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Abstract: In our previous work, TaF5 and VCl3 were added to Mg, leading to the preparation of
samples with good hydriding and dehydriding properties. In this work, Ni was added together
with TaF5 and VCl3 to increase the reaction rates with hydrogen and the hydrogen-storage capacity
of Mg. The addition of Ni together with TaF5 and VCl3 improved the hydriding and dehydriding
properties of the TaF5 and VCl3-added Mg. MgH2 was also added with Ni, TaF5, and VCl3 and Mg-x
wt% MgH2-1.25 wt% Ni-1.25 wt% TaF5-1.25 wt% VCl3 (x = 0, 1, 5, and 10) were prepared by reactive
mechanical milling. The addition of MgH2 decreased the particle size, lowered the temperature
at which hydrogen begins to release rapidly, and increased the hydriding and dehydriding rates
for the first 5 min. Adding 1 and 5 wt% MgH2 increased the quantity of hydrogen absorbed for
60 min, Ha (60 min), and the quantity of hydrogen released for 60 min, Hd (60 min). The addition of
MgH2 improved the hydriding–dehydriding cycling performance. Among the samples, the sample
with x = 5 had the highest hydriding and dehydriding rates for the first 5 min and the best cycling
performance, with an effective hydrogen-storage capacity of 6.65 wt%.

Keywords: hydrogen-storage materials; magnesium; hydriding and dehydriding rates; cycling
performance; microstructure; addition of TaF5, VCl3, Ni, and MgH2

1. Introduction

Metal hydride storage has advantages over pressure storage and cryogenic storage, as
metal hydrides have higher volumetric capacity and metal hydride storage is safer due to
the low pressures involved in hydrogen uptake and release [1].

To increase the hydrogen uptake and release rates of magnesium, magnesium (Mg),
or magnesium hydride (MgH2) was alloyed [2–10] with Ni and Y [11], V [12], and
Nb [13]. In addition, Mg or MgH2 was mixed with compounds such as LaNi5 [14], FeTi
and FeTiMn [15], Nb2O5 [16], and La2O3 [17]. Mg-containing compounds [18–22] such
as La2Mg16Ni [23], LaMg12 and La2Mg17 [24], Mg3Mm (Mm: misch-metal) [25], and
Mg17Al12 [26] were synthesized for the same purposes.

Malka et al. [27] reported that certain metal halide additives, especially ZrF4 and
NbF5 halides, could significantly influence the sorption properties of MgH2. They reported
that the presence of the F anion, which weakened Mg–H bonding, led to the formation of
MgF2 and provided an electron-rich center to trap transition metal atoms. They showed
that NbF5, TaF5, and particularly TiCl3, took part in the disproportionation reactions that
created a significant number of structural defects. Kumar et al. [28] reported that VCl3 was
reduced to metallic vanadium during ball milling along with MgH2, and this in situ-formed
metallic vanadium doped over the MgH2 surface and showed an excellent catalytic effect
on hydrogenation–dehydrogenation of the Mg-MgH2 system. They also reported that
a microstructural analysis showed an excellent grain refinement property of VCl3 which
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reduced the crystallite size of MgH2. Liang et al. [13] improved the hydrogen-storage prop-
erties of Mg by adding transition metals such as Ti, V, Mn, Fe, and Ni. In order to find a new
route toward improving hydrogen sorption kinetics of Mg nanoparticles, Liu et al. [29]
coprecipitated a Mg–Ni nanocomposite from a homogeneous tetrahydrofuran solution
containing anhydrous MgCl2, NiCl2, and lithium naphthalide as the reducing agent.

In the present work, we tried to improve the hydriding and dehydriding properties of
Mg by adding halides, transition metal, and metal hydride by preparing alloys via reactive
mechanical milling. Selected were TaF5 and VCl3 as halides, Ni as a metal, and MgH2
as a metal hydride. Reactive mechanical milling is milling in an atmosphere in which
a reaction can occur during that milling. In the present work, milling was performed in
a hydrogen atmosphere. In the hydrogen atmosphere, Mg hydride can form during milling
through a reaction of Mg with hydrogen.

In our previous work [30], TaF5 and VCl3 were added to Mg. In this work, Ni was
added together with TaF5 and VCl3; Ni, TaF5, and VCl3 were added to Mg at the same time.
MgH2 was also added to Mg together with Ni, TaF5, and VCl3 at the same time, and Mg-x
wt% MgH2-1.25 wt% Ni-1.25 wt% TaF5-1.25 wt% VCl3 (x = 0, 1, 5, and 10) were prepared by
reactive mechanical milling. We designated these samples as Mg-xMgH2-1.25Ni-1.25TaF5-
1.25VCl3 (x = 0, 1, 5, and 10). The hydriding and dehydriding properties of the prepared
samples were then examined. It is thought that the materials developed in our work can
be used for motive power fuel and portable appliances as mobile applications, transport
and distribution as semi-mobile applications, and industrial off-peak power H2-generation,
hydrogen-purifying systems, and heat pumps as stationary applications.

2. Materials and Methods

Pure Mg powder (particle size 74–149 µm, purity 99.6%, Alfa Aesar), Ni (APS 2.2–3.0 µm,
purity 99.9% metal basis, C typically < 0.1%, Alfa Aesar, Haverhill, MA, USA), TaF5
(Tantalum (V) fluoride, purity 98%, Aldrich, St. Louis, MI, USA), VCl3 (Vanadium (III)
chloride, purity 97%, Aldrich), and pure MgH2 powder (hydrogen storage grade, Aldrich)
were used as starting materials.

The compositions of mixtures for reactive mechanical grinding were 96.25 wt% Mg +
1.25 wt% Ni + 1.25 wt% TaF5 + 1.25 wt% VCl3 and (96.25-x) Mg + x wt% MgH2 + 1.25 wt%
Ni + 1.25 wt% TaF5 + 1.25 wt% VCl3 (x = 0, 1, 5, and 10). A planetary ball mill (Planetary
Mono Mill; Pulverisette 6, Fritsch, Kastl, Germany) with a mill container of 250 mL in
volume was used for reactive mechanical grinding. The sample (total weight = 8 g) to
ball weight (105 hardened steel balls, total weight = 360 g) ratio was 1:45. All sample
handling was performed in an Ar atmosphere. The disc revolution speed was 250 rpm.
Reactive mechanical milling was performed in high purity hydrogen gas (≈12 bar) for 6 h
by repeating the 20 min cycle of 15 min milling and 5 min rest. Hydrogen was refilled
every two hours.

The absorbed and released hydrogen quantity were measured as a function of time by
the volumetric method using a Sieverts’ type hydrogen uptake and release apparatus that
was previously described [31]. The hydrogen pressure in the sample-containing reactor
was maintained to be nearly constant (under 12 bar for the hydrogen uptake reaction
and under 1.0 bar for the hydrogen release reaction) using a back-pressure regulator. The
back-pressure regulator enables an appropriate amount of hydrogen to be taken from the
standard reservoir (with a known volume) and dosed to the reactor during the hydrogen
uptake reaction and an appropriate amount of hydrogen to be removed from the reactor
to the standard reservoir during the hydrogen release reaction. From the temperature of
the standard reservoir and the variation in hydrogen pressure in the standard reservoir
(with a known volume) as a function of time, the variation in the absorbed or released
hydrogen quantity was calculated as a function of time. The quantity of the samples used
to measure the amount of absorbed or released hydrogen as time passed was 0.5 g. The
standard deviations of the amount of absorbed and released hydrogen were ±0.07 wt% H.
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Samples after reactive mechanical milling were characterized via X-ray diffraction
(XRD) with Cu Kα radiation at a scan speed of 4◦/min, using a Rigaku D/MAX 2500
powder diffractometer. The MDI JADE 5.0 program was used to analyze the XRD patterns.
Scanning electron microscope (SEM) micrographs of the powders were obtained using
a JSM-5900 SEM operated at 20 kV. Particle size distributions of the samples after reactive
mechanical milling were analyzed by dynamic light scattering in a particle size analyzer
(PSA, ASAP2010 Micrometrics, Norcross, GA, USA).

3. Results

The quantities of absorbed and released hydrogen, Ha and Hd, respectively, were
defined using sample weight as a criterion. Ha and Hd were expressed in the unit of wt% H.
The quantities of hydrogen absorbed and released from the start for x min are expressed
by Ha (x min) and Hd (x min), respectively. The hydriding rate for the first 5 min (wt%
H/min) was calculated by dividing Ha (5 min) by 5 and the dehydriding rate for the first
5 min (wt% H/min) was calculated by dividing Hd (5 min) by 5.

Figure 1 shows the Ha vs. time t curves at 593 K under 12 bar H2 at the number
of cycles, n, of one (n = 1) for Mg-1.25TaF5-1.25VCl3 and Mg-1.25Ni-1.25TaF5-1.25VCl3.
Mg-1.25Ni-1.25TaF5-1.25VCl3 has a lower hydriding rate for the first 5 min, but a larger
quantity of hydrogen absorbed for 60 min than Mg-1.25TaF5-1.25VCl3. Mg-1.25Ni-1.25TaF5-
1.25VCl3 absorbs 2.28 wt% H for 5 min, 3.17 wt% H for 10 min, 5.04 wt% H for 30 min, and
6.12 wt% H for 60 min.
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Mg-1.25Ni-1.25TaF5-1.25VCl3 has a higher maximum dehydriding rate and a larger 
quantity of hydrogen released for 60 min than Mg-1.25TaF5-1.25VCl3. 
Mg-1.25Ni-1.25TaF5-1.25VCl3 releases 0.11 wt% H for 5 min, 0.53 wt% H for 10 min, 4.11 
wt% H for 30 min, and 5.70 wt% H for 60 min. 

Figure 1. Ha vs. t curves at 593 K under 12 bar H2 at n = 1 for Mg-1.25TaF5-1.25VCl3 and Mg-1.25Ni-
1.25TaF5-1.25VCl3.

The Hd vs. time t curves at 593 K under 1.0 bar H2 at n = 1 for Mg-1.25TaF5-1.25VCl3
and Mg-1.25Ni-1.25TaF5-1.25VCl3 are shown in Figure 2. Mg-1.25TaF5-1.25VCl3 shows
a maximum dehydriding rate after about 20 min. On the other hand, Mg-1.25Ni-1.25TaF5-
1.25VCl3 shows a maximum dehydriding rate after about 15 min. Mg-1.25Ni-1.25TaF5-
1.25VCl3 has a higher maximum dehydriding rate and a larger quantity of hydrogen
released for 60 min than Mg-1.25TaF5-1.25VCl3. Mg-1.25Ni-1.25TaF5-1.25VCl3 releases
0.11 wt% H for 5 min, 0.53 wt% H for 10 min, 4.11 wt% H for 30 min, and 5.70 wt% H for
60 min.

Figure 1 shows that the addition of Ni together with TaF5 and VCl3 increases the
quantity of hydrogen absorbed for 60 min of the TaF5 and VCl3-added Mg. Figure 2 shows
that the addition of Ni together with TaF5 and VCl3 increases the maximum dehydriding
rate and the quantity of hydrogen released for 60 min of the TaF5 and VCl3-added Mg.



Micromachines 2021, 12, 1194 4 of 13

X wt% MgH2 (x = 1, 5, and 10) was added together with Ni, TaF5, and VCl3 at the same
time with a goal of preparing materials with better hydriding and dehydriding properties.
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Figure 2. Hd vs. t curves at 593 K under 1.0 bar H2 at n = 1 for Mg-1.25TaF5-1.25VCl3 and Mg-1.25Ni-
1.25TaF5-1.25VCl3.

Figure 3 shows the desorbed hydrogen quantity versus time t curves for the as-milled
Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10) when the sample was heated
with a heating rate of 5–6 K/min. The ranges of temperature where hydrogen is released
rapidly are 648–688 K, 579–643 K, 608–625 K, and 570–626 K, respectively. The addition of
MgH2 lowers the temperature at which hydrogen begins to release rapidly. The curves of
the samples with x = 0 and x = 10 show two stages. The total desorbed hydrogen quantities
of the as-milled Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10) were 2.24, 2.56,
4.24, and 3.50 wt% H, respectively.

The Ha versus t curves at 593 K under 12 bar H2 at n = 1 for Mg-xMgH2-1.25Ni-
1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10) are shown in Figure 4. The sample with x = 0 has
a quite high hydriding rate for the first 5 min, and the samples with x = 1, 5, and 10 have
higher hydriding rates for the first 5 min than the sample with x = 0. The addition of MgH2
increases the hydriding rate for the first 5 min. The sample with x = 1 has the highest
hydriding rate for the first 5 min, followed in order by the samples with x = 5, 10, and
0. The sample with x = 1 has the largest quantity of hydrogen absorbed for 60 min, Ha
(60 min), followed in order by the samples with x = 5, 0, and 10. The addition of 1 and 5 wt%
MgH2 increases Ha (60 min) to 6.72 wt% H (x = 1) and 6.65 wt% H (x = 5) from 6.12 wt% H
(x = 0). Mg-1MgH2-1.25Ni-1.25TaF5-1.25VCl3 absorbs 3.20 wt% H for 2.5 min, 5.69 wt% H
for 10 min, and 6.72 wt% H for 60 min. We define the effective hydrogen-storage capacity
as the quantity of hydrogen absorbed for 60 min. The sample with x = 5 absorbs 5.58 wt%
H for 10 min and has an effective hydrogen-storage capacity of 6.65 wt%.
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Figure 3. Desorbed hydrogen quantity versus time t curves for the as-milled 
Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3; (a) x = 0, (b) x = 1, (c) x = 5, and (d) x = 10 when the sample 
was heated with a heating rate of 5–6 K/min. 
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Figure 4. Ha versus t curves at 593 K under 12 bar H2 at n = 1 for 
Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10). 

Figure 4. Ha versus t curves at 593 K under 12 bar H2 at n = 1 for Mg-xMgH2-1.25Ni-1.25TaF5-
1.25VCl3 (x = 0, 1, 5, and 10).

Table 1 presents the variations of the Ha with time and hydriding rates for the first
5 min at 593 K under 12 bar H2 at n = 1 for Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1,
5, and 10).
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Table 1. Variations of the Ha with time and hydriding rates for the first 5 min at 593 K under 12 bar
H2 at n = 1 for Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10).

Mg-xMgH2-1.25Ni-
1.25TaF5-1.25VCl3

at 593 K

Ha (wt% H) Hydriding Rate for
the First 5 min
(wt% H/min)2.5 min 5 min 10 min 30 min 60 min

x = 0 1.47 2.28 3.17 5.04 6.12 0.456
x = 1 3.2 4.59 5.69 6.52 6.72 0.917
x = 5 3.17 4.59 5.58 6.45 6.65 0.917
x = 10 2.77 3.91 4.66 5.42 5.57 0.783

The sample with x = 0 has quite a high hydriding rate for the first 5 min, and the
samples with x = 1, 5, and 10 have higher hydriding rates for the first 5 min than the sample
with x = 0. The addition of MgH2 increases the hydriding rate for the first 5 min. The
samples with x = 1 and 5 have the highest hydriding rate for the first 5 min, followed in
order by the samples with x = 10 and 0. The sample with x = 1 has the largest quantity of
hydrogen absorbed for 60 min, Ha (60 min), followed in order by the samples with x = 5, 0,
and 10. The addition of 1 and 5 wt% MgH2 increases Ha (60 min).

The Hd versus t curves at 593 K under 1.0 bar H2 at n = 1 for Mg-xMgH2-1.25Ni-
1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10) are shown in Figure 5. The sample with x = 0 exhibits
an incubation period of about 2.5 min, and then the dehydriding rate increases gradually.
After 15 min, the dehydriding rate of the sample with x = 0 is quite high and becomes very
low after 45 min. Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 1, 5, and 10) have quite high
dehydriding rates from the start. The addition of MgH2 increases the dehydriding rate
for the first 5 min. The sample with x = 5 has the highest dehydriding rate for the first
5 min, followed in order by the samples with x = 10, 1, and 0. The sample with x = 1 has
the largest quantity of hydrogen released for 60 min, Hd (60 min), followed in order by the
samples with x = 5, 0, and 10. The addition of 1 and 5 wt% MgH2 increases Hd (60 min).
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Figure 5. Hd versus t curves at 593 K under 1.0 bar H2 at n = 1 for 
Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10). 
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Table 2 presents the variations of Hd with time and the dehydriding rates for the first
5 min at 593 K under 1.0 bar H2 at n = 1 for Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1,
5, and 10).
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Table 2. Variations of the Hd with time and the dehydriding rates for the first 5 min at 593 K under
1.0 bar H2 at n = 1 for Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10).

Mg-xMgH2-1.25Ni-
1.25TaF5-1.25VCl3

at 593 K

Hd (wt% H) Dehydriding Rate
for the First 5 min

(wt% H/min)2.5 min 5 min 10 min 30 min 60 min

x = 0 0.05 0.11 0.53 4.11 5.70 0.023
x = 1 0.74 1.38 2.62 5.82 6.24 0.276
x = 5 0.94 1.68 2.97 5.87 6.05 0.336
x = 10 0.76 1.50 2.95 5.18 5.20 0.299

The sample with x = 0 has a very low dehydriding rate for the first 5 min, and the
samples with x = 1, 5, and 10 have much higher dehydriding rates for the first 5 min than
the sample with x = 0. The sample with x = 5 has the highest dehydriding rate for the
first 5 min, followed in order by the samples with x = 10, 1, and 0. The addition of MgH2
increases the dehydriding rate for the first 5 min. The sample with x = 1 has the largest
quantity of hydrogen released for 60 min, Hd (60 min), followed in order by the samples
with x = 5, 0, and 10. The addition of 1 and 5 wt% MgH2 increases Hd (60 min).

Figure 6 presents the XRD patterns of Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1,
5, and 10) after reactive mechanical milling. The samples contain Mg, β-MgH2, γ-MgH2,
Ta, V, Ni, and MgF2. β-MgH2 and γ-MgH2 are formed by a reaction of Mg with hydrogen
during reactive mechanical milling. Ta and MgF2 are formed due to a reaction of TaF5 with
Mg. V is believed to be formed from a reaction of VCl3 with Mg. The reaction of VCl3 with
Mg is reported to form MgCl2 together with V [32]. Ni remains unreacted after reactive
mechanical milling. The intensity of the Mg peaks decrease in the samples containing
MgH2. This is believed to be due to the decrease in Mg content in MgH2-added samples.
Larger decrease in particle size due to reactive mechanical milling with the MgH2 mix is
thought to have made the Mg peaks wider.
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Figure 6. XRD patterns of Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10) after reactive
mechanical milling.

The SEM micrographs of Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10)
after reactive mechanical milling are presented in Figure 7. Particle sizes are not homoge-
neous, but Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 1 and 10) exhibit more homogeneous
particle sizes than Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0 and 5). The sample with
x = 5 has the smallest particle size, followed in order by the samples with x = 1, 10, and 0.
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The samples with x = 5 and 1 have similar particle sizes. The sample with x = 0, not con-
taining MgH2, has quite large particles, and the particles of this sample form agglomerates.
The addition of MgH2 decreases the particle size.

The variations of Ha values for 5 min and 60 min at 593 K under 12 bar H2 with the
number of cycles for Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10) are shown
in Figure 8a. The variations of Hd values for 5 min and 60 min at 593 K under 1.0 bar
H2 with the number of cycles for Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and
10) are shown in Figure 8b. The samples with x = 1, 5, and 10 have better hydriding and
dehydriding cycling performance than the sample with x = 0, showing that the addition
of MgH2 improves the cycling performance. The sample with x = 5 has the largest value
of the quantity of hydrogen absorbed for 5 min, Ha (5 min), at each cycle and the best
cycling performance. At n = 1, the sample with x = 1 has the largest value of the quantity
of hydrogen absorbed for 60 min, Ha (60 min), and a slightly larger value of Ha (60 min)
than the sample with x = 5. At n = 2−4, the sample with x = 5 has the largest values of Ha
(60 min). However, the sample with x = 5 has the best cycling performance. The sample
with x = 5 has the largest value of the quantity of hydrogen released for 5 min, Hd (5 min),
at each cycle, and the best cycling performance. At n = 1, the sample with x = 1 has the
largest value of the quantity of hydrogen released for 60 min, Hd (60 min), and a slightly
larger value of Hd (60 min) than the sample with x = 5. However, the sample with x = 5 has
the best cycling performance.
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Figure 8. Variations of (a) Ha values for 5 min and 60 min at 593 K under 12 bar H2 and (b) Hd 
values for 5 min and 60 min at 593 K under 1.0 bar H2 with the number of cycles for 
Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10). 

Figure 9 shows the SEM micrographs of Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 5 
and 10) after four hydriding and dehydriding cycles. Compared with the particles of 
these samples after reactive mechanical milling, those of the samples after four hydrid-
ing and dehydriding cycles are more agglomerated. 

Figure 8. Variations of (a) Ha values for 5 min and 60 min at 593 K under 12 bar H2 and (b) Hd values
for 5 min and 60 min at 593 K under 1.0 bar H2 with the number of cycles for Mg-xMgH2-1.25Ni-
1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10).

Figure 9 shows the SEM micrographs of Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 5
and 10) after four hydriding and dehydriding cycles. Compared with the particles of these
samples after reactive mechanical milling, those of the samples after four hydriding and
dehydriding cycles are more agglomerated.
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4. Discussion

The weight percentages of additives were relatively small (2.5 and 3.75 wt%) not to
sacrifice the hydrogen-storage capacity of the samples. The addition of Ni together with
TaF5 and VCl3 increases the quantity of hydrogen absorbed for 60 min of the TaF5 and
VCl3-added Mg, as shown in Figure 1. Figure 2 shows that the addition of Ni together
with TaF5 and VCl3 increases the maximum dehydriding rate and the quantity of hydrogen
released for 60 min of the TaF5 and VCl3-added Mg.

Metallic hydrides are more brittle than their parent metals [33]. MgH2 is brittle [34].
The addition of MgH2 was expected to increase hydriding and dehydriding rates, as
MgH2 may be pulverized during milling. To prepare materials with better hydriding and
dehydriding properties, x wt% MgH2 (x = 1, 5, and 10) was added together with Ni, TaF5,
and VCl3 at the same time.

Figure 3 shows that the as-milled Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 5) has the
largest total desorbed hydrogen quantity of 4.24 wt%. Figure 4 shows that the samples with
x = 1, 5, and 10 have higher hydriding rates for the first 5 min than the sample with x = 0.
The samples with x = 1 and 5 have larger quantities of hydrogen absorbed for 60 min, Ha
(60 min) than the sample with x = 0. Figure 5 shows that the samples with x = 1, 5, and 10
have higher dehydriding rates for the first 5 min than the sample with x = 0. The samples
with x = 1 and 5 have larger quantities of hydrogen released for 60 min, Hd (60 min),
than the sample with x = 0. These results show that the addition of MgH2 increases the
hydriding and dehydriding rates for the first 5 min and the additions of 1 and 5 wt% MgH2
increase the quantity of hydrogen absorbed and released for 60 min, Ha (60 min) and Hd
(60 min). This proves that the addition of MgH2 made the effects of reactive mechanical
milling, which are explained in the following, stronger.

Figure 7 shows that after reactive mechanical milling, the sample with x = 5 has the
smallest particle size, followed in order by the samples with x = 1, 10, and 0. Figure 7 also
shows that the samples with x = 5 and 1 have similar particle sizes. A comparison of the
results in Figures 4 and 5 with the particle sizes in the SEM micrographs in Figure 7 shows
that the smaller the particle size, the higher the hydriding rate for the first 5 min and the
dehydriding rate for the first 5 min.

The reactive mechanical milling of Mg with Ni, TaF5, and VCl3 is thought to increase
the hydriding and dehydriding rates by forming defects [35–38] (leading to easier nucle-
ation) [39–41], making new clean surfaces (leading to an increase in the reactivity of Mg
particles with hydrogen) [30,42], and decreasing the particle size of Mg (leading to a de-
crease in the diffusion distances of hydrogen atoms) [9,10,36–38,43]. Especially, the added
Ni is believed to form the Mg2Ni phase, which has higher hydriding and dehydriding
rates than Mg at the same conditions [36,44], contributing greatly to the increases in the
reaction rates. The formed phases (β-MgH2, γ-MgH2, Ta, V, and MgCl2) are believed to
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help the reactive mechanical milling occur more effectively. The result that the addition
of MgH2 increases the hydriding and dehydriding rates for the first 5 min and the result
that the additions of 1 and 5 wt% MgH2 increase Ha (60 min) and Hd (60 min) show that
the addition of MgH2 makes the effects of reactive mechanical milling stronger. Figure 8
shows that Ha (60 min) values decrease as n increases for all the samples. It is believed
that the reason of this behavior is that particles coalesce more and more as n increases. The
result that the addition of MgH2 improves the cycling performance, shown in Figure 8,
indicates that the added MgH2 prevents particle from coalescing. The formed phases
are also believed to help the sample have better cycling performance. After conducting
many studies to improve the reaction kinetics of magnesium with hydrogen, researchers
reported as the following. The dissociation rate of hydrogen molecules can be improved
by adding catalytic metals, for example, Pd [45] and Co, Ni, or Fe [46]. Nucleation can
be facilitated by creating active nucleation sites by mechanical treatment and/or alloying
with additives [39]. The diffusion distance of hydrogen can be decreased by the mechanical
treatment and/or alloying of Mg with additives, thereby reducing the magnesium particle
size [43]. In addition, the hydrogen mobility can be improved by additives that create
microscopic paths of hydrogen [43]. A rough surface of magnesium having many cracks
and defects is thus considered more advantageous for hydrogen absorption [35].

Compared with the microstructures of these samples after reactive mechanical milling
(shown in Figure 7), particles after four hydriding and dehydriding cycles are more ag-
glomerated (shown in Figure 9). Agglomeration is believed to have led to the decreases in
the absorbed and released hydrogen quantities of the samples.

Among Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10), the samples with
x = 1 and 5 have the highest hydriding rate for 5 min at n = 1, but the sample with x = 5
has the highest dehydriding rate for 5 min at n = 1. Among all the samples, the sample
with x = 5 has the best cycling performance. The sample with x = 5 absorbs 5.58 wt% H for
10 min and has an effective hydrogen storage capacity of 6.65 wt%.

Table 3 presents the hydrogen-storage capacities of several Mg-based alloys. Con-
ditions of sample preparation and reaction are given. The sample Mg-5MgH2-1.25Ni-
1.25TaF5-1.25VCl3 has quite a high hydrogen-storage capacity. It has a higher hydrogen-
storage capacity than Ni and Ti-added Mg alloys.

Table 3. Hydrogen-storage capacities of several Mg-based alloys.

Composition
Ball

Milling
Time (h)

Reaction
Temperature

(K)

Reaction
Hydrogen

Pressure (Bar H2)

Hydrogen-
Storage Capacity

(wt% H)
Reference

Mg-2.5TaF5-2.5VCl3 6 593 12 5.86 (n = 1) [30]
Mg-1.25TaF5-1.25VCl3 6 593 12 5.36 (n = 1) this work

Mg-1.25Ni-1.25TaF5-1.25VCl3 6 593 12 6.12 (n = 1) this work
Mg-5MgH2-1.25Ni-1.25TaF5-1.25VCl3 6 593 12 6.65 (n = 1) this work

Mg-14Ni-6Ti 6 573 12 4.98 [27]
Mg-1.25Ni-1.25Ti 6 593 12 5.91 [47]

5. Conclusions

The addition of Ni together with TaF5 and VCl3 increased the quantity of hydrogen
absorbed for 60 min and increased the maximum dehydriding rate and the quantity of
hydrogen released for 60 min of the TaF5 and VCl3-added Mg. MgH2 was added together
with Ni, TaF5, and VCl3, and Mg-x wt% MgH2-1.25 wt% Ni-1.25 wt% TaF5-1.25 wt% VCl3
(x = 0, 1, 5, and 10) were prepared by reactive mechanical milling. The addition of MgH2
increased the hydriding and dehydriding rates for the first 5 min, and the additions of 1
and 5 wt% MgH2 increased the quantities of hydrogen absorbed and released for 60 min,
denoted Ha (60 min) and Hd (60 min), respectively. The comparison of Hd versus t and
Ha versus t curves with SEM micrographs after reactive mechanical milling showed that
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the smaller the particle size, the higher the hydriding rate for the first 5 min, and the
dehydriding rate for the first 5 min. The reactive mechanical milling of Mg with Ni, TaF5,
and VCl3 is thought to increase the hydriding and dehydriding rates by forming defects,
making new clean surfaces, and decreasing the particle size of Mg. The addition of MgH2
made the effects of reactive mechanical milling stronger. The formed phases (β-MgH2,
γ-MgH2, Ta, V, and MgCl2) are also believed to have made these effects stronger. The
addition of MgH2 improved cycling performance by preventing particles from coalescing.
The formed phases are also believed to have helped the sample have the better cycling
performance. Among Mg-xMgH2-1.25Ni-1.25TaF5-1.25VCl3 (x = 0, 1, 5, and 10), the sample
with x = 5 had the highest hydriding and dehydriding rates for the first 5 min and the
best cycling performance. The sample with x = 5 absorbed 5.58 wt% H for 10 min and had
an effective hydrogen-storage capacity of 6.65 wt%.
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