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Abstract: After the development of 3D printing, the post-processing of the 3D-printed materials has
been continuously studied, and with the recent expansion of the application of 3D printing, interest in
it is increasing. Among various surface-machining processes, chemical mechanical polishing (CMP)
is a technology that can effectively provide a fine surface via chemical reactions and mechanical
material removal. In this study, two polishing methods were evaluated for the reduction of surface
roughness and glossiness of a stereolithography apparatus (SLA) 3D-printed ABS (acrylonitrile
butadiene styrene)-like resin. Experiments were conducted on the application of CMP directly to
the 3D-printed ABS-like resin (one-step polishing), and on the application of sanding (#2000) and
CMP sequentially (two-step polishing). The one-step polishing experiments showed that it took a
considerable period of time to remove waviness on the surface of the as-3D printed specimen using
CMP. However, in the case of two-step polishing, surface roughness was reduced, and glossiness
was increased faster than in the case of one-step polishing via sanding and CMP. Consequently,
the experimental results show that the two-step polishing method reduced roughness more efficiently
than the one-step polishing method.

Keywords: chemical mechanical polishing (CMP); 3D printing; stereolithography apparatus (SLA);
acrylonitrile butadiene styrene (ABS)-like resin; surface roughness; glossiness

1. Introduction

Chemical mechanical polishing (CMP) is a hybrid machining process that flattens the surface of
a material by chemical surface reactions and a mechanical material removal method using abrasive
particles located on the real contact area (RCA) between a polishing pad and the material to be
polished [1–7]. CMP is mainly used to reduce the surface roughness of electronic materials for
semiconductors, and among machining processes, it is one of the most effective process used in
reducing the surface roughness of materials [2]. Recently, researchers have applied CMP to the surface
processing of various materials in various fields [8]. In particular, CMP can be applied to the surface
processing of polymeric materials as well as silicon, metal, and oxide films for semiconductors, which are
the main targets for processing. In CMP, polyurethane pads or polyurethane impregnated pads are
mainly used, and grooves are formed on the surface of the pad to facilitate a slurry flow [9–11]. The CMP
process employs slurry with different chemical compositions, and abrasive particles depending on
the target material [12–15]. Therefore, research on material removal methods for various materials
is essential.

Three-dimensional (3D) printing is an additive manufacturing (AM) technology that can be
used to produce three-dimensional parts, and has recently been applied to various industries such
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as construction, apparel, dentistry, electronics, automotive, etc. [16,17]. It is generally difficult to
avoid having rough surfaces on 3D-printed parts because they are manufactured using a layer by
layer printing method. There are several types of AM methods such as fused deposition modeling
(FDM), stereolithography apparatus (SLA), digital light processing (DLP), and selective layer sintering
(SLS) [18–21]. Optically transparent 3D printing materials, in particular, can be used for automatic
lenses, bottles, and light pipes [22]. Optically transparent 3D printing materials have also recently been
used to visualize fluid flow in microfluidic systems [23,24]. However, it is still necessary to improve
transparency via improved surface roughness.

Yang et al. [25] said that the problem of 3D-printed products’ poor surface finish is generally
caused by “stair stepping” from the principle of AM, and its application is limited due to part accuracy
and performance problems. Studies to reduce surface roughness of SLA 3D-printed parts include
research on the parameters of software and hardware in pre-processing [25–28] and the study on
finishing and coating techniques in post-processing [29,30]. Williams and Melton [29] demonstrated
the application of abrasive flow machining (AFM) in post-processing of 3D-printed parts. Ahn and
Lee [30] proposed a combined surface finishing method using coating and grinding processes.

The research on the material removal of polymer materials in CMP was mainly carried out for the
purpose of forming structures in micro-electro mechanical systems (MEMS) and integrated circuits
(ICs). Neirynck et al. [31] studied a surfactant for a polymer CMP slurry. They explained that the
polymer becomes soluble in the slurry due to the adsorption of surfactant molecules, thus increasing
the material removal rate (MRR) of the polymer in the CMP when using a slurry containing a surfactant.
Zhong et al. [32] investigated CMP and poly-methyl-methacrylate (PMMA) for polycarbonate (PC) and
MEMS fabrication, respectively. In their study, commercial CMP pads and slurries were applied to PC
and PMMA CMP, and the slurry containing ammonium hydroxide (NH4OH) and fumed silica exhibited
the highest MRR. However, in terms of surface roughness, colloid silica slurry exhibited high efficiency.
Zhong et al. [33] also studied the changes in MRR according to the applied pressure and rotating speed
in PMMA and PC CMP. Towery and Fury [34] studied the CMP slurry for poly(arylene). Based on
the results of basic experiments using various kinds of abrasives and oxidizers, they used a slurry
containing Fe(NO3)3 as an oxidant, and fumed silica (175 nm) as an abrasive in CMP for poly(arylene)
ether, indicating that MRR increases as the concentration of abrasive particles increases. Lee et al. [35]
proposed a way to chemical-mechanically polish the thick Cu film and negative photoresist (PR) in
MEMS at the same time, after which the MRRs of copper and negative PR were measured. In their
study, a commercial acidic copper CMP slurry containing an oxidizer, complexing agent, surfactant,
corrosion inhibitor, and colloidal silica particles was used in the CMP experiment. Although studies
are being conducted on CMP for polymer materials, few CMP studies are being conducted on polymer
materials for 3D printing.

In this study, a preliminary study was conducted on the surface roughness and glossiness reduction
of transparent SLA 3D-printed acrylonitrile butadiene styrene (ABS)-like resin material. A one-step
polishing process that employs CMP immediately after 3D printing was compared with a two-step
polishing process that uses sanding and CMP sequentially.

2. Experimental Setup

2.1. Specimens 3D Printing Methodology

A Viper SLA-si2 (3D Systems, Rock Hill, SC, USA) 3D printer (Figure 1a) was used to fabricate
specimens in the polishing experiments. In basic polishing experiments, a disc, with a diameter
of 100 mm and thickness of 1 mm, was 3D-printed (Figure 1b). The printing material used was
WaterClear® Ultra 10122 from DSM Somos® [22], a resin with ABS-like properties. The discs were
3D-printed vertically (to minimize deformation) and the layer thickness of the printing was 0.1 mm
with solid structure.
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resin discs. 

2.2. Polishihng Methodology 

A G&P POLI-300 polisher (G&P Technology, Busan, Korea) was used in the polishing 
experiments. These experiments were conducted in two case methods: one-step and two-step 
polishing methods. Table 1 shows the two cases of the polishing methods. A hard polyurethane pad 
(KONI pad from KPX Chemical, Seoul, Korea) with good planarization properties was selected for 
the planarization of the surface. And, a colloidal silica slurry were used for the CMP experiments. 
The average SiO2 particle size of the slurry used was 72.0 nm while the initial concentration of SiO2 
particles was 40 wt%. In the experiment, the slurry was diluted 1:1 with deionized water (DIW), and 
the concentration of particles after dilution was 20 wt%. The applied pressure, rotating speed of the 
head and platen, and slurry flow rate were 41.2 kPa, 150 rpm, and 150 mL/min, respectively. A 
piezoelectric quartz sensor (Kistler Type 9135B) was mounted on the back of the polishing head to 
measure the dynamic frictional force during CMP. Pad conditioning was performed every 10 min in 
the CMP. Table 2 shows the experimental conditions of CMP. 

Table 1. Two cases of polishing methods. 

Polishing Case. Method. 
One-step polishing Chemical mechanical polishing (CMP) 
Two-step polishing Sanding (#2000) + CMP 

Table 2. Two cases of polishing methods. 

Process. Parameter Value or Consumable 

Sanding 
Sandpaper #2000

Applied pressure 9.81 kPa 
Rotating speed 80 rpm 

CMP 

Applied pressure 41.2 kPa 
Rotating speed Head 150 rpm/Platen 150 rpm 
Slurry flow rate 150 mL/min 

Slurry Colloidal silica slurry (diluted with deionized water) 
Polishing pad KONI pad (KPX Chemical, Seoul, Korea) 

In the two-step polishing case, CMP was performed after the disc was polished for 2 min using 
sandpaper (#2000) with some DIW. Polishing was applied using sandpaper to quickly remove the 
waviness on the surface of the material owing to 3D printing. The applied pressure and rotating speed 

Figure 1. Three-dimensional (3D) printer and 3D printed discs: (a) stereolithography apparatus (SLA)
3D printer (SLA-si2) used in this study (b) SLA 3D printed acrylonitrile butadiene styrene (ABS)-like
resin discs.

The average weight of the 3D printed disc was 8.3323 g, and the calculated density of 3D-printed
resin was 1.06 g/cm3 (the density of the material datasheet provided by SDM Somos® is approximately
1.13 g/cm3). The measured average hardness (Shore D) of the 3D-printed specimen (disc) was 81.1
after 3D-printing.

2.2. Polishihng Methodology

A G&P POLI-300 polisher (G&P Technology, Busan, Korea) was used in the polishing experiments.
These experiments were conducted in two case methods: one-step and two-step polishing methods.
Table 1 shows the two cases of the polishing methods. A hard polyurethane pad (KONI pad from KPX
Chemical, Seoul, Korea) with good planarization properties was selected for the planarization of the
surface. And, a colloidal silica slurry were used for the CMP experiments. The average SiO2 particle
size of the slurry used was 72.0 nm while the initial concentration of SiO2 particles was 40 wt%. In the
experiment, the slurry was diluted 1:1 with deionized water (DIW), and the concentration of particles
after dilution was 20 wt%. The applied pressure, rotating speed of the head and platen, and slurry flow
rate were 41.2 kPa, 150 rpm, and 150 mL/min, respectively. A piezoelectric quartz sensor (Kistler Type
9135B) was mounted on the back of the polishing head to measure the dynamic frictional force during
CMP. Pad conditioning was performed every 10 min in the CMP. Table 2 shows the experimental
conditions of CMP.

In the two-step polishing case, CMP was performed after the disc was polished for 2 min using
sandpaper (#2000) with some DIW. Polishing was applied using sandpaper to quickly remove the
waviness on the surface of the material owing to 3D printing. The applied pressure and rotating speed
of the disc in sanding were 9.81 kPa and 80 rpm, respectively. After sanding and CMP were applied,
the disc was cleaned with PVA brush scribing and dried in dry air.

Table 1. Two cases of polishing methods.

Polishing Case. Method.

One-step polishing Chemical mechanical polishing (CMP)

Two-step polishing Sanding (#2000) + CMP
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Table 2. Two cases of polishing methods.

Process. Parameter Value or Consumable

Sanding

Sandpaper #2000

Applied pressure 9.81 kPa

Rotating speed 80 rpm

CMP

Applied pressure 41.2 kPa

Rotating speed Head 150 rpm/Platen 150 rpm

Slurry flow rate 150 mL/min

Slurry Colloidal silica slurry (diluted with deionized water)

Polishing pad KONI pad (KPX Chemical, Seoul, Korea)

2.3. Measurement of Surface Roughness and Glossiness

The surface roughness of the 3D-printed disc was measured using a confocal laser microscope
(NS-3500, NANOSCOPE SYSTEMS Inc., Daejeon, Korea). Figure 2 shows the 3D surface images of the
3D-printed discs. The average arithmetical mean deviation (Sa) and average maximum height (Sz)
values of the 3D printed specimens used in the experiments were 1.432 µm and 9.720 µm, respectively.
Five positions were measured in the radial direction from the center of the disc to the up, down, left,
and right, and the interval between the measurements was 20 mm.
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Figure 2. Surface profiles after SLA 3D printing; (a) Sa of 1.002 µm and Sz of 8.947 µm, and (b) Sa of
1.065 µm and Sz of 9.401 µm.

In general, the MRR of a transparent material is calculated using the weight loss and material density
in CMP. However, the SLA 3D-printed resin absorbs water when exposed to humid environments,
as shown in Figure 3. Figure 3 shows the weight and hardness of the 3D-printed disc after soaking it
in water (1 L) for 8 h and allowing it to dry in air (at room temperature) for 16 h using an electronic
precision balance (0.1 mg resolution) and a digital Shore D hardness tester (LX-D-Y/D-Type, TRIPOD,
China) for hard rubber and plastic. While soaking the disc, its weight increased over time, whereas its
Shore D hardness gradually decreased. This phenomenon seems to occur because resin absorbs water
and reacts chemically as water penetrates into fractures or cavities in the material [36,37]. These results
demonstrate the difficulty of measuring MRR in polished SLA 3D-printed ABS-like resins. Therefore,
in this study, the surface roughness and glossiness of the 3D-printed material are presented as a result
of polishing. Glossiness was measured with a gloss meter (NHG268, 3nh®, China) in gloss units (GU).
The measurement of glossiness followed an ISO 2813 standard. In this study, the glossiness of the
as-3D printed ABS-like resins was 14.23 ± 1.67 GU. The measurements of glossiness were taken at
five points on the specimen. A field-emission scanning electron microscope (FE-SEM, Quanta 200,
Thermo-Fisher-Scientific, Waltham, MA, USA) was used for further surface observation.
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Figure 3. Hardness and weight of SLA 3D-printed ABS-like resin as functions of soaking and
drying time.

3. Results and Discussion

3.1. One-Step Polishing

In this section, the roughness reduction characteristic of the 3D-printed disc was examined by
a CMP experiment. The 3D-printed layers of resin can be found on the surface of the 3D-printed
disc, as shown in Figure 2. In this experiment, the average Sa and Sz values of the 3D-printed
disc were 1.683 µm and 11.117 µm, respectively. Deep valleys were observed on the surface of the
specimen, and to improve the roughness and glossiness conditions of the surface, waviness and fine
roughness on the surface must be removed at the same time. In this study, a hard pad with good
planarization properties was selected for the planarization of the surface, and a colloidal silica slurry
was used for the CMP experiment. The applied pressure and rotating speed were 41.2 kPa and 150 rpm,
respectively, as shown in Table 2. Figure 4 shows Sa and Sz values over the processing time of CMP in
the one-step polishing method. The Sa value decreases from 1.470 µm to 0.350 µm after 150 min of
CMP. The Sz value also decreased from 9.637 µm to 3.907 µm after 150 min. After starting the CMP,
the surface roughness continued to decrease until 90 min, but after 90 min, the surface roughness was
not significantly reduced by the CMP. Figure 5a,b show the representative surface profiles of the SLA
3D-printed ABS-like resin after CMP was applied for 150 min. Figure 5 shows that only the top part of
the waviness on the surface of the specimen is removed and flattened. The glossiness of the as-3D
printed ABS-like resin in Figure 6 was 14.28 GU, but it increased to 62.94 GU after 150 min of polishing.
The results of the experiment indicate that it takes a considerable period of time to secure a flat surface
via polishing the SLA 3D-printed ABS-like resins using the one-step polishing method.Micromachines 2020, 11, x 6 of 14 
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As mentioned earlier, the ABS-like resin used in the experiment has a water-absorbing property.
Resin absorbs water and reacts chemically with water to cause the hydrolysis of resin, resulting in the
scission of the chain as follows [38]:

∼ A− B ∼ +H2O → ∼ A−OH+ ∼ B−H (1)

where A and B are chemical groups in the ABS-like resin.
The absorption characteristics of 3D-printed ABS-like resin appear to reduce hardness, making it

easier to reduce surfaces roughness.
As shown in Figure 3 and Equation (1), the hydrolysis of the water-absorbing ABS-like resin

reduced hardness, making it easier to remove materials via CMP. Figure 7 shows a schematic diagram
of the material removal of the ABS-like resin CMP in one-step polishing. The abrasives in the CMP
slurry mechanically can feasibly remove materials on the surface of the hydrated ABS-like resin.
The deep valley in the 3D-printed ABS-like resin appears difficult to remove with CMP alone owing
to its low MRR. Therefore, in order to planarize the surface of the SLA 3D-printed ABS-like resin,
CMP should be preceded by a process that can remove surface waviness faster.
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3.2. Two-Step Polishing

3.2.1. Sanding

As shown in the experiment conducted in Section 3.1, it can be inferred that a considerable
period of time is required to immediately remove the waviness of the 3D-printed disk surface using
CMP. In this section, the authors suggest that sanding and CMP should be carried out sequentially to
planarize the surface of the 3D-printed ABS-like resin. The average Sa and Sz values of the ABS-like
resin specimens used in the experiment were 1.394 µm and 9.803 µm, respectively. The sanding process
was carried out for 2 min to eliminate surface waviness quickly using sandpaper (#2000) together
with some DIW. The pressure and rotating speed were 9.81 kPa and 80 rpm, respectively, as shown in
Table 2.

Figure 8 shows the surface roughness values of the as-3D printed ABS-like resin before and after
sanding. The initial average Sa and Sz values of the specimen were 1.394 and 9.803 µm, respectively,
as mentioned earlier. After 2 min of sanding, these Sa and Sz values were reduced to 0.266 µm and
3.744 µm, respectively. Glossiness was 14.20 GU after 3D printing, but was lowered to 4.92 GU after
sanding. Figure 9 shows the results of measuring the specimen with a confocal laser microscope after
sanding, including its representative surface profiles. It is evident that the waviness of the surface
formed by 3D printing was removed by sanding. Despite the decrease in surface roughness after
sanding, micro-roughness was formed on the surface of the specimen, which appeared to reduce
glossiness and transparency. The pictures on the right in Figure 8 show that the transparency of
the specimen deteriorated after sanding. Moreover, the wettability of water for ABS-like resin was
increased by sanding, as shown in Figure 10. The as-3D printed ABS-like resin had a contact angle of
79.36◦ (Figure 10a), but its contact angle decreased to 64.46◦ (Figure 10b) after sanding. In previous
research, it was reported that the change in surface roughness has an effect on wettability [39,40].
High wettability may have the effect of increasing the probability of slurry participating in material
removal during CMP.

3.2.2. Chemical-Mechanical Polishing (CMP) after Sanding

After sanding the 3D-printed ABS-like resin, fine roughness was removed by the CMP. The process
conditions of the CMP are shown in Table 2 and Section 3.1. In Figure 11, the Sa surface roughness of
the specimen after sanding was 0.266 µm but decreased to 0.073 µm via a 150-min CMP. After sanding,
the Sz surface roughness of the specimen decreased from 3.744 µm to 1.012 µm after 150 min of CMP.

Figure 12a,b show the representative surface profiles of the SLA 3D-printed ABS-like resin after
sanding and CMP for 2 min and 150 min, respectively. After sanding with sandpaper (#2000), the
glossiness of the ABS-like resin was 4.92 GU. The glossiness of the resin increased from 4.92 GU to
83.38 GU in accordance with CMP processing time (Figure 13). In the one-step polishing method,
glossiness was 62.94 GU after 150 min, but in the two-step polishing method, the glossiness after CMP
increased to 83.38 GU. The two-step polishing method, which consists of the sequential process of
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sanding and CMP, shows higher processing efficiency than the one-step polishing method because
it involves quickly removing the waviness formed on the surface after 3D printing via sanding, and
removing fine surface asperities by CMP. In CMP, this may be because it is easier to perform material
removal on the damaged layer left on the surface of the material by sanding.
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3.3. Comparison of One-Step and Two-Step Polishing Methods

The one-step and two-step polishing methods are compared in terms of surface roughness
reduction. To evaluate the performance of each method at reducing surface roughness, the roughness
reduction efficiency was defined as follows:

Roughness reduction e f f iciency =
(Initial roughness− Final roughness)
Initial roughness × Processing time

× 100 (2)

Generally, in the case of polishing, the greater the surface roughness of the specimen surface,
the higher the material removal rate. Therefore, the roughness reduction efficiency in this study is
represented as the ratio of surface reduction rate to the initial surface roughness.

Figure 14 shows the roughness reduction efficiencies of the one-step and two-step polishing
methods. Overall, it is evident that with sanding and CMP, the efficiency of the two-step polishing
method is higher than that of the one-step polishing method. In the one-step polishing method,
the roughness reduction efficiencies of Sa and Sz were 0.506%/min and 0.397%/min, respectively.
The Sa and Sz roughness reduction efficiencies in the two-step polishing method were 0.632%/min
and 0.598%/min, respectively. When compared to the one-step polishing method, the Sa and Sz
roughness reduction efficiencies of the two-step polishing method were, respectively, 24.90% and
50.63% higher. The right-hand pictures in Figure 14 show ABS-like resin disks after one-step polishing
and two-step polishing.
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Figure 15 shows the changes in the frictional force as a function of CMP time in the one-step
(Figure 15a) and two-step polishing methods (Figure 15b). As mentioned in Section 2.2, a piezoelectric
quartz sensor was mounted on the back of the polishing head to measure the dynamic frictional force.
The signal from the force sensor was obtained by using a charge amplifier and data acquisition board.
In the one-step polishing method, the frictional force during CMP has a high value with large variation
in the early stages of processing, but over time, it decreases and stabilizes. The high frictional force in
the early stage of CMP may come from the removal of fine asperities on the ABS-like resin surface,
and it is stabilized as the upper part of the surface waviness is flattened. In the two-step polishing
method, the frictional force decreased rapidly in the early stage of CMP, and a drastic change in the
frictional force was observed after processing for approximately 92 s. This phenomenon seems to occur
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owing to the removal of the damaged layer of the surface after sanding, and the undamaged ABS-like
resin by the CMP.
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Figure 16 shows the scanning electron microscope (SEM) images (×500) of as 3D-printed ABS-like
resins (a), after sanding (b), and after sanding and CMP (c). FE-SEM was used for surface observation.
As shown in Figures 2 and 16a, the as-3D printed sample has the waviness on its surface. The sample
surface after sanding has a rough surface due to the abrasive/adhesive wear as shown in Figure 16b.
If CMP is applied after sanding, abrasion marks on the surface disappear (Figure 16c).
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Figure 16. Field-emission scanning electron microscope (FE-SEM) images (×500); (a) as-3D printed,
(b) after sanding, and (c) after sanding and CMP.

Using 2-body abrasion, sanding process removes material by fixed abrasive and occurs
abrasive/adhesive wear, leaving damages by mechanical material removal on the surface of the
specimen. The generation of the damage layer on the surface of the 3D-printed ABS-like resin by
the sanding process can be identified in Figure 15b as a change in friction force and in the FE-SEM
image (Figure 16a). In CMP, where materials are removed through 3-body abrasion, the damaged layer
produced by sanding machining is removed due to the sliding and rolling motion of abrasive particles
so that a high-quality surface can be obtained. Figure 17 shows the schematic diagram of the two-step
polishing mechanism.
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4. Conclusions

In this paper, a study on the polishing methods of 3D-printed ABS-like resin materials was carried
out to reduce surface roughness and increase glossiness. In the experiment, a one-step polishing method
that directly applies CMP to 3D-printed materials was compared with a two-step polishing method
that progresses CMP sequentially after sanding. The 3D-printed ABS-like resin had a water-absorbing
property, and the hardness of the material surface was reduced with an increase in water absorption.
CMP was applied to 3D-printed ABS-like resin in the one-step polishing method, and it was confirmed
that the waviness or deep valley of the specimen formed by 3D printing was not completely removed
after 150 min of CMP. In the two-step polishing method, the surface roughness was reduced via CMP
after removing the waviness on the specimen by sanding, and compared to the one-step polishing
method, the surface roughness and glossiness of the 3D-printed ABS-like resin could be improved
more efficiently. The application of the sanding process prior to the CMP process seems to help remove
the waviness of the 3D-printed ABS-like resin surface and leave the damaged layer on the surface,
but quickly remove it through the CMP process and secure a high-quality surface roughness.

In the future, studies on the application of various abrasive particles and polishing pads in
the 3D-printed ABS-like resin polishing process, studies on friction phenomena during polishing,
and studies on polishing characteristics under 3D-printing conditions will be needed. In addition,
the development of high-efficiency polishing processes to simplify the post-processing of 3D-printed
parts and obtain high-quality surface roughing is expected to be required.
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