vibration response of the ith-segment microbeam can be written as 

follows, respectively. ( 1,2,3,4; 1,2,3, , 1)kiA k i N= = +  is a constant. 
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Now the resonant circular frequency can be expressed as follows. 
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In Equation (S6), ( )iYI  and im  respectively satisfy the following equations.  
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The boundary condition of the mode function ( )i xφ  is that 1) the displacement and rotation angle 

of the clamping end of each microbeam are zero, 2) the bending moment and shear force of the free end 

of each microbeam are zero, and 3) the displacement, rotation angle, bending moment, and shear force 

at the connection of each microbeam are all equal, as shown in Equation (S8).  
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After the coordinate translation transformation is performed on the mode function ( )i xφ  in 

Equation (S5), Equation (S9) can be obtained. 
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After the coordinate translation transformation, the boundary conditions of the mode shape 

function become as follows. 
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Let functions ( )iP x , ( )iQ x , ( )iR x , and ( )iS x  ( 1, 2,3, , 1)i N= +  satisfy the following equation. 
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Therefore, the mode function ( )i xϕ  after coordinate translation transformation can be expressed 

as follows. 
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Combining Equation (S10) and the transformed mode function, the boundary condition equations 

shown in Equation (S13) can be obtained. 
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Solving Equation (S13) can get the following formula. 
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Assuming 1( ) / ( )i i iYI YI B+ = , 1 1/i i i i il lλ λ ϖ+ + = , Therefore, ( 1,2,3, , )i N=i[J ] ,  can be expressed as 

follows. 



 

[ ]

[ ]

[ ]

1 1 1 1

1 1 1 1

2 3
1 1 1 1 1 1 1 1 1 1 1 1 1

2 3
1 1 1 1 1 1 1 1 1 1 1 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

N m N m N m N m

N m N m N m N m

T

i i i i i i i i

i i i i i i

R l S l P l Q l
Q l R l S l P l

R l Q l B P l B S l
S l R l B Q l B P l

P l Q l R l S l
S l P l

ϖ ϖ ϖ
ϖ ϖ ϖ

ϖ ϖ

+ + + +

+ + + +

 
=  
 

 
=  
 

=

N+1

1

i

J

J

J 2 2 2 2

3 3 3 3

( ) ( )
, ( 2,3, , )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

Q l R l
i N

B R l B S l B P l B Q l
B Q l B R l B S l B P l

ϖ ϖ
ϖ ϖ ϖ ϖ
ϖ ϖ ϖ ϖ








  
  
   =
  
  
  



  (S15) 

If 11A  and 21A  have non-zero solutions, the determinant of the coefficient matrix of formula (S14) 

must be zero, so the resonance frequency equation can be obtained as follows.  
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The resonance frequency equation in the above formula has a series of eigenvalues 

( )1, 2, 3, ... , ... ...in n r nλ = , which correspond to the nth eigenfrequency, respectively, so the rth 

resonance frequency can be expressed as follows.  
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Section S2. The proof of the orthogonality of the modal function 

Taking two different modes (rth and sth orders) of vibration response and substituting them into 

Equation (S3), respectively, the following equation can be obtained. 
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Multiply the left and right sides of the above formula by ( )ij xφ  and then integrate them in the 

beam length direction of the microbeams. Finally, after summing each microbeam, the following 

equation can be obtained. Where ( , ), (1,2,3,..., 1)j r s i N∈ ∈ + . 
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The two equations in Equation (S19) are symmetrical. We do two partial integrations on the left 

side of the first equation and then use a similar processing method for the other one. Finally, we can get 

the following equation.  
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According to the boundary conditions in Equation (S8), the following relational formula can be 

obtained. 
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Combining Equation (S20) and Equation (S21), and then simplifying, we can get the following 

equation. Using a similar method, we can also get Equation (S23). 
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The above two equations can be subtracted and arranged to obtain the following relational formula. 
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Because 2 2
ir isω ω≠ , the orthogonality of the mode shape function is as follows. 
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In combination with Equation (S19), we can obtain another orthogonal condition of the mode 

function as follows.  
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Section S3. Bidirectionally coupled distributed parameter model and its steady-state solution under 

modal coordinates 

Combining the mode function's orthogonality, mass normalization function, damping coefficient, 

vibration differential equation, and coupling circuit equation, the bidirectional coupled distributed 

parameter electromechanical model of the MEMS variable cross-section cantilever beam based 

piezoelectric vibration energy harvester under modal coordinates is obtained as follows.  
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Next, the steady-state response solution of the distributed parameter electromechanical model 

under the simple harmonic excitation with the basic excitation 0( ) i tB t B e Ω=  is solved. The amplitude of 

the acceleration of the basic excitation is 2
0 0a B= Ω . According to the linear theory, the steady-state 

modal mechanical response and voltage response on steady-state load resistance of the variable cross-

section piezoelectric cantilever beam are both simple harmonic quantities at the same frequency. 

Substituting ( ) i t
r rt H eη Ω=  and ( ) i tV t VeΩ=  into formula (S27), the following equation can be obtained. 
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Therefore, the steady-state solution of the bidirectionally coupled model is as follows. The steady-

state modal mechanical response : 
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The steady-state voltage response on load resistance : 
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The relative displacement of the ith microbeam: 
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  (S31) 

The above-mentioned steady-state solution is a multi-modal solution, which can be applied to 

excitation at resonance frequencies as well as excitation at non-resonant frequencies. To get the 

maximum electrical response, the device generally works near the basic natural frequency or a certain 



 

high-order natural frequency, that is rf f≈ . At this time, the sum term of the above-mentioned steady-

state solution is mainly determined by the rth order vibration mode. 

 

Section S3. The relevant settings and attributes in the ANSYS modeling process. 

The ANSYS finite element modeling process mainly includes: the establishment of geometric models, 

element and material attribute assignment of different modules, meshing, equipotential surface 

coupling, boundary condition setting and load application, model solving, etc. The properties of the 

elements in the modeling are: AlN piezoelectric layer uses SOLID 226 hexahedral elements, Si cantilever 

beams and mass blocks use SOLID 45 hexahedral elements, and load resistance uses CIRCU 94 elements 

for piezoelectric analysis. The trapezoidal cantilever beam used for model verification is a regular 

structure, and a mapping grid is used in the modeling process. Before solving, first couple all the nodes 

on the upper and lower surfaces of the AlN piezoelectric layer into equipotential surfaces. In the case of 

short circuit, the upper and lower surfaces are coupled into an equipotential surface, and in the case of 

open circuit, the upper and lower surfaces are each coupled into an equipotential surface. Under load 

conditions, the two nodes of the CIRCU 94 unit are coupled to the upper and lower surfaces of the AlN 

piezoelectric layer to form an electrical connection. Then set the boundary conditions and apply the 

load. 

 

Table S1. Material properties of the beam and piezoelectric materials. 

Parameter Description Value 

bρ , pρ  
Density of the Si beam substrate, the AlN piezoelectric 

layer 
2329 kg/m3, 3260 kg/m3 

bY , pY  
Elastic modulus of the Si beam substrate, the AlN 

piezoelectric layer 
170 Gpa, 350 Gpa 

31d  Strain coefficient of the AlN piezoelectric layer -1.73 pC/N 

33 0/sε ε  
Relative permittivity at a constant strain of the AlN 

piezoelectric layer 
10.26 

 
 

 



 

 

Table S2. Process flow of the MEMS trapezoidal cantilever beam based PVEH 

Process step name Layer thickness Two-dimensional cross-
sectional view (A-A') 

① Prepare SOI wafer 
Si/SiO2/Si: 
50 μm/1μm/350 μm  

② Thermal oxidation SiO2:200 nm 
 

③ Bottom electrode preparation Pt:120 nm 
 

④ Growth of AlN film AlN:1 μm 
 

⑤ Top electrode preparation Al:0.9 μm 
 

⑥ Front patterning SiO2:200nm, Al:100nm 
 

⑦ Front silicon etching Si :50μm 
 

⑧ Form mass pattern Al:100 nm 
 

⑨ Back silicon deep-etching Si:350 μm 
 

⑩ Structure release SiO2:1 μm 
 

 

 

 



 

 
 

Figure S1. Contour maps of variations of the resonance frequency rf  (a), the maximum displacement 
of the tip mass mz  (b), the open-circuit voltage ocV  (c), and the optimal load output power optP  (d) of 
the MEMS TCB based PVEH under different bl  and 2w . 
 
 



 

 
Figure S2. Contour maps of variations of the resonance frequency rf  (a), the maximum displacement 
of the tip mass mz  (b), the open-circuit voltage ocV  (c), and the optimal load output power optP  (d) of 
the MEMS TCB based PVEH under different bl  and bt . 
 

 
Figure S3. The open-circuit voltage frequency response curve (a) and the load output power curve (b) 

of the MEMS trapezoidal and rectangular beam based PVEH prototypes at the external excitation 

acceleration of 1g. 

 



 

 
 Figure S4. Schematic diagram of fault monitoring node based on the MEMS PVEH. 

 

 


