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Abstract: In this study, we proposed a rectifying drain electrode that was embedded in a p-GaN gate
AlGaN/GaN heterojunction field-effect transistor to achieve the unidirectional switching character-
istics, without the need for a separate reverse blocking device or an additional process step. The
rectifying drain electrode was implemented while using an embedded p-GaN gating electrode that
was placed in front of the ohmic drain electrode. The embedded p-GaN gating electrode and the
ohmic drain electrode are electrically shorted to each other. The concept was validated by technology
computer aided design (TCAD) simulation along with an equivalent circuit, and the proposed device
was demonstrated experimentally. The fabricated device exhibited the unidirectional characteristics
successfully, with a threshold voltage of ~2 V, a maximum current density of ~100 mA/mm, and a
forward drain turn-on voltage of ~2 V.

Keywords: AlGaN/GaN heterojunction; p-GaN gate; unidirectional operation; rectifying electrode

1. Introduction

AlGaN/GaN heterojunction field-effect transistors (HFETs) have been extensively
studied for high-efficiency power switching and high-frequency applications owing to their
properties, such as wide energy bandgap, high critical electric field, and two-dimensional
electron gas (2DEG) channels with high electron mobility and electron density [1–7]. While
the power switching devices must be operated in a normally-off mode, conventional
AlGaN/GaN HFETs exhibit normally-on characteristics. A widely adopted device structure
for the normally-off mode is a p-GaN gate AlGaN/GaN HFET, where the gate region has
a p-GaN layer to deplete the area underneath the AlGaN/GaN channel [4,8–13]. Such
device types have been successfully commercialized and they are currently used in various
power modules for different electronic devices, such as fast chargers, switching mode power
supplies, and lighting drivers. Some applications of switching devices are to prevent reverse
conduction in order to protect the circuit, so-called unidirectional switching characteristics.
A reverse blocking device or circuit must be added to the switching device to achieve
unidirectional characteristics, which enlarges the chip size and increases the manufacturing
cost. Some studies have reported the unidirectional operation of GaN devices without
adding extra components [14–18]. In this study, we proposed a unidirectional switching
device that is based on a normally-off p-GaN gate AlGaN/GaN HFET in which a drain
electrode consisted of a rectifying gating electrode and an ohmic electrode. The proposed
device requires no separate blocking device or additional manufacturing costs.

2. Device Structure and TCAD Simulation
2.1. Simulation Details

The epitaxial structure used for device simulation consists of a 70 nm p-GaN layer with
a p-type doping concentration of 3 × 1017 cm−3, a 15 nm unintentionally-doped Al0.2Ga0.8N
barrier layer with an n-type doping concentration of 1 × 1016 cm−3, a 35 nm unintentionally-
doped GaN channel layer with an n-type doping concentration of 1 × 1016 cm−3, and a
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1.95 µm Al0.05Ga0.95N buffer layer. Figure 1a,b demonstrate the cross-sectional schematics
of a conventional p-GaN gate AlGaN/GaN HFET and a proposed unidirectional device,
respectively, with a gate length of 2 µm for both of the structures. The length of the p-GaN
drain region was 1 µm for the unidirectional device, which was separated from the drain
electrode by 0.5 µm.
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Figure 1. Cross-sectional schematics of (a) p-GaN gate AlGaN/GaN heterojunction field-effect
transistor (HFET) and (b) unidirectional HFET.

The simulations were carried out using SILVACO ATLAS (Silvaco, Silicon Valley,
CA, USA). Figure 2 shows the models used in the simulation code, which was adopted
from an example file provided by SILVACO (ganfetex07.in). A detailed explanation of
the simulation models can be found in ref [19], which includes a polarization model, a
temperature dependent low field mobility model, a nitride specific high field dependent
mobility model, a lattice heating model, and a trap model.
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2.2. Simulation Result and Disscussion

Figure 3 compares the simulation results of the forward and reverse characteristics for
two different structures. The conventional device exhibited a typical normally-off operation
with reverse conduction characteristics, whereas the proposed structure exhibited the same
normally-off operation with reverse blocking characteristics. The threshold voltage was
1.8 V for both devices, which was determined by the p-GaN gate electrode. A positive shift
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in the forward drain turn-on characteristics was observed for the proposed unidirectional
device, which is the same as the gate threshold voltage of the device. The positive shift and
reverse blocking characteristics can be explained while using the equivalent circuit that is
shown in Figure 4. The p-GaN gate can be represented by a gate electrode of the HFET in
conjunction with a PN heterojunction diode. When the p-GaN gate voltage exceeds the
threshold voltage (1.8 V), the 2DEG channel is formed between the AlGaN barrier layer and
GaN channel layer, creating a conduction path between the source and drain. As the p-GaN
gate voltage becomes higher than the forward turn-on voltage of the p-GaN/AlGaN/GaN
heterojunction diode, the current flows from the p-GaN gate to the source. On the drain
side, the p-GaN region acts as a “gate” electrode, which is electrically shorted to the ohmic
electrode. Therefore, the current can flow from the ohmic drain electrode to the source
electrode by creating the 2DEG channel under the p-GaN region, as the drain voltage
becomes higher than the gate threshold voltage (1.8 V). That is, no current flows when the
drain voltage is lower than the gate threshold voltage, which is why the device has forward
drain turn-on characteristics that are similar to the gate threshold characteristics. As the
drain voltage becomes higher than the forward turn-on voltage of the p-GaN/AlGaN/GaN
heterojunction diode, the current can flow from both the p-GaN drain and ohmic drain
regions to the source electrode. In the reverse region, when the drain voltage is negative,
the p-GaN drain region is reverse-biased and it further depletes the channel, blocking the
current flow from the drain. Therefore, the device exhibits reverse blocking characteristics.
The electron concentration distributions under forward and reverse modes are compared
in Figure 5a,b, respectively. The electron channel exists under the p-GaN drain region in
the forward mode that is shown in Figure 5a, where both gate and drain voltages were
+5 V. On the other hand, the channel under the p-GaN drain region was depleted in the
reverse mode that is shown in Figure 5b where the gate and drain voltages were +5 V and
−5 V, respectively.
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and (b) Vgs = 5 V and Vds = −5 V. Two electrodes (p-GaN drain and drain electrodes) are shorted
electrically to each other in the simulation.

3. Fabrication
3.1. Device Structure and Fabrication

Two device structures were fabricated to validate the proposed concept, as fol-
lows. Figure 6a,b shows the cross-sectional schematics of the conventional p-GaN gate
AlGaN/GaN HFET and the unidirectional HFET, respectively. The epitaxial structure
consisted of a 70 nm p-GaN layer, a 15 nm Al0.2Ga0.8N barrier layer, a 320 nm GaN
layer, and a 3.6 µm buffer layer grown on a Si (111) substrate. After solvent and acid
cleaning of the surface, the p-GaN layer was etched while using a two-step etching pro-
cess, during which the gate and p-GaN drain regions were covered by photoresist. First,
the p-GaN layer was partially etched by a low-damage plasma etching process using
Cl2/BCl3-based inductively coupled plasma reactive ion etching (ICP-RIE) with an etch
depth target of 45 nm. A source RF power of 250 W, a bias RF power of 5 W, a gas flow rate
of Cl2/BCl3 = 18/2 sccm, and a chamber pressure of 5 mTorr were used, which resulted in
an etch rate of ~1 Å/s. Subsequently, the remaining p-GaN layer was etched by a selective
etching process using Cl2/N2/O2-based ICP-RIE to minimize the plasma-induced damage
on the surface. A source RF power of 2000 W, a bias RF power of 25 W, a gas flow rate of
Cl2/N2/O2 = 40/10/2 sccm, and a chamber pressure of 20 mTorr were used with a chuck
temperature of 60 ◦C [20]. The selectivity between p-GaN and AlGaN was approximately
50:1 with a p-GaN etch rate of 3.6 Å/s. After the p-GaN layer was completely removed,
the oxidized AlGaN surface was treated for 30 s using a buffered oxide etchant (30:1).
Subsequently, damage recovery annealing was performed at 500 ◦C for 5 min. in an N2
ambient. The ohmic contact region was etched down to the GaN channel layer while
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using the low-damage BCl3/Cl2-based ICP-RIE with an etch depth of 15 nm, after which
an additional photolithography process defined the ohmic metallization area with an
overhang structure. The overhang region was extended to the p-GaN drain region for
the unidirectional device, as shown in Figure 6b. A Ti/Al/TiN (=30/100/20 nm) metal
stack was used for the Au-free ohmic contact, which was annealed at 550 ◦C for 1 min. in
N2 ambient. The transfer contact resistance was 0.56 Ω·mm. MESA isolation was then
carried out using the BCl3/Cl2-based RIE with an etch depth of 450 nm. A forward power
of 100 W, a gas flow rate of Cl2/BCl3 = 18/6 sccm, and a chamber pressure of 75 mTorr
were used for the RIE process. Subsequently, a 170-nm TiN film was sputtered for the
gate and pad electrode regions. The surface was passivated with a 180-nm SiNx film
using ICP chemical vapor deposition (ICP-CVD). A RF power of 200 W, a gas flow rate of
SiH4(5%)/N2/NH3 = 25/400/12 sccm, and a chamber pressure of 2000 mTorr were used
with a chuck temperature of 350 ◦C. Finally, SF6-based ICP-RIE was used to open the probe
contact region. Notably, the unidirectional device does not require an additional process
step. The source-to-drain distance, p-GaN length for the gate region, and gate-to-drain
distance were 3, 4, and 6 µm, respectively, where the gate metal length was 2 µm, and the
ohmic overhang extension was 1 µm. The length of the p-GaN drain region was 2 µm in
the unidirectional device.

Micromachines 2021, 12, x 5 of 7 
 

 

damage BCl3/Cl2-based ICP-RIE with an etch depth of 15 nm, after which an additional 
photolithography process defined the ohmic metallization area with an overhang struc-
ture. The overhang region was extended to the p-GaN drain region for the unidirectional 
device, as shown in Figure 6b. A Ti/Al/TiN (=30/100/20 nm) metal stack was used for the 
Au-free ohmic contact, which was annealed at 550 °C for 1 min. in N2 ambient. The trans-
fer contact resistance was 0.56 Ω∙mm. MESA isolation was then carried out using the 
BCl3/Cl2-based RIE with an etch depth of 450 nm. A forward power of 100 W, a gas flow 
rate of Cl2/BCl3 = 18/6 sccm, and a chamber pressure of 75 mTorr were used for the RIE 
process. Subsequently, a 170-nm TiN film was sputtered for the gate and pad electrode 
regions. The surface was passivated with a 180-nm SiNx film using ICP chemical vapor 
deposition (ICP-CVD). A RF power of 200 W, a gas flow rate of SiH4(5%)/N2/NH3 = 
25/400/12 sccm, and a chamber pressure of 2000 mTorr were used with a chuck tempera-
ture of 350 °C. Finally, SF6-based ICP-RIE was used to open the probe contact region. No-
tably, the unidirectional device does not require an additional process step. The source-
to-drain distance, p-GaN length for the gate region, and gate-to-drain distance were 3, 4, 
and 6 μm, respectively, where the gate metal length was 2 μm, and the ohmic overhang 
extension was 1 μm. The length of the p-GaN drain region was 2 μm in the unidirectional 
device. 

 
Figure 6. Cross-sectional schematics of (a) fabricated p-GaN gate AlGaN/GaN HFET and (b) uni-
directional HFET. 

3.2. Device Characteristics 
Figure 7 shows the transfer current–voltage characteristics of the fabricated p-GaN 

gate AlGaN/GaN HFET (black lines) and unidirectional device (red lines) that were meas-
ured at a drain voltage of 10 V. No significant difference was observed between the two 
devices, in which the gate threshold voltage was ~2 V at 1 mA/mm. 

Figure 8 shows the forward and reverse output current–voltage characteristics. The 
p-GaN gate AlGaN/GaN HFET (black lines) exhibited bidirectional characteristics, 
whereas the proposed device exhibited unidirectional characteristics (red lines). The for-
ward drain turn-on voltage for the unidirectional device was ~2 V, which is the same as 
the gate threshold voltage, as discussed previously. A potential drawback of the proposed 
device is the forward drain turn-on characteristic. However, the overall device unit would 
have similar forward turn-on characteristics when an additional reverse blocking device 
is added to achieve the unidirectional characteristics. It is suggested that the p-GaN drain 

Figure 6. Cross-sectional schematics of (a) fabricated p-GaN gate AlGaN/GaN HFET and (b) unidirectional HFET.

3.2. Device Characteristics

Figure 7 shows the transfer current–voltage characteristics of the fabricated p-GaN gate
AlGaN/GaN HFET (black lines) and unidirectional device (red lines) that were measured
at a drain voltage of 10 V. No significant difference was observed between the two devices,
in which the gate threshold voltage was ~2 V at 1 mA/mm.
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Figure 7. Transfer current–voltage characteristics of fabricated p-GaN gate AlGaN/GaN HFET (black
line) and unidirectional HFET (red line).

Figure 8 shows the forward and reverse output current–voltage characteristics. The p-
GaN gate AlGaN/GaN HFET (black lines) exhibited bidirectional characteristics, whereas
the proposed device exhibited unidirectional characteristics (red lines). The forward drain
turn-on voltage for the unidirectional device was ~2 V, which is the same as the gate
threshold voltage, as discussed previously. A potential drawback of the proposed device
is the forward drain turn-on characteristic. However, the overall device unit would have
similar forward turn-on characteristics when an additional reverse blocking device is added
to achieve the unidirectional characteristics. It is suggested that the p-GaN drain region
be etched partially and/or a different metal contact be used for the p-GaN drain region in
order to reduce the forward drain turn-on voltage.
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4. Conclusions

A unidirectional p-GaN/AlGaN/GaN HFET was proposed to implement a normally-
off, unidirectional operation, which was validated by both simulation and device demon-
stration. A p-GaN drain electrode was embedded in front of the ohmic drain electrode, in
which they were electrically shorted to each other. The p-GaN drain region acted as a gate
in the forward mode and as a reverse-biased rectifier in the reverse mode, which resulted
in reverse blocking characteristics. The proposed device would be a cost-effective solution
for achieving unidirectional operation, because it requires no separate reverse blocking
device or an additional process step. The fabricated device exhibited a threshold voltage of
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~2 V, a maximum current density of ~100 mA/mm, and a drain forward turn-on voltage of
~2 V. It is suggested that the drain turn-on voltage in the forward operation mode can be
further reduced by the process engineering for the p-GaN drain contact.
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